1  | 
     | 
     | 
    /* $OpenBSD: ec2_mult.c,v 1.8 2016/03/12 21:44:11 bcook Exp $ */  | 
    
    
    2  | 
     | 
     | 
    /* ====================================================================  | 
    
    
    3  | 
     | 
     | 
     * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.  | 
    
    
    4  | 
     | 
     | 
     *  | 
    
    
    5  | 
     | 
     | 
     * The Elliptic Curve Public-Key Crypto Library (ECC Code) included  | 
    
    
    6  | 
     | 
     | 
     * herein is developed by SUN MICROSYSTEMS, INC., and is contributed  | 
    
    
    7  | 
     | 
     | 
     * to the OpenSSL project.  | 
    
    
    8  | 
     | 
     | 
     *  | 
    
    
    9  | 
     | 
     | 
     * The ECC Code is licensed pursuant to the OpenSSL open source  | 
    
    
    10  | 
     | 
     | 
     * license provided below.  | 
    
    
    11  | 
     | 
     | 
     *  | 
    
    
    12  | 
     | 
     | 
     * The software is originally written by Sheueling Chang Shantz and  | 
    
    
    13  | 
     | 
     | 
     * Douglas Stebila of Sun Microsystems Laboratories.  | 
    
    
    14  | 
     | 
     | 
     *  | 
    
    
    15  | 
     | 
     | 
     */  | 
    
    
    16  | 
     | 
     | 
    /* ====================================================================  | 
    
    
    17  | 
     | 
     | 
     * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.  | 
    
    
    18  | 
     | 
     | 
     *  | 
    
    
    19  | 
     | 
     | 
     * Redistribution and use in source and binary forms, with or without  | 
    
    
    20  | 
     | 
     | 
     * modification, are permitted provided that the following conditions  | 
    
    
    21  | 
     | 
     | 
     * are met:  | 
    
    
    22  | 
     | 
     | 
     *  | 
    
    
    23  | 
     | 
     | 
     * 1. Redistributions of source code must retain the above copyright  | 
    
    
    24  | 
     | 
     | 
     *    notice, this list of conditions and the following disclaimer.  | 
    
    
    25  | 
     | 
     | 
     *  | 
    
    
    26  | 
     | 
     | 
     * 2. Redistributions in binary form must reproduce the above copyright  | 
    
    
    27  | 
     | 
     | 
     *    notice, this list of conditions and the following disclaimer in  | 
    
    
    28  | 
     | 
     | 
     *    the documentation and/or other materials provided with the  | 
    
    
    29  | 
     | 
     | 
     *    distribution.  | 
    
    
    30  | 
     | 
     | 
     *  | 
    
    
    31  | 
     | 
     | 
     * 3. All advertising materials mentioning features or use of this  | 
    
    
    32  | 
     | 
     | 
     *    software must display the following acknowledgment:  | 
    
    
    33  | 
     | 
     | 
     *    "This product includes software developed by the OpenSSL Project  | 
    
    
    34  | 
     | 
     | 
     *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"  | 
    
    
    35  | 
     | 
     | 
     *  | 
    
    
    36  | 
     | 
     | 
     * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to  | 
    
    
    37  | 
     | 
     | 
     *    endorse or promote products derived from this software without  | 
    
    
    38  | 
     | 
     | 
     *    prior written permission. For written permission, please contact  | 
    
    
    39  | 
     | 
     | 
     *    openssl-core@openssl.org.  | 
    
    
    40  | 
     | 
     | 
     *  | 
    
    
    41  | 
     | 
     | 
     * 5. Products derived from this software may not be called "OpenSSL"  | 
    
    
    42  | 
     | 
     | 
     *    nor may "OpenSSL" appear in their names without prior written  | 
    
    
    43  | 
     | 
     | 
     *    permission of the OpenSSL Project.  | 
    
    
    44  | 
     | 
     | 
     *  | 
    
    
    45  | 
     | 
     | 
     * 6. Redistributions of any form whatsoever must retain the following  | 
    
    
    46  | 
     | 
     | 
     *    acknowledgment:  | 
    
    
    47  | 
     | 
     | 
     *    "This product includes software developed by the OpenSSL Project  | 
    
    
    48  | 
     | 
     | 
     *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"  | 
    
