1 |
|
|
/* $OpenBSD: bn_mul.c,v 1.20 2015/02/09 15:49:22 jsing Exp $ */ |
2 |
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 |
|
|
* All rights reserved. |
4 |
|
|
* |
5 |
|
|
* This package is an SSL implementation written |
6 |
|
|
* by Eric Young (eay@cryptsoft.com). |
7 |
|
|
* The implementation was written so as to conform with Netscapes SSL. |
8 |
|
|
* |
9 |
|
|
* This library is free for commercial and non-commercial use as long as |
10 |
|
|
* the following conditions are aheared to. The following conditions |
11 |
|
|
* apply to all code found in this distribution, be it the RC4, RSA, |
12 |
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 |
|
|
* included with this distribution is covered by the same copyright terms |
14 |
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 |
|
|
* |
16 |
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
17 |
|
|
* the code are not to be removed. |
18 |
|
|
* If this package is used in a product, Eric Young should be given attribution |
19 |
|
|
* as the author of the parts of the library used. |
20 |
|
|
* This can be in the form of a textual message at program startup or |
21 |
|
|
* in documentation (online or textual) provided with the package. |
22 |
|
|
* |
23 |
|
|
* Redistribution and use in source and binary forms, with or without |
24 |
|
|
* modification, are permitted provided that the following conditions |
25 |
|
|
* are met: |
26 |
|
|
* 1. Redistributions of source code must retain the copyright |
27 |
|
|
* notice, this list of conditions and the following disclaimer. |
28 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
29 |
|
|
* notice, this list of conditions and the following disclaimer in the |
30 |
|
|
* documentation and/or other materials provided with the distribution. |
31 |
|
|
* 3. All advertising materials mentioning features or use of this software |
32 |
|
|
* must display the following acknowledgement: |
33 |
|
|
* "This product includes cryptographic software written by |
34 |
|
|
* Eric Young (eay@cryptsoft.com)" |
35 |
|
|
* The word 'cryptographic' can be left out if the rouines from the library |
36 |
|
|
* being used are not cryptographic related :-). |
37 |
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
38 |
|
|
* the apps directory (application code) you must include an acknowledgement: |
39 |
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 |
|
|
* |
41 |
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 |
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 |
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
44 |
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
45 |
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
46 |
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
47 |
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 |
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
49 |
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 |
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 |
|
|
* SUCH DAMAGE. |
52 |
|
|
* |
53 |
|
|
* The licence and distribution terms for any publically available version or |
54 |
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
55 |
|
|
* copied and put under another distribution licence |
56 |
|
|
* [including the GNU Public Licence.] |
57 |
|
|
*/ |
58 |
|
|
|
59 |
|
|
#ifndef BN_DEBUG |
60 |
|
|
# undef NDEBUG /* avoid conflicting definitions */ |
61 |
|
|
# define NDEBUG |
62 |
|
|
#endif |
63 |
|
|
|
64 |
|
|
#include <assert.h> |
65 |
|
|
#include <stdio.h> |
66 |
|
|
#include <string.h> |
67 |
|
|
|
68 |
|
|
#include <openssl/opensslconf.h> |
69 |
|
|
|
70 |
|
|
#include "bn_lcl.h" |
71 |
|
|
|
72 |
|
|
#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) |
73 |
|
|
/* Here follows specialised variants of bn_add_words() and |
74 |
|
|
bn_sub_words(). They have the property performing operations on |
75 |
|
|
arrays of different sizes. The sizes of those arrays is expressed through |
76 |
|
|
cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl, |
77 |
|
|
which is the delta between the two lengths, calculated as len(a)-len(b). |
78 |
|
|
All lengths are the number of BN_ULONGs... For the operations that require |
79 |
|
|
a result array as parameter, it must have the length cl+abs(dl). |
80 |
|
|
These functions should probably end up in bn_asm.c as soon as there are |
81 |
|
|
assembler counterparts for the systems that use assembler files. */ |
82 |
|
|
|
83 |
|
|
BN_ULONG |
84 |
|
|
bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, |
85 |
|
|
int dl) |
86 |
|
1762 |
{ |
87 |
|
|
BN_ULONG c, t; |
88 |
|
|
|
89 |
|
|
assert(cl >= 0); |
90 |
|
1762 |
c = bn_sub_words(r, a, b, cl); |
91 |
|
|
|
92 |
✓✓ |
1762 |
if (dl == 0) |
93 |
|
1218 |
return c; |
94 |
|
|
|
95 |
|
544 |
r += cl; |
96 |
|
544 |
a += cl; |
97 |
|
544 |
b += cl; |
98 |
|
|
|
99 |
✓✓ |
544 |
if (dl < 0) { |
