GCC Code Coverage Report | |||||||||||||||||||||
|
|||||||||||||||||||||
Line | Branch | Exec | Source |
1 |
/* $OpenBSD: bn_sqrt.c,v 1.6 2015/02/09 15:49:22 jsing Exp $ */ |
||
2 |
/* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> |
||
3 |
* and Bodo Moeller for the OpenSSL project. */ |
||
4 |
/* ==================================================================== |
||
5 |
* Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. |
||
6 |
* |
||
7 |
* Redistribution and use in source and binary forms, with or without |
||
8 |
* modification, are permitted provided that the following conditions |
||
9 |
* are met: |
||
10 |
* |
||
11 |
* 1. Redistributions of source code must retain the above copyright |
||
12 |
* notice, this list of conditions and the following disclaimer. |
||
13 |
* |
||
14 |
* 2. Redistributions in binary form must reproduce the above copyright |
||
15 |
* notice, this list of conditions and the following disclaimer in |
||
16 |
* the documentation and/or other materials provided with the |
||
17 |
* distribution. |
||
18 |
* |
||
19 |
* 3. All advertising materials mentioning features or use of this |
||
20 |
* software must display the following acknowledgment: |
||
21 |
* "This product includes software developed by the OpenSSL Project |
||
22 |
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
||
23 |
* |
||
24 |
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
||
25 |
* endorse or promote products derived from this software without |
||
26 |
* prior written permission. For written permission, please contact |
||
27 |
* openssl-core@openssl.org. |
||
28 |
* |
||
29 |
* 5. Products derived from this software may not be called "OpenSSL" |
||
30 |
* nor may "OpenSSL" appear in their names without prior written |
||
31 |
* permission of the OpenSSL Project. |
||
32 |
* |
||
33 |
* 6. Redistributions of any form whatsoever must retain the following |
||
34 |
* acknowledgment: |
||
35 |
* "This product includes software developed by the OpenSSL Project |
||
36 |
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
||
37 |
* |
||
38 |
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
||
39 |
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
40 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
||
41 |
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
||
42 |
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
||
43 |
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
44 |
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
45 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||
46 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
||
47 |
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
||
48 |
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
||
49 |
* OF THE POSSIBILITY OF SUCH DAMAGE. |
||