    
    49  | 
     | 
     | 
     *  | 
    
    
    50  | 
     | 
     | 
     * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY  | 
    
    
    51  | 
     | 
     | 
     * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE  | 
    
    
    52  | 
     | 
     | 
     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR  | 
    
    
    53  | 
     | 
     | 
     * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR  | 
    
    
    54  | 
     | 
     | 
     * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,  | 
    
    
    55  | 
     | 
     | 
     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT  | 
    
    
    56  | 
     | 
     | 
     * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;  | 
    
    
    57  | 
     | 
     | 
     * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)  | 
    
    
    58  | 
     | 
     | 
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,  | 
    
    
    59  | 
     | 
     | 
     * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)  | 
    
    
    60  | 
     | 
     | 
     * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED  | 
    
    
    61  | 
     | 
     | 
     * OF THE POSSIBILITY OF SUCH DAMAGE.  | 
    
    
    62  | 
     | 
     | 
     * ====================================================================  | 
    
    
    63  | 
     | 
     | 
     *  | 
    
    
    64  | 
     | 
     | 
     * This product includes cryptographic software written by Eric Young  | 
    
    
    65  | 
     | 
     | 
     * (eay@cryptsoft.com).  This product includes software written by Tim  | 
    
    
    66  | 
     | 
     | 
     * Hudson (tjh@cryptsoft.com).  | 
    
    
    67  | 
     | 
     | 
     *  | 
    
    
    68  | 
     | 
     | 
     */  | 
    
    
    69  | 
     | 
     | 
     | 
    
    
    70  | 
     | 
     | 
    #include <openssl/opensslconf.h>  | 
    
    
    71  | 
     | 
     | 
     | 
    
    
    72  | 
     | 
     | 
    #include <openssl/err.h>  | 
    
    
    73  | 
     | 
     | 
     | 
    
    
    74  | 
     | 
     | 
    #include "ec_lcl.h"  | 
    
    
    75  | 
     | 
     | 
     | 
    
    
    76  | 
     | 
     | 
    #ifndef OPENSSL_NO_EC2M  | 
    
    
    77  | 
     | 
     | 
     | 
    
    
    78  | 
     | 
     | 
     | 
    
    
    79  | 
     | 
     | 
    /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective  | 
    
    
    80  | 
     | 
     | 
     * coordinates.  | 
    
    
    81  | 
     | 
     | 
     * Uses algorithm Mdouble in appendix of  | 
    
    
    82  | 
     | 
     | 
     *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over  | 
    
    
    83  | 
     | 
     | 
     *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).  | 
    
    
    84  | 
     | 
     | 
     * modified to not require precomputation of c=b^{2^{m-1}}. | 
    
    
    85  | 
     | 
     | 
     */  | 
    
    
    86  | 
     | 
     | 
    static int  | 
    
    
    87  | 
     | 
     | 
    gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)  | 
    
    
    88  | 
     | 
    153560  | 
    { | 
    
    
    89  | 
     | 
     | 
    	BIGNUM *t1;  | 
    
    
    90  | 
     | 
    153560  | 
    	int ret = 0;  | 
    
    
    91  | 
     | 
     | 
     | 
    
    
    92  | 
     | 
     | 
    	/* Since Mdouble is static we can guarantee that ctx != NULL. */  | 
    
    
    93  | 
     | 
    153560  | 
    	BN_CTX_start(ctx);  | 
    
    
    94  | 
    ✗✓ | 
    153560  | 
    	if ((t1 = BN_CTX_get(ctx)) == NULL)  | 
    
    
    95  | 
     | 
     | 
    		goto err;  | 
    
    
    96  | 
     | 
     | 
     | 
    
    
    97  | 
    ✗✓ | 
    153560  | 
    	if (!group->meth->field_sqr(group, x, x, ctx))  | 
    
    
    98  | 
     | 
     | 
    		goto err;  | 
    
    
    99  | 
    ✗✓ | 
    153560  | 
    	if (!group->meth->field_sqr(group, t1, z, ctx))  | 
    
    
    100  | 
     | 
     | 
    		goto err;  | 
    
    
    101  | 
    ✗✓ | 
    153560  | 
    	if (!group->meth->field_mul(group, z, x, t1, ctx))  | 
    
    
    102  | 
     | 
     | 
    		goto err;  | 
    
    
    103  | 
    ✗✓ | 
    153560  | 
    	if (!group->meth->field_sqr(group, x, x, ctx))  | 
    