100 |
|
|
#ifdef BN_COUNT |
101 |
|
|
fprintf(stderr, |
102 |
|
|
" bn_sub_part_words %d + %d (dl < 0, c = %d)\n", |
103 |
|
|
cl, dl, c); |
104 |
|
|
#endif |
105 |
|
|
for (;;) { |
106 |
|
3 |
t = b[0]; |
107 |
|
3 |
r[0] = (0 - t - c) & BN_MASK2; |
108 |
✗✓ |
3 |
if (t != 0) |
109 |
|
|
c = 1; |
110 |
✓✗ |
3 |
if (++dl >= 0) |
111 |
|
|
break; |
112 |
|
|
|
113 |
|
3 |
t = b[1]; |
114 |
|
3 |
r[1] = (0 - t - c) & BN_MASK2; |
115 |
✗✓ |
3 |
if (t != 0) |
116 |
|
|
c = 1; |
117 |
✗✓ |
3 |
if (++dl >= 0) |
118 |
|
|
break; |
119 |
|
|
|
120 |
|
3 |
t = b[2]; |
121 |
|
3 |
r[2] = (0 - t - c) & BN_MASK2; |
122 |
✗✓ |
3 |
if (t != 0) |
123 |
|
|
c = 1; |
124 |
✗✓ |
3 |
if (++dl >= 0) |
125 |
|
|
break; |
126 |
|
|
|
127 |
|
3 |
t = b[3]; |
128 |
|
3 |
r[3] = (0 - t - c) & BN_MASK2; |
129 |
✗✓ |
3 |
if (t != 0) |
130 |
|
|
c = 1; |
131 |
✓✓ |
3 |
if (++dl >= 0) |
132 |
|
1 |
break; |
133 |
|
|
|
134 |
|
2 |
b += 4; |
135 |
|
2 |
r += 4; |
136 |
|
2 |
} |
137 |
|
|
} else { |
138 |
|
543 |
int save_dl = dl; |
139 |
|
|
#ifdef BN_COUNT |
140 |
|
|
fprintf(stderr, |
141 |
|
|
" bn_sub_part_words %d + %d (dl > 0, c = %d)\n", |
142 |
|
|
cl, dl, c); |
143 |
|
|
#endif |
144 |
✓✓ |
1156 |
while (c) { |
145 |
|
71 |
t = a[0]; |
146 |
|
71 |
r[0] = (t - c) & BN_MASK2; |
147 |
✓✓ |
71 |
if (t != 0) |
148 |
|
66 |
c = 0; |
149 |
✗✓ |
71 |
if (--dl <= 0) |
150 |
|
|
break; |
151 |
|
|
|
152 |
|
71 |
t = a[1]; |
153 |
|
71 |
r[1] = (t - c) & BN_MASK2; |
154 |
✓✓ |
71 |
if (t != 0) |
155 |
|
68 |
c = 0; |
156 |
✗✓ |
71 |
if (--dl <= 0) |
157 |
|
|
break; |
158 |
|
|
|
159 |
|
71 |
t = a[2]; |
160 |
|
71 |
r[2] = (t - c) & BN_MASK2; |
161 |
✓✓ |
71 |
if (t != 0) |
162 |
|
68 |
c = 0; |
163 |
✗✓ |
71 |
if (--dl <= 0) |
164 |
|
|
break; |
165 |
|
|
|
166 |
|
71 |
t = a[3]; |
167 |
|
71 |
r[3] = (t - c) & BN_MASK2; |
168 |
✓✓ |
71 |
if (t != 0) |
169 |
|
69 |
c = 0; |
170 |
✓✓ |
71 |
if (--dl <= 0) |
171 |
|
1 |
break; |
172 |
|
|
|
173 |
|
70 |
save_dl = dl; |
174 |
|
70 |
a += 4; |
175 |
|
70 |
r += 4; |
176 |
|
|
} |
177 |
✓✓ |
543 |
if (dl > 0) { |
178 |
|
|
#ifdef BN_COUNT |
179 |
|
|
fprintf(stderr, |
180 |
|
|
" bn_sub_part_words %d + %d (dl > 0, c == 0)\n", |
181 |
|
|
cl, dl); |
182 |
|
|
#endif |
183 |
✗✓ |
542 |
if (save_dl > dl) { |
184 |
|
|
switch (save_dl - dl) { |
185 |
|
|
case 1: |
186 |
|
|
r[1] = a[1]; |
187 |
|
|
if (--dl <= 0) |
188 |
|
|
break; |
189 |
|
|
case 2: |
190 |
|
|
r[2] = a[2]; |
191 |
|
|
if (--dl <= 0) |
192 |
|
|
break; |
193 |
|
|
case 3: |
194 |
|
|
r[3] = a[3]; |
195 |
|
|
if (--dl <= 0) |
196 |
|
|
break; |
197 |
|
|
} |
198 |
|
|
a += 4; |
199 |
|
|
r += 4; |
200 |
|
|
} |
201 |
|
|
} |
202 |
✓✓ |
543 |
if (dl > 0) { |
203 |
|
|
#ifdef BN_COUNT |
204 |
|
|
fprintf(stderr, |
205 |
|
|
" bn_sub_part_words %d + %d (dl > 0, copy)\n", |
206 |
|
|
cl, dl); |
207 |
|
|
#endif |
208 |
|
|
for (;;) { |
209 |
|
1756 |
r[0] = a[0]; |
210 |
✓✓ |
1756 |
if (--dl <= 0) |
211 |
|
144 |
break; |
212 |
|
1612 |
r[1] = a[1]; |
213 |
✓✓ |
1612 |
if (--dl <= 0) |
214 |
|
150 |
break; |
215 |
|
1462 |
r[2] = a[2]; |
216 |
✓✓ |
1462 |
if (--dl <= 0) |
217 |
|
150 |
break; |
218 |
|
1312 |
r[3] = a[3]; |
219 |
✓✓ |
1312 |
if (--dl <= 0) |
220 |
|
98 |
break; |
221 |
|
|
|
222 |
|
1214 |
a += 4; |
223 |
|
1214 |
r += 4; |
224 |
|
1214 |
} |
225 |
|
|
} |
226 |
|
|
} |
227 |
|
544 |
return c; |
228 |
|
|
} |
229 |
|
|
#endif |
230 |
|
|
|
231 |
|
|
BN_ULONG |
232 |
|
|
bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, |
233 |
|
|
int dl) |
234 |
|
|
{ |
235 |
|
|
BN_ULONG c, l, t; |
236 |
|
|
|
237 |
|
|
assert(cl >= 0); |
238 |
|
|
c = bn_add_words(r, a, b, cl); |
239 |
|
|
|
240 |
|
|
if (dl == 0) |
241 |
|
|
return c; |
242 |
|
|
|
243 |
|
|
r += cl; |
244 |
|
|
a += cl; |
245 |
|
|
b += cl; |
246 |
|
|
|
247 |
|
|
if (dl < 0) { |
248 |
|
|
int save_dl = dl; |
249 |
|
|
#ifdef BN_COUNT |
250 |
|
|
fprintf(stderr, |
251 |
|
|
" bn_add_part_words %d + %d (dl < 0, c = %d)\n", |
252 |
|
|
cl, dl, c); |
253 |
|
|
#endif |
254 |
|
|
while (c) { |
255 |
|
|
l = (c + b[0]) & BN_MASK2; |
256 |
|
|
c = (l < c); |
257 |
|
|
r[0] = l; |
258 |
|
|
if (++dl >= 0) |
259 |
|
|
break; |
260 |
|
|
|
261 |
|
|
l = (c + b[1]) & BN_MASK2; |
262 |
|
|
c = (l < c); |
263 |
|
|
r[1] = l; |
264 |
|
|
if (++dl >= 0) |
265 |
|
|
break; |
266 |
|
|
|
267 |
|
|
l = (c + b[2]) & BN_MASK2; |
268 |
|
|
c = (l < c); |
269 |
|
|
r[2] = l; |
270 |
|
|
if (++dl >= 0) |
271 |
|
|
break; |
272 |
|
|
|
273 |
|
|
l = (c + b[3]) & BN_MASK2; |
274 |
|
|
c = (l < c); |
275 |
|
|
r[3] = l; |
276 |
|
|
if (++dl >= 0) |
277 |
|
|
break; |
278 |
|
|
|
279 |
|
|
save_dl = dl; |
280 |
|
|
b += 4; |
281 |
|
|
r += 4; |
282 |
|
|
} |
283 |
|
|
if (dl < 0) { |
284 |
|
|
#ifdef BN_COUNT |
285 |
|
|
fprintf(stderr, |
286 |
|
|
" bn_add_part_words %d + %d (dl < 0, c == 0)\n", |
287 |
|
|
cl, dl); |
288 |
|
|
#endif |
289 |
|
|