50 |
* ==================================================================== |
||
51 |
* |
||
52 |
* This product includes cryptographic software written by Eric Young |
||
53 |
* (eay@cryptsoft.com). This product includes software written by Tim |
||
54 |
* Hudson (tjh@cryptsoft.com). |
||
55 |
* |
||
56 |
*/ |
||
57 |
|||
58 |
#include <openssl/err.h> |
||
59 |
|||
60 |
#include "bn_lcl.h" |
||
61 |
|||
62 |
BIGNUM * |
||
63 |
BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
||
64 |
/* Returns 'ret' such that |
||
65 |
* ret^2 == a (mod p), |
||
66 |
* using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course |
||
67 |
* in Algebraic Computational Number Theory", algorithm 1.5.1). |
||
68 |
* 'p' must be prime! |
||
69 |
*/ |
||
70 |
87 |
{ |
|
71 |
87 |
BIGNUM *ret = in; |
|
72 |
87 |
int err = 1; |
|
73 |
int r; |
||
74 |
BIGNUM *A, *b, *q, *t, *x, *y; |
||
75 |
int e, i, j; |
||
76 |
|||
77 |
✓✗✓✓ ✓✓✗✓ |
87 |
if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { |
78 |
✓✗✓✗ |
5 |
if (BN_abs_is_word(p, 2)) { |
79 |
✗✓ | 5 |
if (ret == NULL) |
80 |
ret = BN_new(); |
||
81 |
✗✓ | 5 |
if (ret == NULL) |
82 |
goto end; |
||
83 |
✗✓ | 5 |
if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { |
84 |
if (ret != in) |
||
85 |
BN_free(ret); |
||
86 |
return NULL; |
||
87 |
} |
||
88 |
bn_check_top(ret); |
||
89 |
5 |
return ret; |
|
90 |
} |
||
91 |
|||
92 |
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
||
93 |
return (NULL); |
||
94 |
} |
||
95 |
|||
96 |
✓✓✓✓ ✓✓✓✓ |
82 |
if (BN_is_zero(a) || BN_is_one(a)) { |
97 |
✗✓ | 5 |
if (ret == NULL) |
98 |
ret = BN_new(); |
||
99 |
✗✓ | 5 |
if (ret == NULL) |
100 |
goto end; |
||
101 |
✓✓✓✗ ✓✗✗✓ |
5 |
if (!BN_set_word(ret, BN_is_one(a))) { |
102 |
if (ret != in) |
||
103 |
BN_free(ret); |
||
104 |
return NULL; |
||
105 |
} |
||
106 |
bn_check_top(ret); |
||
107 |
5 |
return ret; |
|
108 |
} |
||
109 |
|||
110 |
77 |
BN_CTX_start(ctx); |
|
111 |
✗✓ | 77 |
if ((A = BN_CTX_get(ctx)) == NULL) |
112 |
goto end; |
||
113 |
✗✓ | 77 |
if ((b = BN_CTX_get(ctx)) == NULL) |
114 |
goto end; |
||
115 |
✗✓ | 77 |
if ((q = BN_CTX_get(ctx)) == NULL) |
116 |
goto end; |
||
117 |
✗✓ | 77 |
if ((t = BN_CTX_get(ctx)) == NULL) |
118 |
goto end; |
||
119 |
✗✓ | 77 |
if ((x = BN_CTX_get(ctx)) == NULL) |
120 |
goto end; |
||
121 |
✗✓ | 77 |
if ((y = BN_CTX_get(ctx)) == NULL) |
122 |
goto end; |
||
123 |
|||
124 |
✗✓ | 77 |
if (ret == NULL) |
125 |
ret = BN_new(); |
||
126 |
✗✓ | 77 |
if (ret == NULL) |
127 |
goto end; |
||
128 |
|||
129 |
/* A = a mod p */ |
||
130 |
✗✓ | 77 |
if (!BN_nnmod(A, a, p, ctx)) |
131 |
goto end; |
||
132 |
|||
133 |
/* now write |p| - 1 as 2^e*q where q is odd */ |
||
134 |
77 |
e = 1; |
|
135 |
✓✓ | 305 |
while (!BN_is_bit_set(p, e)) |
136 |
151 |
e++; |
|
137 |
/* we'll set q later (if needed) */ |