    
    104  | 
     | 
     | 
    		goto err;  | 
    
    
    105  | 
    ✗✓ | 
    153560  | 
    	if (!group->meth->field_sqr(group, t1, t1, ctx))  | 
    
    
    106  | 
     | 
     | 
    		goto err;  | 
    
    
    107  | 
    ✗✓ | 
    153560  | 
    	if (!group->meth->field_mul(group, t1, &group->b, t1, ctx))  | 
    
    
    108  | 
     | 
     | 
    		goto err;  | 
    
    
    109  | 
    ✗✓ | 
    153560  | 
    	if (!BN_GF2m_add(x, x, t1))  | 
    
    
    110  | 
     | 
     | 
    		goto err;  | 
    
    
    111  | 
     | 
     | 
     | 
    
    
    112  | 
     | 
    153560  | 
    	ret = 1;  | 
    
    
    113  | 
     | 
     | 
     | 
    
    
    114  | 
     | 
    153560  | 
    err:  | 
    
    
    115  | 
     | 
    153560  | 
    	BN_CTX_end(ctx);  | 
    
    
    116  | 
     | 
    153560  | 
    	return ret;  | 
    
    
    117  | 
     | 
     | 
    }  | 
    
    
    118  | 
     | 
     | 
     | 
    
    
    119  | 
     | 
     | 
    /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery  | 
    
    
    120  | 
     | 
     | 
     * projective coordinates.  | 
    
    
    121  | 
     | 
     | 
     * Uses algorithm Madd in appendix of  | 
    
    
    122  | 
     | 
     | 
     *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over  | 
    
    
    123  | 
     | 
     | 
     *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).  | 
    
    
    124  | 
     | 
     | 
     */  | 
    
    
    125  | 
     | 
     | 
    static int  | 
    
    
    126  | 
     | 
     | 
    gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,  | 
    
    
    127  | 
     | 
     | 
        const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)  | 
    
    
    128  | 
     | 
    153560  | 
    { | 
    
    
    129  | 
     | 
     | 
    	BIGNUM *t1, *t2;  | 
    
    
    130  | 
     | 
    153560  | 
    	int ret = 0;  | 
    
    
    131  | 
     | 
     | 
     | 
    
    
    132  | 
     | 
     | 
    	/* Since Madd is static we can guarantee that ctx != NULL. */  | 
    
    
    133  | 
     | 
    153560  | 
    	BN_CTX_start(ctx);  | 
    
    
    134  | 
    ✗✓ | 
    153560  | 
    	if ((t1 = BN_CTX_get(ctx)) == NULL)  | 
    
    
    135  | 
     | 
     | 
    		goto err;  | 
    
    
    136  | 
    ✗✓ | 
    153560  | 
    	if ((t2 = BN_CTX_get(ctx)) == NULL)  | 
    
    
    137  | 
     | 
     | 
    		goto err;  | 
    
    
    138  | 
     | 
     | 
     | 
    
    
    139  | 
    ✗✓ | 
    153560  | 
    	if (!BN_copy(t1, x))  | 
    
    
    140  | 
     | 
     | 
    		goto err;  | 
    
    
    141  | 
    ✗✓ | 
    153560  | 
    	if (!group->meth->field_mul(group, x1, x1, z2, ctx))  | 
    
    
    142  | 
     | 
     | 
    		goto err;  | 
    
    
    143  | 
    ✗✓ | 
    153560  | 
    	if (!group->meth->field_mul(group, z1, z1, x2, ctx))  | 
    
    
    144  | 
     | 
     | 
    		goto err;  | 
    
    
    145  | 
    ✗✓ | 
    153560  | 
    	if (!group->meth->field_mul(group, t2, x1, z1, ctx))  | 
    
    
    146  | 
     | 
     | 
    		goto err;  | 
    
    
    147  | 
    ✗✓ | 
    153560  | 
    	if (!BN_GF2m_add(z1, z1, x1))  | 
    
    
    148  | 
     | 
     | 
    		goto err;  | 
    
    
    149  | 
    ✗✓ | 
    153560  | 
    	if (!group->meth->field_sqr(group, z1, z1, ctx))  | 
    
