GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libcrypto/crypto/../../libssl/src/crypto/bn/bn_kron.c Lines: 45 59 76.3 %
Date: 2016-12-06 Branches: 37 64 57.8 %

Line Branch Exec Source
1
/* $OpenBSD: bn_kron.c,v 1.6 2015/02/09 15:49:22 jsing Exp $ */
2
/* ====================================================================
3
 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * 1. Redistributions of source code must retain the above copyright
10
 *    notice, this list of conditions and the following disclaimer.
11
 *
12
 * 2. Redistributions in binary form must reproduce the above copyright
13
 *    notice, this list of conditions and the following disclaimer in
14
 *    the documentation and/or other materials provided with the
15
 *    distribution.
16
 *
17
 * 3. All advertising materials mentioning features or use of this
18
 *    software must display the following acknowledgment:
19
 *    "This product includes software developed by the OpenSSL Project
20
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21
 *
22
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23
 *    endorse or promote products derived from this software without
24
 *    prior written permission. For written permission, please contact
25
 *    openssl-core@openssl.org.
26
 *
27
 * 5. Products derived from this software may not be called "OpenSSL"
28
 *    nor may "OpenSSL" appear in their names without prior written
29
 *    permission of the OpenSSL Project.
30
 *
31
 * 6. Redistributions of any form whatsoever must retain the following
32
 *    acknowledgment:
33
 *    "This product includes software developed by the OpenSSL Project
34
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35
 *
36
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47
 * OF THE POSSIBILITY OF SUCH DAMAGE.
48
 * ====================================================================
49
 *
50
 * This product includes cryptographic software written by Eric Young
51
 * (eay@cryptsoft.com).  This product includes software written by Tim
52
 * Hudson (tjh@cryptsoft.com).
53
 *
54
 */
55
56
#include "bn_lcl.h"
57
58
/* least significant word */
59
#define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])
60
61
/* Returns -2 for errors because both -1 and 0 are valid results. */
62
int
63
BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
64
138
{
65
	int i;
66
138
	int ret = -2; /* avoid 'uninitialized' warning */
67
138
	int err = 0;
68
	BIGNUM *A, *B, *tmp;
69
70
	/* In 'tab', only odd-indexed entries are relevant:
71
	 * For any odd BIGNUM n,
72
	 *     tab[BN_lsw(n) & 7]
73
	 * is $(-1)^{(n^2-1)/8}$ (using TeX notation).
74
	 * Note that the sign of n does not matter.
75
	 */
76
	static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1};
77
78
	bn_check_top(a);
79
	bn_check_top(b);
80
81
138
	BN_CTX_start(ctx);
82
138
	if ((A = BN_CTX_get(ctx)) == NULL)
83
		goto end;
84
138
	if ((B = BN_CTX_get(ctx)) == NULL)
85
		goto end;
86
87
138
	err = !BN_copy(A, a);
88
138
	if (err)
89
		goto end;
90
138
	err = !BN_copy(B, b);
91
138
	if (err)
92
		goto end;
93
94
	/*
95
	 * Kronecker symbol, imlemented according to Henri Cohen,
96
	 * "A Course in Computational Algebraic Number Theory"
97
	 * (algorithm 1.4.10).
98
	 */
99
100
	/* Cohen's step 1: */
101
102
138
	if (BN_is_zero(B)) {
103
		ret = BN_abs_is_word(A, 1);
104
		goto end;
105
	}
106
107
	/* Cohen's step 2: */
108
109


138
	if (!BN_is_odd(A) && !BN_is_odd(B)) {
110
		ret = 0;
111
		goto end;
112
	}
113
114
	/* now  B  is non-zero */
115
138
	i = 0;
116
276
	while (!BN_is_bit_set(B, i))
117
		i++;
118
138
	err = !BN_rshift(B, B, i);
119
138
	if (err)
120
		goto end;
121
138
	if (i & 1) {
122
		/* i is odd */
123
		/* (thus  B  was even, thus  A  must be odd!)  */
124
125
		/* set 'ret' to $(-1)^{(A^2-1)/8}$ */
126
		ret = tab[BN_lsw(A) & 7];
127
	} else {
128
		/* i is even */
129
138
		ret = 1;
130
	}
131
132
138
	if (B->neg) {
133
100
		B->neg = 0;
134
100
		if (A->neg)
135
50
			ret = -ret;
136
	}
137
138
	/* now  B  is positive and odd, so what remains to be done is
139
	 * to compute the Jacobi symbol  (A/B)  and multiply it by 'ret' */
140
141
	while (1) {
142
		/* Cohen's step 3: */
143
144
		/*  B  is positive and odd */
145
146
18651
		if (BN_is_zero(A)) {
147

138
			ret = BN_is_one(B) ? ret : 0;
148
138
			goto end;
149
		}
150
151
		/* now  A  is non-zero */
152
18513
		i = 0;
153
58156
		while (!BN_is_bit_set(A, i))
154
21130
			i++;
155
18513
		err = !BN_rshift(A, A, i);
156
18513
		if (err)
157
			goto end;
158
18513
		if (i & 1) {
159
			/* i is odd */
160
			/* multiply 'ret' by  $(-1)^{(B^2-1)/8}$ */
161
6720
			ret = ret * tab[BN_lsw(B) & 7];
162
		}
163
164
		/* Cohen's step 4: */
165
		/* multiply 'ret' by  $(-1)^{(A-1)(B-1)/4}$ */
166


18513
		if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2)
167
4560
			ret = -ret;
168
169
		/* (A, B) := (B mod |A|, |A|) */
170
18513
		err = !BN_nnmod(B, B, A, ctx);
171
18513
		if (err)
172
			goto end;
173
18513
		tmp = A;
174
18513
		A = B;
175
18513
		B = tmp;
176
18513
		tmp->neg = 0;
177
18513
	}
178
179
138
end:
180
138
	BN_CTX_end(ctx);
181
138
	if (err)
182
		return -2;
183
	else
184
138
		return ret;
185
}