if (save_dl < dl) { |
290 |
|
|
switch (dl - save_dl) { |
291 |
|
|
case 1: |
292 |
|
|
r[1] = b[1]; |
293 |
|
|
if (++dl >= 0) |
294 |
|
|
break; |
295 |
|
|
case 2: |
296 |
|
|
r[2] = b[2]; |
297 |
|
|
if (++dl >= 0) |
298 |
|
|
break; |
299 |
|
|
case 3: |
300 |
|
|
r[3] = b[3]; |
301 |
|
|
if (++dl >= 0) |
302 |
|
|
break; |
303 |
|
|
} |
304 |
|
|
b += 4; |
305 |
|
|
r += 4; |
306 |
|
|
} |
307 |
|
|
} |
308 |
|
|
if (dl < 0) { |
309 |
|
|
#ifdef BN_COUNT |
310 |
|
|
fprintf(stderr, |
311 |
|
|
" bn_add_part_words %d + %d (dl < 0, copy)\n", |
312 |
|
|
cl, dl); |
313 |
|
|
#endif |
314 |
|
|
for (;;) { |
315 |
|
|
r[0] = b[0]; |
316 |
|
|
if (++dl >= 0) |
317 |
|
|
break; |
318 |
|
|
r[1] = b[1]; |
319 |
|
|
if (++dl >= 0) |
320 |
|
|
break; |
321 |
|
|
r[2] = b[2]; |
322 |
|
|
if (++dl >= 0) |
323 |
|
|
break; |
324 |
|
|
r[3] = b[3]; |
325 |
|
|
if (++dl >= 0) |
326 |
|
|
break; |
327 |
|
|
|
328 |
|
|
b += 4; |
329 |
|
|
r += 4; |
330 |
|
|
} |
331 |
|
|
} |
332 |
|
|
} else { |
333 |
|
|
int save_dl = dl; |
334 |
|
|
#ifdef BN_COUNT |
335 |
|
|
fprintf(stderr, |
336 |
|
|
" bn_add_part_words %d + %d (dl > 0)\n", cl, dl); |
337 |
|
|
#endif |
338 |
|
|
while (c) { |
339 |
|
|
t = (a[0] + c) & BN_MASK2; |
340 |
|
|
c = (t < c); |
341 |
|
|
r[0] = t; |
342 |
|
|
if (--dl <= 0) |
343 |
|
|
break; |
344 |
|
|
|
345 |
|
|
t = (a[1] + c) & BN_MASK2; |
346 |
|
|
c = (t < c); |
347 |
|
|
r[1] = t; |
348 |
|
|
if (--dl <= 0) |
349 |
|
|
break; |
350 |
|
|
|
351 |
|
|
t = (a[2] + c) & BN_MASK2; |
352 |
|
|
c = (t < c); |
353 |
|
|
r[2] = t; |
354 |
|
|
if (--dl <= 0) |
355 |
|
|
break; |
356 |
|
|
|
357 |
|
|
t = (a[3] + c) & BN_MASK2; |
358 |
|
|
c = (t < c); |
359 |
|
|
r[3] = t; |
360 |
|
|
if (--dl <= 0) |
361 |
|
|
break; |
362 |
|
|
|
363 |
|
|
save_dl = dl; |
364 |
|
|
a += 4; |
365 |
|
|
r += 4; |
366 |
|
|
} |
367 |
|
|
#ifdef BN_COUNT |
368 |
|
|
fprintf(stderr, |
369 |
|
|
" bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); |
370 |
|
|
#endif |
371 |
|
|
if (dl > 0) { |
372 |
|
|
if (save_dl > dl) { |
373 |
|
|
switch (save_dl - dl) { |
374 |
|
|
case 1: |
375 |
|
|
r[1] = a[1]; |
376 |
|
|
if (--dl <= 0) |
377 |
|
|
break; |
378 |
|
|
case 2: |
379 |
|
|
r[2] = a[2]; |
380 |
|
|
if (--dl <= 0) |
381 |
|
|
break; |
382 |
|
|
case 3: |
383 |
|
|
r[3] = a[3]; |
384 |
|
|
if (--dl <= 0) |
385 |
|
|
break; |
386 |
|
|
} |
387 |
|
|
a += 4; |
388 |
|
|
r += 4; |
389 |
|
|
} |
390 |
|
|
} |
391 |
|
|
if (dl > 0) { |
392 |
|
|
#ifdef BN_COUNT |
393 |
|
|
fprintf(stderr, |
394 |
|
|
" bn_add_part_words %d + %d (dl > 0, copy)\n", |
395 |
|
|
cl, dl); |
396 |
|
|
#endif |
397 |
|
|
for (;;) { |
398 |
|
|
r[0] = a[0]; |
399 |
|
|
if (--dl <= 0) |
400 |
|
|
break; |
401 |
|
|
r[1] = a[1]; |
402 |
|
|
if (--dl <= 0) |
403 |
|
|
break; |
404 |
|
|
r[2] = a[2]; |
405 |
|
|
if (--dl <= 0) |
406 |
|
|
break; |
407 |
|
|
r[3] = a[3]; |
408 |
|
|
if (--dl <= 0) |
409 |
|
|
break; |
410 |
|
|
|
411 |
|
|
a += 4; |
412 |
|
|
r += 4; |
413 |
|
|
} |
414 |
|
|
} |
415 |
|
|
} |
416 |
|
|
return c; |
417 |
|
|
} |
418 |
|
|
|
419 |
|
|
#ifdef BN_RECURSION |
420 |
|
|
/* Karatsuba recursive multiplication algorithm |
421 |
|
|
* (cf. Knuth, The Art of Computer Programming, Vol. 2) */ |
422 |
|
|
|
423 |
|
|
/* r is 2*n2 words in size, |
424 |
|
|
* a and b are both n2 words in size. |
425 |
|
|
* n2 must be a power of 2. |
426 |
|
|
* We multiply and return the result. |
427 |
|
|
* t must be 2*n2 words in size |
428 |
|
|
* We calculate |
429 |
|
|
* a[0]*b[0] |
430 |
|
|
* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) |
431 |
|
|
* a[1]*b[1] |
432 |
|
|
*/ |
433 |
|
|
/* dnX may not be positive, but n2/2+dnX has to be */ |
434 |
|
|
void |
435 |
|
|
bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, |
436 |
|
|
int dnb, BN_ULONG *t) |
437 |
|
634 |
{ |
438 |
|
634 |
int n = n2 / 2, c1, c2; |
439 |
|
634 |
int tna = n + dna, tnb = n + dnb; |
440 |
|
|
unsigned int neg, zero; |
441 |
|
|
BN_ULONG ln, lo, *p; |
442 |
|
|
|
443 |
|
|
# ifdef BN_COUNT |
444 |
|
|
fprintf(stderr, " bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb); |
445 |
|
|
# endif |
446 |
|
|
# ifdef BN_MUL_COMBA |
447 |
|
|
# if 0 |
448 |
|
|
if (n2 == 4) { |
449 |
|
|
bn_mul_comba4(r, a, b); |
450 |
|
|
return; |
451 |
|
|
} |
452 |
|
|
# endif |
453 |
|
|
/* Only call bn_mul_comba 8 if n2 == 8 and the |
454 |
|
|
* two arrays are complete [steve] |
455 |
|
|
*/ |
456 |
✗✓✗✗
|
634 |
if (n2 == 8 && dna == 0 && dnb == 0) { |
457 |
|
|
bn_mul_comba8(r, a, b); |
458 |
|
|
return; |
459 |
|
|
} |
460 |
|
|
# endif /* BN_MUL_COMBA */ |
461 |
|
|
/* Else do normal multiply */ |
462 |
✓✓ |
634 |
if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
463 |
|
24 |
bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); |
464 |
✓✗ |
24 |
if ((dna + dnb) < 0) |
465 |
|
24 |
memset(&r[2*n2 + dna + dnb], 0, |
466 |
|
|