    
    150  | 
     | 
     | 
    		goto err;  | 
    
    
    151  | 
    ✗✓ | 
    153560  | 
    	if (!group->meth->field_mul(group, x1, z1, t1, ctx))  | 
    
    
    152  | 
     | 
     | 
    		goto err;  | 
    
    
    153  | 
    ✗✓ | 
    153560  | 
    	if (!BN_GF2m_add(x1, x1, t2))  | 
    
    
    154  | 
     | 
     | 
    		goto err;  | 
    
    
    155  | 
     | 
     | 
     | 
    
    
    156  | 
     | 
    153560  | 
    	ret = 1;  | 
    
    
    157  | 
     | 
     | 
     | 
    
    
    158  | 
     | 
    153560  | 
    err:  | 
    
    
    159  | 
     | 
    153560  | 
    	BN_CTX_end(ctx);  | 
    
    
    160  | 
     | 
    153560  | 
    	return ret;  | 
    
    
    161  | 
     | 
     | 
    }  | 
    
    
    162  | 
     | 
     | 
     | 
    
    
    163  | 
     | 
     | 
    /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)  | 
    
    
    164  | 
     | 
     | 
     * using Montgomery point multiplication algorithm Mxy() in appendix of  | 
    
    
    165  | 
     | 
     | 
     *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over  | 
    
    
    166  | 
     | 
     | 
     *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).  | 
    
    
    167  | 
     | 
     | 
     * Returns:  | 
    
    
    168  | 
     | 
     | 
     *     0 on error  | 
    
    
    169  | 
     | 
     | 
     *     1 if return value should be the point at infinity  | 
    
    
    170  | 
     | 
     | 
     *     2 otherwise  | 
    
    
    171  | 
     | 
     | 
     */  | 
    
    
    172  | 
     | 
     | 
    static int  | 
    
    
    173  | 
     | 
     | 
    gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,  | 
    
    
    174  | 
     | 
     | 
        BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)  | 
    
    
    175  | 
     | 
    593  | 
    { | 
    
    
    176  | 
     | 
     | 
    	BIGNUM *t3, *t4, *t5;  | 
    
    
    177  | 
     | 
    593  | 
    	int ret = 0;  | 
    
    
    178  | 
     | 
     | 
     | 
    
    
    179  | 
    ✓✓ | 
    593  | 
    	if (BN_is_zero(z1)) { | 
    
    
    180  | 
     | 
    77  | 
    		BN_zero(x2);  | 
    
    
    181  | 
     | 
    77  | 
    		BN_zero(z2);  | 
    
    
    182  | 
     | 
    77  | 
    		return 1;  | 
    
    
    183  | 
     | 
     | 
    	}  | 
    
    
    184  | 
    ✗✓ | 
    516  | 
    	if (BN_is_zero(z2)) { | 
    
    
    185  | 
     | 
     | 
    		if (!BN_copy(x2, x))  | 
    
    
    186  | 
     | 
     | 
    			return 0;  | 
    
    
    187  | 
     | 
     | 
    		if (!BN_GF2m_add(z2, x, y))  | 
    
    
    188  | 
     | 
     | 
    			return 0;  | 
    
    
    189  | 
     | 
     | 
    		return 2;  | 
    
    
    190  | 
     | 
     | 
    	}  | 
    
    
    191  | 
     | 
     | 
    	/* Since Mxy is static we can guarantee that ctx != NULL. */  | 
    
    
    192  | 
     | 
    516  | 
    	BN_CTX_start(ctx);  | 
    
    
    193  | 
    ✗✓ | 
    516  | 
    	if ((t3 = BN_CTX_get(ctx)) == NULL)  | 
    
    
    194  | 
     | 
     | 
    		goto err;  | 
    
    
    195  | 
    ✗✓ | 
    516  | 
    	if ((t4 = BN_CTX_get(ctx)) == NULL)  | 
    
    
    196  | 
     | 
     | 
    		goto err;  | 
    
    
    197  | 
    ✗✓ | 
    516  | 
    	if ((t5 = BN_CTX_get(ctx)) == NULL)  | 
    
    
    198  | 
     | 
     | 
    		goto err;  | 
    
    
    199  | 
     | 
     | 
     | 
    
    
    200  | 
    ✗✓ | 
    516  | 
    	if (!BN_one(t5))  | 
    
    
    201  | 
     | 
     | 
    		goto err;  | 
    
    
    202  | 
     | 
     | 
     | 
    
    
    203  | 
    ✗✓ | 
    516  | 
    	if (!group->meth->field_mul(group, t3, z1, z2, ctx))  | 
    