||
138 |
|||
139 |
✓✓ | 77 |
if (e == 1) { |
140 |
/* The easy case: (|p|-1)/2 is odd, so 2 has an inverse |
||
141 |
* modulo (|p|-1)/2, and square roots can be computed |
||
142 |
* directly by modular exponentiation. |
||
143 |
* We have |
||
144 |
* 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), |
||
145 |
* so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. |
||
146 |
*/ |
||
147 |
✗✓ | 43 |
if (!BN_rshift(q, p, 2)) |
148 |
goto end; |
||
149 |
43 |
q->neg = 0; |
|
150 |
✗✓ | 43 |
if (!BN_add_word(q, 1)) |
151 |
goto end; |
||
152 |
✗✓ | 43 |
if (!BN_mod_exp(ret, A, q, p, ctx)) |
153 |
goto end; |
||
154 |
43 |
err = 0; |
|
155 |
43 |
goto vrfy; |
|
156 |
} |
||
157 |
|||
158 |
✓✓ | 34 |
if (e == 2) { |
159 |
/* |p| == 5 (mod 8) |
||
160 |
* |
||
161 |
* In this case 2 is always a non-square since |
||
162 |
* Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. |
||
163 |
* So if a really is a square, then 2*a is a non-square. |
||
164 |
* Thus for |
||
165 |
* b := (2*a)^((|p|-5)/8), |
||
166 |
* i := (2*a)*b^2 |
||
167 |
* we have |
||
168 |
* i^2 = (2*a)^((1 + (|p|-5)/4)*2) |
||
169 |
* = (2*a)^((p-1)/2) |
||
170 |
* = -1; |
||
171 |
* so if we set |
||
172 |
* x := a*b*(i-1), |
||
173 |
* then |
||
174 |
* x^2 = a^2 * b^2 * (i^2 - 2*i + 1) |
||
175 |
* = a^2 * b^2 * (-2*i) |
||
176 |
* = a*(-i)*(2*a*b^2) |
||
177 |
* = a*(-i)*i |
||
178 |
* = a. |
||
179 |
* |
||
180 |
* (This is due to A.O.L. Atkin, |
||
181 |
* <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, |
||
182 |
* November 1992.) |
||
183 |
*/ |
||
184 |
|||
185 |
/* t := 2*a */ |
||
186 |
✗✓ | 19 |
if (!BN_mod_lshift1_quick(t, A, p)) |
187 |
goto end; |
||
188 |
|||
189 |
/* b := (2*a)^((|p|-5)/8) */ |
||
190 |
✗✓ | 19 |
if (!BN_rshift(q, p, 3)) |
191 |
goto end; |
||
192 |
19 |
q->neg = 0; |
|
193 |
✗✓ | 19 |
if (!BN_mod_exp(b, t, q, p, ctx)) |
194 |
goto end; |
||
195 |
|||
196 |
/* y := b^2 */ |
||
197 |
✗✓ | 19 |
if (!BN_mod_sqr(y, b, p, ctx)) |
198 |
goto end; |
||
199 |
|||
200 |
/* t := (2*a)*b^2 - 1*/ |
||
201 |
✗✓ | 19 |
if (!BN_mod_mul(t, t, y, p, ctx)) |
202 |
goto end; |
||
203 |
✗✓ | 19 |
if (!BN_sub_word(t, 1)) |
204 |
goto end; |
||
205 |
|||
206 |
/* x = a*b*t */ |
||
207 |
✗✓ | 19 |
if (!BN_mod_mul(x, A, b, p, ctx)) |
208 |
goto end; |
||
209 |
✗✓ | 19 |
if (!BN_mod_mul(x, x, t, p, ctx)) |
210 |
goto end; |
||
211 |
|||
212 |
✗✓ | 19 |
if (!BN_copy(ret, x)) |
213 |
goto end; |
||
214 |
19 |
err = 0; |
|
215 |
19 |
goto vrfy; |
|
216 |
} |
||
217 |
|||
218 |
/* e > 2, so we really have to use the Tonelli/Shanks algorithm. |
||
219 |
* First, find some y that is not a square. */ |
||
220 |
✓✗ | 15 |
if (!BN_copy(q, p)) goto end; /* use 'q' as temp */ |
221 |
15 |
q->neg = 0; |
|
222 |
15 |
i = 2; |
|
223 |
do { |
||
224 |
/* For efficiency, try small numbers first; |