sizeof(BN_ULONG) * -(dna + dnb)); |
467 |
|
|
return; |
468 |
|
|
} |
469 |
|
|
/* r=(a[0]-a[1])*(b[1]-b[0]) */ |
470 |
|
610 |
c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); |
471 |
|
610 |
c2 = bn_cmp_part_words(&(b[n]), b,tnb, tnb - n); |
472 |
|
610 |
zero = neg = 0; |
473 |
✓✓✓✗ ✓✗✓✗
|
610 |
switch (c1 * 3 + c2) { |
474 |
|
|
case -4: |
475 |
|
103 |
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
476 |
|
103 |
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
477 |
|
103 |
break; |
478 |
|
|
case -3: |
479 |
|
1 |
zero = 1; |
480 |
|
1 |
break; |
481 |
|
|
case -2: |
482 |
|
128 |
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
483 |
|
128 |
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ |
484 |
|
128 |
neg = 1; |
485 |
|
128 |
break; |
486 |
|
|
case -1: |
487 |
|
|
case 0: |
488 |
|
|
case 1: |
489 |
|
|
zero = 1; |
490 |
|
|
break; |
491 |
|
|
case 2: |
492 |
|
203 |
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ |
493 |
|
203 |
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
494 |
|
203 |
neg = 1; |
495 |
|
203 |
break; |
496 |
|
|
case 3: |
497 |
|
|
zero = 1; |
498 |
|
|
break; |
499 |
|
|
case 4: |
500 |
|
175 |
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); |
501 |
|
175 |
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); |
502 |
|
|
break; |
503 |
|
|
} |
504 |
|
|
|
505 |
|
|
# ifdef BN_MUL_COMBA |
506 |
✗✓✗✗
|
610 |
if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take |
507 |
|
|
extra args to do this well */ |
508 |
|
|
{ |
509 |
|
|
if (!zero) |
510 |
|
|
bn_mul_comba4(&(t[n2]), t, &(t[n])); |
511 |
|
|
else |
512 |
|
|
memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); |
513 |
|
|
|
514 |
|
|
bn_mul_comba4(r, a, b); |
515 |
|
|
bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); |
516 |
✓✓✓✗
|
1214 |
} else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could |
517 |
|
|
take extra args to do this |
518 |
|
|
well */ |
519 |
|
|
{ |
520 |
✓✓ |
604 |
if (!zero) |
521 |
|
603 |
bn_mul_comba8(&(t[n2]), t, &(t[n])); |
522 |
|
|
else |
523 |
|
1 |
memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); |
524 |
|
|
|
525 |
|
604 |
bn_mul_comba8(r, a, b); |
526 |
|
604 |
bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); |
527 |
|
|
} else |
528 |
|
|
# endif /* BN_MUL_COMBA */ |
529 |
|
|
{ |
530 |
|
6 |
p = &(t[n2 * 2]); |
531 |
✓✗ |
6 |
if (!zero) |
532 |
|
6 |
bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); |
533 |
|
|
else |
534 |
|
|
memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); |
535 |
|
6 |
bn_mul_recursive(r, a, b, n, 0, 0, p); |
536 |
|
6 |
bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); |
537 |
|
|
} |
538 |
|
|
|
539 |
|
|
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign |
540 |
|
|
* r[10] holds (a[0]*b[0]) |
541 |
|
|
* r[32] holds (b[1]*b[1]) |
542 |
|
|
*/ |
543 |
|
|
|
544 |
|
610 |
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); |
545 |
|
|
|
546 |
✓✓ |
610 |
if (neg) /* if t[32] is negative */ |
547 |
|
|
{ |
548 |
|
331 |
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); |
549 |
|
|
} else { |
550 |
|
|
/* Might have a carry */ |
551 |
|
279 |
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); |
552 |
|
|
} |
553 |
|
|
|
554 |
|
|
/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) |
555 |
|
|
* r[10] holds (a[0]*b[0]) |
556 |
|
|
* r[32] holds (b[1]*b[1]) |
557 |
|
|
* c1 holds the carry bits |
558 |
|
|
*/ |
559 |
|
610 |
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); |
560 |
✓✓ |
610 |
if (c1) { |
561 |
|
230 |
p = &(r[n + n2]); |
562 |
|
230 |
lo= *p; |
563 |
|
230 |
ln = (lo + c1) & BN_MASK2; |
564 |
|
230 |
*p = ln; |
565 |
|
|
|
566 |
|
|
/* The overflow will stop before we over write |
567 |
|
|
* words we should not overwrite */ |
568 |
✗✓ |
230 |
if (ln < (BN_ULONG)c1) { |
569 |
|
|
do { |
570 |
|
|
p++; |
571 |
|
|
lo= *p; |
572 |
|
|
ln = (lo + 1) & BN_MASK2; |
573 |
|
|
*p = ln; |
574 |
|
|
} while (ln == 0); |
575 |
|
|
} |
576 |
|
|
} |
577 |
|
|
} |
578 |
|
|
|
579 |
|
|
/* n+tn is the word length |
580 |
|
|
* t needs to be n*4 is size, as does r */ |
581 |
|
|
/* tnX may not be negative but less than n */ |
582 |
|
|
void |
583 |
|
|
bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, |
584 |
|
|
int tnb, BN_ULONG *t) |
585 |
|
272 |
{ |
586 |
|
272 |
int i, j, n2 = n * 2; |
587 |
|
|
int c1, c2, neg; |
588 |
|
|
BN_ULONG ln, lo, *p; |
589 |
|
|
|
590 |
|
|
# ifdef BN_COUNT |
591 |
|
|
fprintf(stderr, " bn_mul_part_recursive (%d%+d) * (%d%+d)\n", |
592 |
|
|
n, tna, n, tnb); |
593 |
|
|
# endif |
594 |
✗✓ |
272 |
if (n < 8) { |
595 |
|
|
bn_mul_normal(r, a, n + tna, b, n + tnb); |
596 |
|
|
return; |
597 |
|
|
} |
598 |
|
|
|
599 |
|
|
/* r=(a[0]-a[1])*(b[1]-b[0]) */ |
600 |
|
272 |
c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); |
601 |
|
272 |