    
    204  | 
     | 
     | 
    		goto err;  | 
    
    
    205  | 
     | 
     | 
     | 
    
    
    206  | 
    ✗✓ | 
    516  | 
    	if (!group->meth->field_mul(group, z1, z1, x, ctx))  | 
    
    
    207  | 
     | 
     | 
    		goto err;  | 
    
    
    208  | 
    ✗✓ | 
    516  | 
    	if (!BN_GF2m_add(z1, z1, x1))  | 
    
    
    209  | 
     | 
     | 
    		goto err;  | 
    
    
    210  | 
    ✗✓ | 
    516  | 
    	if (!group->meth->field_mul(group, z2, z2, x, ctx))  | 
    
    
    211  | 
     | 
     | 
    		goto err;  | 
    
    
    212  | 
    ✗✓ | 
    516  | 
    	if (!group->meth->field_mul(group, x1, z2, x1, ctx))  | 
    
    
    213  | 
     | 
     | 
    		goto err;  | 
    
    
    214  | 
    ✗✓ | 
    516  | 
    	if (!BN_GF2m_add(z2, z2, x2))  | 
    
    
    215  | 
     | 
     | 
    		goto err;  | 
    
    
    216  | 
     | 
     | 
     | 
    
    
    217  | 
    ✗✓ | 
    516  | 
    	if (!group->meth->field_mul(group, z2, z2, z1, ctx))  | 
    
    
    218  | 
     | 
     | 
    		goto err;  | 
    
    
    219  | 
    ✗✓ | 
    516  | 
    	if (!group->meth->field_sqr(group, t4, x, ctx))  | 
    
    
    220  | 
     | 
     | 
    		goto err;  | 
    
    
    221  | 
    ✗✓ | 
    516  | 
    	if (!BN_GF2m_add(t4, t4, y))  | 
    
    
    222  | 
     | 
     | 
    		goto err;  | 
    
    
    223  | 
    ✗✓ | 
    516  | 
    	if (!group->meth->field_mul(group, t4, t4, t3, ctx))  | 
    
    
    224  | 
     | 
     | 
    		goto err;  | 
    
    
    225  | 
    ✗✓ | 
    516  | 
    	if (!BN_GF2m_add(t4, t4, z2))  | 
    
    
    226  | 
     | 
     | 
    		goto err;  | 
    
    
    227  | 
     | 
     | 
     | 
    
    
    228  | 
    ✗✓ | 
    516  | 
    	if (!group->meth->field_mul(group, t3, t3, x, ctx))  | 
    
    
    229  | 
     | 
     | 
    		goto err;  | 
    
    
    230  | 
    ✗✓ | 
    516  | 
    	if (!group->meth->field_div(group, t3, t5, t3, ctx))  | 
    
    
    231  | 
     | 
     | 
    		goto err;  | 
    
    
    232  | 
    ✗✓ | 
    516  | 
    	if (!group->meth->field_mul(group, t4, t3, t4, ctx))  | 
    
    
    233  | 
     | 
     | 
    		goto err;  | 
    
    
    234  | 
    ✗✓ | 
    516  | 
    	if (!group->meth->field_mul(group, x2, x1, t3, ctx))  | 
    
    
    235  | 
     | 
     | 
    		goto err;  | 
    
    
    236  | 
    ✗✓ | 
    516  | 
    	if (!BN_GF2m_add(z2, x2, x))  | 
    
    
    237  | 
     | 
     | 
    		goto err;  | 
    
    
    238  | 
     | 
     | 
     | 
    
    
    239  | 
    ✗✓ | 
    516  | 
    	if (!group->meth->field_mul(group, z2, z2, t4, ctx))  | 
    