||
225 |
* if this fails, try random numbers. |
||
226 |
*/ |
||
227 |
✓✗ | 38 |
if (i < 22) { |
228 |
✗✓ | 38 |
if (!BN_set_word(y, i)) |
229 |
goto end; |
||
230 |
} else { |
||
231 |
if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) |
||
232 |
goto end; |
||
233 |
if (BN_ucmp(y, p) >= 0) { |
||
234 |
if (!(p->neg ? BN_add : BN_sub)(y, y, p)) |
||
235 |
goto end; |
||
236 |
} |
||
237 |
/* now 0 <= y < |p| */ |
||
238 |
if (BN_is_zero(y)) |
||
239 |
if (!BN_set_word(y, i)) |
||
240 |
goto end; |
||
241 |
} |
||
242 |
|||
243 |
38 |
r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ |
|
244 |
✗✓ | 38 |
if (r < -1) |
245 |
goto end; |
||
246 |
✗✓ | 38 |
if (r == 0) { |
247 |
/* m divides p */ |
||
248 |
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
||
249 |
goto end; |
||
250 |
} |
||
251 |
} |
||
252 |
✓✓✓✗ |
38 |
while (r == 1 && ++i < 82); |
253 |
|||
254 |
✗✓ | 15 |
if (r != -1) { |
255 |
/* Many rounds and still no non-square -- this is more likely |
||
256 |
* a bug than just bad luck. |
||
257 |
* Even if p is not prime, we should have found some y |
||
258 |
* such that r == -1. |
||
259 |
*/ |
||
260 |
BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS); |
||
261 |
goto end; |
||
262 |
} |
||
263 |
|||
264 |
/* Here's our actual 'q': */ |
||
265 |
✗✓ | 15 |
if (!BN_rshift(q, q, e)) |
266 |
goto end; |
||
267 |
|||
268 |
/* Now that we have some non-square, we can find an element |
||
269 |
* of order 2^e by computing its q'th power. */ |
||
270 |
✗✓ | 15 |
if (!BN_mod_exp(y, y, q, p, ctx)) |
271 |
goto end; |
||
272 |
✓✓✗✓ ✗✗ |
15 |
if (BN_is_one(y)) { |
273 |
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
||
274 |
goto end; |
||
275 |
} |
||
276 |
|||
277 |
/* Now we know that (if p is indeed prime) there is an integer |
||
278 |
* k, 0 <= k < 2^e, such that |
||
279 |
* |
||
280 |
* a^q * y^k == 1 (mod p). |
||
281 |
* |
||
282 |
* As a^q is a square and y is not, k must be even. |
||
283 |
* q+1 is even, too, so there is an element |
||
284 |
* |
||
285 |
* X := a^((q+1)/2) * y^(k/2), |
||
286 |
* |
||
287 |
* and it satisfies |
||
288 |
* |
||
289 |
* X^2 = a^q * a * y^k |
||
290 |
* = a, |
||
291 |
* |
||
292 |
* so it is the square root that we are looking for. |
||
293 |
*/ |
||
294 |
|||
295 |
/* t := (q-1)/2 (note that q is odd) */ |
||
296 |
✗✓ | 15 |
if (!BN_rshift1(t, q)) |
297 |
goto end; |
||
298 |
|||
299 |
/* x := a^((q-1)/2) */ |
||
300 |
✓✓ | 15 |
if (BN_is_zero(t)) /* special case: p = 2^e + 1 */ |
301 |
{ |
||
302 |
✗✓ | 4 |
if (!BN_nnmod(t, A, p, ctx)) |
303 |
goto end; |
||
304 |
✗✓ | 4 |
if (BN_is_zero(t)) { |
305 |
/* special case: a == 0 (mod p) */ |
||
306 |
BN_zero(ret); |
||
307 |
err = 0; |
||
308 |
goto end; |
||
309 |
✗✓ | 4 |
} else if (!BN_one(x)) |
310 |
goto end; |
||
311 |
} else { |