c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); |
602 |
|
272 |
neg = 0; |
603 |
✗✗✓✓ ✗ |
272 |
switch (c1 * 3 + c2) { |
604 |
|
|
case -4: |
605 |
|
|
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
606 |
|
|
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
607 |
|
|
break; |
608 |
|
|
case -3: |
609 |
|
|
/* break; */ |
610 |
|
|
case -2: |
611 |
|
|
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
612 |
|
|
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ |
613 |
|
|
neg = 1; |
614 |
|
|
break; |
615 |
|
|
case -1: |
616 |
|
|
case 0: |
617 |
|
|
case 1: |
618 |
|
|
/* break; */ |
619 |
|
|
case 2: |
620 |
|
271 |
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ |
621 |
|
271 |
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
622 |
|
271 |
neg = 1; |
623 |
|
271 |
break; |
624 |
|
|
case 3: |
625 |
|
|
/* break; */ |
626 |
|
|
case 4: |
627 |
|
1 |
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); |
628 |
|
1 |
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); |
629 |
|
|
break; |
630 |
|
|
} |
631 |
|
|
/* The zero case isn't yet implemented here. The speedup |
632 |
|
|
would probably be negligible. */ |
633 |
|
|
# if 0 |
634 |
|
|
if (n == 4) { |
635 |
|
|
bn_mul_comba4(&(t[n2]), t, &(t[n])); |
636 |
|
|
bn_mul_comba4(r, a, b); |
637 |
|
|
bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); |
638 |
|
|
memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); |
639 |
|
|
} else |
640 |
|
|
# endif |
641 |
✗✓ |
272 |
if (n == 8) { |
642 |
|
|
bn_mul_comba8(&(t[n2]), t, &(t[n])); |
643 |
|
|
bn_mul_comba8(r, a, b); |
644 |
|
|
bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); |
645 |
|
|
memset(&(r[n2 + tna + tnb]), 0, |
646 |
|
|
sizeof(BN_ULONG) * (n2 - tna - tnb)); |
647 |
|
|
} else { |
648 |
|
272 |
p = &(t[n2*2]); |
649 |
|
272 |
bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); |
650 |
|
272 |
bn_mul_recursive(r, a, b, n, 0, 0, p); |
651 |
|
272 |
i = n / 2; |
652 |
|
|
/* If there is only a bottom half to the number, |
653 |
|
|
* just do it */ |
654 |
✗✓ |
272 |
if (tna > tnb) |
655 |
|
|
j = tna - i; |
656 |
|
|
else |
657 |
|
272 |
j = tnb - i; |
658 |
✓✓ |
272 |
if (j == 0) { |
659 |
|
24 |
bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), |
660 |
|
|
i, tna - i, tnb - i, p); |
661 |
|
24 |
memset(&(r[n2 + i * 2]), 0, |
662 |
|
|
sizeof(BN_ULONG) * (n2 - i * 2)); |
663 |
|
|
} |
664 |
✗✓ |
248 |
else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ |
665 |
|
|
{ |
666 |
|
|
bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), |
667 |
|
|
i, tna - i, tnb - i, p); |
668 |
|
|
memset(&(r[n2 + tna + tnb]), 0, |
669 |
|
|
sizeof(BN_ULONG) * (n2 - tna - tnb)); |
670 |
|
|
} |
671 |
|
|
else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ |
672 |
|
|
{ |
673 |
|
248 |
memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); |
674 |
✓✗ |
248 |
if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && |
675 |
|
|
tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
676 |
|
248 |
bn_mul_normal(&(r[n2]), &(a[n]), tna, |
677 |
|
|
&(b[n]), tnb); |
678 |
|
|
} else { |
679 |
|
|
for (;;) { |
680 |
|
|
i /= 2; |
681 |
|
|
/* these simplified conditions work |
682 |
|
|
* exclusively because difference |
683 |
|
|
* between tna and tnb is 1 or 0 */ |
684 |
|
|
if (i < tna || i < tnb) { |
685 |
|
|
bn_mul_part_recursive(&(r[n2]), |
686 |
|
|
&(a[n]), &(b[n]), i, |
687 |
|
|
tna - i, tnb - i, p); |
688 |
|
|
break; |
689 |
|
|
} else if (i == tna || i == tnb) { |
690 |
|
|
bn_mul_recursive(&(r[n2]), |
691 |
|
|
&(a[n]), &(b[n]), i, |
692 |
|
|
tna - i, tnb - i, p); |
693 |
|
|
break; |
694 |
|
|
} |
695 |
|
|
} |
696 |
|
|
} |
697 |
|
|
} |
698 |
|
|
} |
699 |
|
|
|
700 |
|
|
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign |
701 |
|
|
* r[10] holds (a[0]*b[0]) |
702 |
|
|
* r[32] holds (b[1]*b[1]) |
703 |
|
|
*/ |
704 |
|
|
|
705 |
|
272 |
c1 = (int)(bn_add_words(t, r,&(r[n2]), n2)); |
706 |
|
|
|
707 |
✓✓ |
272 |
if (neg) /* if t[32] is negative */ |
708 |
|
|
{ |
709 |
|
271 |
c1 -= (int)(bn_sub_words(&(t[n2]), t,&(t[n2]), n2)); |
710 |
|
|
} else { |
711 |
|
|
/* Might have a carry */ |
712 |
|
1 |
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); |
713 |
|
|
} |
714 |
|
|
|
715 |
|
|
/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) |
716 |
|
|
* r[10] holds (a[0]*b[0]) |
717 |
|
|
* r[32] holds (b[1]*b[1]) |
718 |
|
|
* c1 holds the carry bits |
719 |
|
|
*/ |
720 |
|
272 |
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); |
721 |
✗✓ |
272 |
if (c1) { |
722 |
|
|
p = &(r[n + n2]); |
723 |
|
|
lo= *p; |
724 |
|
|
ln = (lo + c1)&BN_MASK2; |
725 |
|
|
*p = ln; |
726 |
|
|
|
727 |
|
|
/* The overflow will stop before we over write |
728 |
|
|
* words we should not overwrite */ |
729 |
|
|
if (ln < (BN_ULONG)c1) { |
730 |
|
|
do { |
731 |
|
|
p++; |
732 |
|
|
lo= *p; |
733 |
|
|