    
    240  | 
     | 
     | 
    		goto err;  | 
    
    
    241  | 
    ✗✓ | 
    516  | 
    	if (!BN_GF2m_add(z2, z2, y))  | 
    
    
    242  | 
     | 
     | 
    		goto err;  | 
    
    
    243  | 
     | 
     | 
     | 
    
    
    244  | 
     | 
    516  | 
    	ret = 2;  | 
    
    
    245  | 
     | 
     | 
     | 
    
    
    246  | 
     | 
    516  | 
    err:  | 
    
    
    247  | 
     | 
    516  | 
    	BN_CTX_end(ctx);  | 
    
    
    248  | 
     | 
    516  | 
    	return ret;  | 
    
    
    249  | 
     | 
     | 
    }  | 
    
    
    250  | 
     | 
     | 
     | 
    
    
    251  | 
     | 
     | 
     | 
    
    
    252  | 
     | 
     | 
    /* Computes scalar*point and stores the result in r.  | 
    
    
    253  | 
     | 
     | 
     * point can not equal r.  | 
    
    
    254  | 
     | 
     | 
     * Uses a modified algorithm 2P of  | 
    
    
    255  | 
     | 
     | 
     *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over  | 
    
    
    256  | 
     | 
     | 
     *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).  | 
    
    
    257  | 
     | 
     | 
     *  | 
    
    
    258  | 
     | 
     | 
     * To protect against side-channel attack the function uses constant time swap,  | 
    
    
    259  | 
     | 
     | 
     * avoiding conditional branches.  | 
    
    
    260  | 
     | 
     | 
     */  | 
    
    
    261  | 
     | 
     | 
    static int  | 
    
    
    262  | 
     | 
     | 
    ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r,  | 
    
    
    263  | 
     | 
     | 
        const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx)  | 
    
    
    264  | 
     | 
    623  | 
    { | 
    
    
    265  | 
     | 
     | 
    	BIGNUM *x1, *x2, *z1, *z2;  | 
    
    
    266  | 
     | 
    623  | 
    	int ret = 0, i;  | 
    
    
    267  | 
     | 
     | 
    	BN_ULONG mask, word;  | 
    
    
    268  | 
     | 
     | 
     | 
    
    
    269  | 
    ✗✓ | 
    623  | 
    	if (r == point) { | 
    
    
    270  | 
     | 
     | 
    		ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);  | 
    
    
    271  | 
     | 
     | 
    		return 0;  | 
    
    
    272  | 
     | 
     | 
    	}  | 
    
    
    273  | 
     | 
     | 
    	/* if result should be point at infinity */  | 
    
    
    274  | 
    ✓✗✓✗ ✓✓ | 
    623  | 
    	if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||  | 
    
    
    275  | 
     | 
     | 
    	    EC_POINT_is_at_infinity(group, point) > 0) { | 
    
    
    276  | 
     | 
    30  | 
    		return EC_POINT_set_to_infinity(group, r);  | 
    
    
    277  | 
     | 
     | 
    	}  | 
    
    
    278  | 
     | 
     | 
    	/* only support affine coordinates */  | 
    
    
    279  | 
    ✗✓ | 
    593  | 
    	if (!point->Z_is_one)  | 
    
    
    280  | 
     | 
     | 
    		return 0;  | 
    
    
    281  | 
     | 
     | 
     | 
    
    
    282  | 
     | 
     | 
    	/* Since point_multiply is static we can guarantee that ctx != NULL. */  | 
    
    
    283  | 
     | 
    593  | 
    	BN_CTX_start(ctx);  | 
    
    
    284  | 
    ✗✓ | 
    593  | 
    	if ((x1 = BN_CTX_get(ctx)) == NULL)  | 
    
    
    285  | 
     | 
     | 
    		goto err;  | 
    
    
    286  | 
    ✗✓ | 
    593  | 
    	if ((z1 = BN_CTX_get(ctx)) == NULL)  | 
    
    
    287  | 
     | 
     | 
    		goto err;  | 
    
    
    288  | 
     | 
     | 
     | 
    
    
    289  | 
     | 
    593  | 
    	x2 = &r->X;  | 
    
    
    290  | 
     | 
    593  | 
    	z2 = &r->Y;  | 
    
    
    291  | 
     | 
     | 
     | 
    
    
    292  | 
    ✓✓✗✓
  | 
    593  | 
    	if (!bn_wexpand(x1, group->field.top))  | 
    
    
    293  | 
     | 
     | 
                    goto err;  | 
    
    
    294  | 
    ✓✓✗✓
  | 
    593  | 
    	if (!bn_wexpand(z1, group->field.top))  | 
    
    
    295  | 
     | 
     | 
                    goto err;  | 
    
    
    296  | 
    ✓✓✗✓
  | 
    593  | 
    	if (!bn_wexpand(x2, group->field.top))  | 
    
    
    297  | 
     | 
     | 
                    goto err;  | 
    
    
    298  | 
    ✓✓✗✓
  | 
    593  | 
    	if (!bn_wexpand(z2, group->field.top))  | 
    
    
    299  | 
     | 
     | 
                    goto err;  | 
    
    
    300  | 
     | 
     | 
     | 
    
    
    301  | 
    ✗✓ | 
    593  | 
    	if (!BN_GF2m_mod_arr(x1, &point->X, group->poly))  | 
    