||
312 |
✗✓ | 11 |
if (!BN_mod_exp(x, A, t, p, ctx)) |
313 |
goto end; |
||
314 |
✗✓ | 11 |
if (BN_is_zero(x)) { |
315 |
/* special case: a == 0 (mod p) */ |
||
316 |
BN_zero(ret); |
||
317 |
err = 0; |
||
318 |
goto end; |
||
319 |
} |
||
320 |
} |
||
321 |
|||
322 |
/* b := a*x^2 (= a^q) */ |
||
323 |
✗✓ | 15 |
if (!BN_mod_sqr(b, x, p, ctx)) |
324 |
goto end; |
||
325 |
✗✓ | 15 |
if (!BN_mod_mul(b, b, A, p, ctx)) |
326 |
goto end; |
||
327 |
|||
328 |
/* x := a*x (= a^((q+1)/2)) */ |
||
329 |
✗✓ | 15 |
if (!BN_mod_mul(x, x, A, p, ctx)) |
330 |
goto end; |
||
331 |
|||
332 |
while (1) { |
||
333 |
/* Now b is a^q * y^k for some even k (0 <= k < 2^E |
||
334 |
* where E refers to the original value of e, which we |
||
335 |
* don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). |
||
336 |
* |
||
337 |
* We have a*b = x^2, |
||
338 |
* y^2^(e-1) = -1, |
||
339 |
* b^2^(e-1) = 1. |
||
340 |
*/ |
||
341 |
|||
342 |
✓✓✓✓ ✓✗ |
66 |
if (BN_is_one(b)) { |
343 |
✗✓ | 15 |
if (!BN_copy(ret, x)) |
344 |
goto end; |
||
345 |
15 |
err = 0; |
|
346 |
15 |
goto vrfy; |
|
347 |
} |
||
348 |
|||
349 |
|||
350 |
/* find smallest i such that b^(2^i) = 1 */ |
||
351 |
51 |
i = 1; |
|
352 |
✗✓ | 51 |
if (!BN_mod_sqr(t, b, p, ctx)) |
353 |
goto end; |
||
354 |
✓✓✓✓ ✗✓ |
1832 |
while (!BN_is_one(t)) { |
355 |
1781 |
i++; |
|
356 |
✗✓ | 1781 |
if (i == e) { |
357 |
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); |
||
358 |
goto end; |
||
359 |
} |
||
360 |
✗✓ | 1781 |
if (!BN_mod_mul(t, t, t, p, ctx)) |
361 |
goto end; |
||
362 |
} |
||
363 |
|||
364 |
|||
365 |
/* t := y^2^(e - i - 1) */ |
||
366 |
✗✓ | 51 |
if (!BN_copy(t, y)) |
367 |
goto end; |
||
368 |
✓✓ | 115 |
for (j = e - i - 1; j > 0; j--) { |
369 |
✗✓ | 64 |
if (!BN_mod_sqr(t, t, p, ctx)) |
370 |
goto end; |
||
371 |
} |
||
372 |
✗✓ | 51 |
if (!BN_mod_mul(y, t, t, p, ctx)) |
373 |
goto end; |
||
374 |
✗✓ | 51 |
if (!BN_mod_mul(x, x, t, p, ctx)) |
375 |
goto end; |
||
376 |
✗✓ | 51 |
if (!BN_mod_mul(b, b, y, p, ctx)) |
377 |
goto end; |
||
378 |
51 |
e = i; |
|
379 |
51 |
} |
|
380 |
|||
381 |
77 |
vrfy: |
|
382 |
✓✗ | 77 |
if (!err) { |
383 |
/* verify the result -- the input might have been not a square |
||
384 |
* (test added in 0.9.8) */ |
||
385 |
|||
386 |
✗✓ | 77 |
if (!BN_mod_sqr(x, ret, p, ctx)) |
387 |
err = 1; |
||
388 |
|||
389 |
✓✗✗✓ |
77 |
if (!err && 0 != BN_cmp(x, A)) { |
390 |
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); |
||
391 |
err = 1; |
||
392 |
} |
||
393 |
} |
||
394 |
|||
395 |
77 |
end: |
|
396 |
✗✓ | 77 |
if (err) { |
397 |
if (ret != NULL && ret != in) { |
||
398 |
BN_clear_free(ret); |
||
399 |
} |
||
400 |
ret = NULL; |
||
401 |
} |
||
402 |
77 |
BN_CTX_end(ctx); |
|
403 |
bn_check_top(ret); |
||
404 |
77 |
return ret; |
|
405 |
} |
Generated by: GCOVR (Version 3.3) |