ln = (lo + 1) & BN_MASK2; |
734 |
|
|
*p = ln; |
735 |
|
|
} while (ln == 0); |
736 |
|
|
} |
737 |
|
|
} |
738 |
|
|
} |
739 |
|
|
|
740 |
|
|
/* a and b must be the same size, which is n2. |
741 |
|
|
* r needs to be n2 words and t needs to be n2*2 |
742 |
|
|
*/ |
743 |
|
|
void |
744 |
|
|
bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *t) |
745 |
|
|
{ |
746 |
|
|
int n = n2 / 2; |
747 |
|
|
|
748 |
|
|
# ifdef BN_COUNT |
749 |
|
|
fprintf(stderr, " bn_mul_low_recursive %d * %d\n",n2,n2); |
750 |
|
|
# endif |
751 |
|
|
|
752 |
|
|
bn_mul_recursive(r, a, b, n, 0, 0, &(t[0])); |
753 |
|
|
if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { |
754 |
|
|
bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2])); |
755 |
|
|
bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); |
756 |
|
|
bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2])); |
757 |
|
|
bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); |
758 |
|
|
} else { |
759 |
|
|
bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n); |
760 |
|
|
bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n); |
761 |
|
|
bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); |
762 |
|
|
bn_add_words(&(r[n]), &(r[n]), &(t[n]), n); |
763 |
|
|
} |
764 |
|
|
} |
765 |
|
|
|
766 |
|
|
/* a and b must be the same size, which is n2. |
767 |
|
|
* r needs to be n2 words and t needs to be n2*2 |
768 |
|
|
* l is the low words of the output. |
769 |
|
|
* t needs to be n2*3 |
770 |
|
|
*/ |
771 |
|
|
void |
772 |
|
|
bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, |
773 |
|
|
BN_ULONG *t) |
774 |
|
|
{ |
775 |
|
|
int i, n; |
776 |
|
|
int c1, c2; |
777 |
|
|
int neg, oneg, zero; |
778 |
|
|
BN_ULONG ll, lc, *lp, *mp; |
779 |
|
|
|
780 |
|
|
# ifdef BN_COUNT |
781 |
|
|
fprintf(stderr, " bn_mul_high %d * %d\n",n2,n2); |
782 |
|
|
# endif |
783 |
|
|
n = n2 / 2; |
784 |
|
|
|
785 |
|
|
/* Calculate (al-ah)*(bh-bl) */ |
786 |
|
|
neg = zero = 0; |
787 |
|
|
c1 = bn_cmp_words(&(a[0]), &(a[n]), n); |
788 |
|
|
c2 = bn_cmp_words(&(b[n]), &(b[0]), n); |
789 |
|
|
switch (c1 * 3 + c2) { |
790 |
|
|
case -4: |
791 |
|
|
bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); |
792 |
|
|
bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); |
793 |
|
|
break; |
794 |
|
|
case -3: |
795 |
|
|
zero = 1; |
796 |
|
|
break; |
797 |
|
|
case -2: |
798 |
|
|
bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); |
799 |
|
|
bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); |
800 |
|
|
neg = 1; |
801 |
|
|
break; |
802 |
|
|
case -1: |
803 |
|
|
case 0: |
804 |
|
|
case 1: |
805 |
|
|
zero = 1; |
806 |
|
|
break; |
807 |
|
|
case 2: |
808 |
|
|
bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); |
809 |
|
|
bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); |
810 |
|
|
neg = 1; |
811 |
|
|
break; |
812 |
|
|
case 3: |
813 |
|
|
zero = 1; |
814 |
|
|
break; |
815 |
|
|
case 4: |
816 |
|
|
bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); |
817 |
|
|
bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); |
818 |
|
|
break; |
819 |
|
|
} |
820 |
|
|
|
821 |
|
|
oneg = neg; |
822 |
|
|
/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ |
823 |
|
|
/* r[10] = (a[1]*b[1]) */ |
824 |
|
|
# ifdef BN_MUL_COMBA |
825 |
|
|
if (n == 8) { |
826 |
|
|
bn_mul_comba8(&(t[0]), &(r[0]), &(r[n])); |
827 |
|
|
bn_mul_comba8(r, &(a[n]), &(b[n])); |
828 |
|
|
} else |
829 |
|
|
# endif |
830 |
|
|
{ |
831 |
|
|
bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2])); |
832 |
|
|
bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2])); |
833 |
|
|
} |
834 |
|
|
|
835 |
|
|
/* s0 == low(al*bl) |
836 |
|
|
* s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) |
837 |
|
|
* We know s0 and s1 so the only unknown is high(al*bl) |
838 |
|
|
* high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) |
839 |
|
|
* high(al*bl) == s1 - (r[0]+l[0]+t[0]) |
840 |
|
|
*/ |
841 |
|
|
if (l != NULL) { |
842 |
|
|
lp = &(t[n2 + n]); |
843 |
|
|
c1 = (int)(bn_add_words(lp, &(r[0]), &(l[0]), n)); |
844 |
|
|
} else { |
845 |
|
|
c1 = 0; |
846 |
|
|
lp = &(r[0]); |
847 |
|
|
} |
848 |
|
|
|
849 |
|
|
if (neg) |
850 |
|
|
neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n)); |
851 |
|
|
else { |
852 |
|
|
bn_add_words(&(t[n2]), lp, &(t[0]), n); |
853 |
|
|
neg = 0; |
854 |
|
|
} |
855 |
|
|
|
856 |
|
|
if (l != NULL) { |
857 |
|
|
bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n); |
858 |
|
|
} else { |
859 |
|
|
lp = &(t[n2 + n]); |
860 |
|
|
mp = &(t[n2]); |
861 |
|
|
for (i = 0; i < n; i++) |
862 |
|
|
lp[i] = ((~mp[i]) + 1) & BN_MASK2; |
863 |
|
|
} |
864 |
|
|
|
865 |
|
|
/* s[0] = low(al*bl) |
866 |
|
|
* t[3] = high(al*bl) |
867 |
|
|
* t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign |
868 |
|
|
* r[10] = (a[1]*b[1]) |
869 |
|
|
*/ |
870 |
|
|
/* R[10] = al*bl |
871 |
|
|