    
    302  | 
     | 
     | 
    		goto err;	/* x1 = x */  | 
    
    
    303  | 
    ✗✓ | 
    593  | 
    	if (!BN_one(z1))  | 
    
    
    304  | 
     | 
     | 
    		goto err;	/* z1 = 1 */  | 
    
    
    305  | 
    ✗✓ | 
    593  | 
    	if (!group->meth->field_sqr(group, z2, x1, ctx))  | 
    
    
    306  | 
     | 
     | 
    		goto err;	/* z2 = x1^2 = x^2 */  | 
    
    
    307  | 
    ✗✓ | 
    593  | 
    	if (!group->meth->field_sqr(group, x2, z2, ctx))  | 
    
    
    308  | 
     | 
     | 
    		goto err;  | 
    
    
    309  | 
    ✗✓ | 
    593  | 
    	if (!BN_GF2m_add(x2, x2, &group->b))  | 
    
    
    310  | 
     | 
     | 
    		goto err;	/* x2 = x^4 + b */  | 
    
    
    311  | 
     | 
     | 
     | 
    
    
    312  | 
     | 
     | 
    	/* find top most bit and go one past it */  | 
    
    
    313  | 
     | 
    593  | 
    	i = scalar->top - 1;  | 
    
    
    314  | 
     | 
    593  | 
    	mask = BN_TBIT;  | 
    
    
    315  | 
     | 
    593  | 
    	word = scalar->d[i];  | 
    
    
    316  | 
    ✓✓ | 
    15673  | 
    	while (!(word & mask))  | 
    
    
    317  | 
     | 
    14487  | 
    		mask >>= 1;  | 
    
    
    318  | 
     | 
    593  | 
    	mask >>= 1;  | 
    
    
    319  | 
     | 
     | 
    	/* if top most bit was at word break, go to next word */  | 
    
    
    320  | 
    ✓✓ | 
    593  | 
    	if (!mask) { | 
    
    
    321  | 
     | 
    8  | 
    		i--;  | 
    
    
    322  | 
     | 
    8  | 
    		mask = BN_TBIT;  | 
    
    
    323  | 
     | 
     | 
    	}  | 
    
    
    324  | 
    ✓✓ | 
    2627  | 
    	for (; i >= 0; i--) { | 
    
    
    325  | 
     | 
    2627  | 
    		word = scalar->d[i];  | 
    
    
    326  | 
    ✓✓ | 
    158814  | 
    		while (mask) { | 
    
    
    327  | 
     | 
    153560  | 
    			BN_consttime_swap(word & mask, x1, x2, group->field.top);  | 
    
    
    328  | 
     | 
    153560  | 
    			BN_consttime_swap(word & mask, z1, z2, group->field.top);  | 
    
    
    329  | 
    ✗✓ | 
    153560  | 
    			if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx))  | 
    
    
    330  | 
     | 
     | 
    				goto err;  | 
    
    
    331  | 
    ✗✓ | 
    153560  | 
    			if (!gf2m_Mdouble(group, x1, z1, ctx))  | 
    
    
    332  | 
     | 
     | 
    				goto err;  | 
    
    
    333  | 
     | 
    153560  | 
    			BN_consttime_swap(word & mask, x1, x2, group->field.top);  | 
    
    
    334  | 
     | 
    153560  | 
    			BN_consttime_swap(word & mask, z1, z2, group->field.top);  | 
    
    
    335  | 
     | 
    153560  | 
    			mask >>= 1;  | 
    
    
    336  | 
     | 
     | 
    		}  | 
    
    
    337  | 
     | 
    2627  | 
    		mask = BN_TBIT;  | 
    
    
    338  | 
     | 
     | 
    	}  | 
    
    
    339  | 
     | 
     | 
     | 
    
    
    340  | 
     | 
     | 
    	/* convert out of "projective" coordinates */  | 
    
    
    341  | 
     | 
    593  | 
    	i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);  | 
    