* R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) |
872 |
|
|
* R[32] = ah*bh |
873 |
|
|
*/ |
874 |
|
|
/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) |
875 |
|
|
* R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) |
876 |
|
|
* R[3]=r[1]+(carry/borrow) |
877 |
|
|
*/ |
878 |
|
|
if (l != NULL) { |
879 |
|
|
lp = &(t[n2]); |
880 |
|
|
c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n)); |
881 |
|
|
} else { |
882 |
|
|
lp = &(t[n2 + n]); |
883 |
|
|
c1 = 0; |
884 |
|
|
} |
885 |
|
|
c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n)); |
886 |
|
|
if (oneg) |
887 |
|
|
c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n)); |
888 |
|
|
else |
889 |
|
|
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n)); |
890 |
|
|
|
891 |
|
|
c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n)); |
892 |
|
|
c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n)); |
893 |
|
|
if (oneg) |
894 |
|
|
c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n)); |
895 |
|
|
else |
896 |
|
|
c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n)); |
897 |
|
|
|
898 |
|
|
if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ |
899 |
|
|
{ |
900 |
|
|
i = 0; |
901 |
|
|
if (c1 > 0) { |
902 |
|
|
lc = c1; |
903 |
|
|
do { |
904 |
|
|
ll = (r[i] + lc) & BN_MASK2; |
905 |
|
|
r[i++] = ll; |
906 |
|
|
lc = (lc > ll); |
907 |
|
|
} while (lc); |
908 |
|
|
} else { |
909 |
|
|
lc = -c1; |
910 |
|
|
do { |
911 |
|
|
ll = r[i]; |
912 |
|
|
r[i++] = (ll - lc) & BN_MASK2; |
913 |
|
|
lc = (lc > ll); |
914 |
|
|
} while (lc); |
915 |
|
|
} |
916 |
|
|
} |
917 |
|
|
if (c2 != 0) /* Add starting at r[1] */ |
918 |
|
|
{ |
919 |
|
|
i = n; |
920 |
|
|
if (c2 > 0) { |
921 |
|
|
lc = c2; |
922 |
|
|
do { |
923 |
|
|
ll = (r[i] + lc) & BN_MASK2; |
924 |
|
|
r[i++] = ll; |
925 |
|
|
lc = (lc > ll); |
926 |
|
|
} while (lc); |
927 |
|
|
} else { |
928 |
|
|
lc = -c2; |
929 |
|
|
do { |
930 |
|
|
ll = r[i]; |
931 |
|
|
r[i++] = (ll - lc) & BN_MASK2; |
932 |
|
|
lc = (lc > ll); |
933 |
|
|
} while (lc); |
934 |
|
|
} |
935 |
|
|
} |
936 |
|
|
} |
937 |
|
|
#endif /* BN_RECURSION */ |
938 |
|
|
|
939 |
|
|
int |
940 |
|
|
BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
941 |
|
389445 |
{ |
942 |
|
389445 |
int ret = 0; |
943 |
|
|
int top, al, bl; |
944 |
|
|
BIGNUM *rr; |
945 |
|
|
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
946 |
|
|
int i; |
947 |
|
|
#endif |
948 |
|
|
#ifdef BN_RECURSION |
949 |
|
389445 |
BIGNUM *t = NULL; |
950 |
|
389445 |
int j = 0, k; |
951 |
|
|
#endif |
952 |
|
|
|
953 |
|
|
#ifdef BN_COUNT |
954 |
|
|
fprintf(stderr, "BN_mul %d * %d\n",a->top,b->top); |
955 |
|
|
#endif |
956 |
|
|
|
957 |
|
|
bn_check_top(a); |
958 |
|
|
bn_check_top(b); |
959 |
|
|
bn_check_top(r); |
960 |
|
|
|
961 |
|
389445 |
al = a->top; |
962 |
|
389445 |
bl = b->top; |
963 |
|
|
|
964 |
✓✓ |
389445 |
if ((al == 0) || (bl == 0)) { |
965 |
|
11424 |
BN_zero(r); |
966 |
|
11424 |
return (1); |
967 |
|
|
} |
968 |
|
378021 |
top = al + bl; |
969 |
|
|
|
970 |
|
378021 |
BN_CTX_start(ctx); |
971 |
✓✓ |
378021 |
if ((r == a) || (r == b)) { |
972 |
✗✓ |
226 |
if ((rr = BN_CTX_get(ctx)) == NULL) |
973 |
|
|
goto err; |
974 |
|
|
} else |
975 |
|
377795 |
rr = r; |
976 |
|
378021 |
rr->neg = a->neg ^ b->neg; |
977 |
|
|
|
978 |
|
|
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
979 |
|
378021 |
i = al - bl; |
980 |
|
|
#endif |
981 |
|
|
#ifdef BN_MUL_COMBA |
982 |
✓✓ |
378021 |
if (i == 0) { |
983 |
|
|
# if 0 |
984 |
|
|
if (al == 4) { |
985 |
|
|
if (bn_wexpand(rr, 8) == NULL) |
986 |
|
|
goto err; |
987 |
|
|
rr->top = 8; |
988 |
|
|
bn_mul_comba4(rr->d, a->d, b->d); |
989 |
|
|
goto end; |
990 |
|
|
} |
991 |
|
|
# endif |
992 |
✓✓ |
299729 |
if (al == 8) { |
993 |
✓✓✗✓
|
172592 |
if (bn_wexpand(rr, 16) == NULL) |
994 |
|
|
goto err; |
995 |
|
172592 |
rr->top = 16; |
996 |
|
172592 |
bn_mul_comba8(rr->d, a->d, b->d); |
997 |
|
172592 |
goto end; |
998 |
|
|
} |
999 |
|
|
} |
1000 |
|
|
#endif /* BN_MUL_COMBA */ |
1001 |
|
|
#ifdef BN_RECURSION |
1002 |
✓✓ |
205429 |
if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { |
1003 |
✓✗ |
320 |
if (i >= -1 && i <= 1) { |
1004 |
|
|
/* Find out the power of two lower or equal |
1005 |
|
|
to the longest of the two numbers */ |
1006 |
✓✓ |
320 |
if (i >= 0) { |
1007 |
|
206 |
j = BN_num_bits_word((BN_ULONG)al); |
1008 |
|
|
} |
1009 |
✓✓ |
320 |
if (i == -1) { |
1010 |
|
114 |
j = BN_num_bits_word((BN_ULONG)bl); |
1011 |
|
|
} |
1012 |
|
320 |
j = 1 << (j - 1); |
1013 |
|
|
assert(j <= al || j <= bl); |
1014 |
|
320 |
k = j + j; |
1015 |
✗✓ |
320 |
if ((t = BN_CTX_get(ctx)) == NULL) |
1016 |
|
|
goto err; |
1017 |
✓✓ |
320 |
if (al > j || bl > j) { |
1018 |
✓✓✗✓
|
272 |
if (bn_wexpand(t, k * 4) == NULL) |
1019 |
|
|
goto err; |
1020 |
✓✓✗✓
|
272 |
if (bn_wexpand(rr, k * 4) == NULL) |
1021 |
|
|
goto err; |
1022 |
|
272 |
bn_mul_part_recursive(rr->d, a->d, b->d, |
1023 |
|
|
j, al - j, bl - j, t->d); |
1024 |
|
|
} |
1025 |
|
|
else /* al <= j || bl <= j */ |
1026 |
|
|
{ |
1027 |
✓✓✗✓
|
48 |
if (bn_wexpand(t, k * 2) == NULL) |
1028 |
|
|
goto err; |
1029 |
✓✓✗✓
|
48 |
if (bn_wexpand(rr, k * 2) == NULL) |
1030 |
|
|
goto err; |
1031 |
|
48 |
bn_mul_recursive(rr->d, a->d, b->d, |
1032 |
|
|
j, al - j, bl - j, t->d); |
1033 |
|
|
} |
1034 |
|
320 |
rr->top = top; |
1035 |
|
320 |
goto end; |
1036 |
|
|
} |
1037 |
|
|
#if 0 |
1038 |
|
|
if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) { |
1039 |
|
|
BIGNUM *tmp_bn = (BIGNUM *)b; |
1040 |
|
|
if (bn_wexpand(tmp_bn, al) == NULL) |
1041 |
|
|
goto err; |
1042 |
|
|
tmp_bn->d[bl] = 0; |
1043 |
|
|
bl++; |
1044 |
|
|
i--; |
1045 |
|
|
} else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) { |
1046 |
|
|
BIGNUM *tmp_bn = (BIGNUM *)a; |
1047 |
|
|
if (bn_wexpand(tmp_bn, bl) == NULL) |
1048 |
|
|
goto err; |
1049 |
|
|
tmp_bn->d[al] = 0; |
1050 |
|
|
al++; |
1051 |
|
|
i++; |
1052 |
|
|
} |
1053 |
|
|
if (i == 0) { |
1054 |
|
|
/* symmetric and > 4 */ |
1055 |
|
|
/* 16 or larger */ |
1056 |
|
|
j = BN_num_bits_word((BN_ULONG)al); |
1057 |
|
|
j = 1 << (j - 1); |
1058 |
|
|
k = j + j; |
1059 |
|
|
if ((t = BN_CTX_get(ctx)) == NULL) |
1060 |
|
|
goto err; |
1061 |
|
|
if (al == j) /* exact multiple */ |
1062 |
|
|
{ |
1063 |
|
|
if (bn_wexpand(t, k * 2) == NULL) |
1064 |
|
|
goto err; |
1065 |
|
|
if (bn_wexpand(rr, k * 2) == NULL) |
1066 |
|
|
goto err; |
1067 |
|
|
bn_mul_recursive(rr->d, a->d, b->d, al, t->d); |
1068 |
|
|
} else { |
1069 |
|
|
if (bn_wexpand(t, k * 4) == NULL) |
1070 |
|
|
goto err; |
1071 |
|
|
if (bn_wexpand(rr, k * 4) == NULL) |
1072 |
|
|
goto err; |
1073 |
|
|
bn_mul_part_recursive(rr->d, a->d, b->d, |
1074 |
|
|
al - j, j, t->d); |
1075 |
|
|
} |
1076 |
|
|
rr->top = top; |
1077 |
|
|
goto end; |
1078 |
|
|
} |
1079 |
|
|
#endif |
1080 |
|
|
} |
1081 |
|
|
#endif /* BN_RECURSION */ |
1082 |
✓✓✗✓
|
205109 |
if (bn_wexpand(rr, top) == NULL) |
1083 |
|
|
goto err; |
1084 |
|
205109 |
rr->top = top; |
1085 |
|
205109 |
bn_mul_normal(rr->d, a->d, al, b->d, bl); |
1086 |
|
|
|
1087 |
|
|
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
1088 |
|
378021 |
end: |
1089 |
|
|
#endif |
1090 |
✓✗✓✓ ✓✗ |
378021 |
bn_correct_top(rr); |
1091 |
✓✓ |
378021 |
if (r != rr) |
1092 |
|
226 |
BN_copy(r, rr); |
1093 |
|
378021 |
ret = 1; |
1094 |
|
378021 |
err: |
1095 |
|
|
bn_check_top(r); |
1096 |
|
378021 |
BN_CTX_end(ctx); |
1097 |
|
378021 |
return (ret); |
1098 |
|
|
} |
1099 |
|
|
|
1100 |
|
|
void |
1101 |
|
|
bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) |
1102 |
|
205381 |
{ |
1103 |
|
|
BN_ULONG *rr; |
1104 |
|
|
|
1105 |
|
|
#ifdef BN_COUNT |
1106 |
|
|
fprintf(stderr, " bn_mul_normal %d * %d\n", na, nb); |
1107 |
|
|
#endif |
1108 |
|
|
|
1109 |
✓✓ |
205381 |
if (na < nb) { |
1110 |
|
|
int itmp; |
1111 |
|
|
BN_ULONG *ltmp; |
1112 |
|
|
|
1113 |
|
71206 |
itmp = na; |
1114 |
|
71206 |
na = nb; |
1115 |
|
71206 |
nb = itmp; |
1116 |
|
71206 |
ltmp = a; |
1117 |
|
71206 |
a = b; |
1118 |
|
71206 |
b = ltmp; |
1119 |
|
|
|
1120 |
|
|
} |
1121 |
|
205381 |
rr = &(r[na]); |
1122 |
✗✓ |
205381 |
if (nb <= 0) { |
1123 |
|
|
(void)bn_mul_words(r, a, na, 0); |
1124 |
|
|
return; |
1125 |
|
|
} else |
1126 |
|
205381 |
rr[0] = bn_mul_words(r, a, na, b[0]); |
1127 |
|
|
|
1128 |
|
|
for (;;) { |
1129 |
✓✓ |
347004 |
if (--nb <= 0) |
1130 |
|
131300 |
return; |
1131 |
|
215704 |
rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); |
1132 |
✓✓ |
215704 |
if (--nb <= 0) |
1133 |
|
1503 |
return; |
1134 |
|
214201 |
rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); |
1135 |
✓✓ |
214201 |
if (--nb <= 0) |
1136 |
|
6630 |
return; |
1137 |
|
207571 |
rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); |
1138 |
✓✓ |
207571 |
if (--nb <= 0) |
1139 |
|
65948 |
return; |
1140 |
|
141623 |
rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); |
1141 |
|
141623 |
rr += 4; |
1142 |
|
141623 |
r += 4; |
1143 |
|
141623 |
b += 4; |
1144 |
|
141623 |
} |
1145 |
|
|
} |
1146 |
|
|
|
1147 |
|
|
void |
1148 |
|
|
bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) |
1149 |
|
|
{ |
1150 |
|
|
#ifdef BN_COUNT |
1151 |
|
|
fprintf(stderr, " bn_mul_low_normal %d * %d\n", n, n); |
1152 |
|
|
#endif |
1153 |
|
|
bn_mul_words(r, a, n, b[0]); |
1154 |
|
|
|
1155 |
|
|
for (;;) { |
1156 |
|
|
if (--n <= 0) |
1157 |
|
|
return; |
1158 |
|
|
bn_mul_add_words(&(r[1]), a, n, b[1]); |
1159 |
|
|
if (--n <= 0) |
1160 |
|
|
return; |
1161 |
|
|
bn_mul_add_words(&(r[2]), a, n, b[2]); |
1162 |
|
|
if (--n <= 0) |
1163 |
|
|
return; |
1164 |
|
|
bn_mul_add_words(&(r[3]), a, n, b[3]); |
1165 |
|
|
if (--n <= 0) |
1166 |
|
|
return; |
1167 |
|
|
bn_mul_add_words(&(r[4]), a, n, b[4]); |
1168 |
|
|
r += 4; |
1169 |
|
|
b += 4; |
1170 |
|
|
} |
1171 |
|
|
} |