    
    342  | 
    ✗✓ | 
    593  | 
    	if (i == 0)  | 
    
    
    343  | 
     | 
     | 
    		goto err;  | 
    
    
    344  | 
    ✓✓ | 
    593  | 
    	else if (i == 1) { | 
    
    
    345  | 
    ✗✓ | 
    77  | 
    		if (!EC_POINT_set_to_infinity(group, r))  | 
    
    
    346  | 
     | 
     | 
    			goto err;  | 
    
    
    347  | 
     | 
     | 
    	} else { | 
    
    
    348  | 
    ✗✓ | 
    516  | 
    		if (!BN_one(&r->Z))  | 
    
    
    349  | 
     | 
     | 
    			goto err;  | 
    
    
    350  | 
     | 
    516  | 
    		r->Z_is_one = 1;  | 
    
    
    351  | 
     | 
     | 
    	}  | 
    
    
    352  | 
     | 
     | 
     | 
    
    
    353  | 
     | 
     | 
    	/* GF(2^m) field elements should always have BIGNUM::neg = 0 */  | 
    
    
    354  | 
     | 
    593  | 
    	BN_set_negative(&r->X, 0);  | 
    
    
    355  | 
     | 
    593  | 
    	BN_set_negative(&r->Y, 0);  | 
    
    
    356  | 
     | 
     | 
     | 
    
    
    357  | 
     | 
    593  | 
    	ret = 1;  | 
    
    
    358  | 
     | 
     | 
     | 
    
    
    359  | 
     | 
    593  | 
    err:  | 
    
    
    360  | 
     | 
    593  | 
    	BN_CTX_end(ctx);  | 
    
    
    361  | 
     | 
    593  | 
    	return ret;  | 
    
    
    362  | 
     | 
     | 
    }  | 
    
    
    363  | 
     | 
     | 
     | 
    
    
    364  | 
     | 
     | 
     | 
    
    
    365  | 
     | 
     | 
    /* Computes the sum  | 
    
    
    366  | 
     | 
     | 
     *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]  | 
    
    
    367  | 
     | 
     | 
     * gracefully ignoring NULL scalar values.  | 
    
    
    368  | 
     | 
     | 
     */  | 
    
    
    369  | 
     | 
     | 
    int  | 
    
    
    370  | 
     | 
     | 
    ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,  | 
    
    
    371  | 
     | 
     | 
        size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)  | 
    
    
    372  | 
     | 
    474  | 
    { | 
    
    
    373  | 
     | 
    474  | 
    	BN_CTX *new_ctx = NULL;  | 
    
    
    374  | 
     | 
    474  | 
    	int ret = 0;  | 
    
    
    375  | 
     | 
     | 
    	size_t i;  | 
    
    
    376  | 
     | 
    474  | 
    	EC_POINT *p = NULL;  | 
    
    
    377  | 
     | 
    474  | 
    	EC_POINT *acc = NULL;  | 
    
    
    378  | 
     | 
     | 
     | 
    
    
    379  | 
    ✗✓ | 
    474  | 
    	if (ctx == NULL) { | 
    
    
    380  | 
     | 
     | 
    		ctx = new_ctx = BN_CTX_new();  | 
    
    
    381  | 
     | 
     | 
    		if (ctx == NULL)  | 
    
    
    382  | 
     | 
     | 
    			return 0;  | 
    
    
    383  | 
     | 
     | 
    	}  | 
    
    
    384  | 
     | 
     | 
    	/*  | 
    
    
    385  | 
     | 
     | 
    	 * This implementation is more efficient than the wNAF implementation  | 
    
    
    386  | 
     | 
     | 
    	 * for 2 or fewer points.  Use the ec_wNAF_mul implementation for 3  | 
    
    
    387  | 
     | 
     | 
    	 * or more points, or if we can perform a fast multiplication based  | 
    
    
    388  | 
     | 
     | 
    	 * on precomputation.  | 
    
    
    389  | 
     | 
     | 
    	 */  | 
    
    
    390  | 
    ✓✓✓✓ ✓✓✓✓
  | 
    474  | 
    	if ((scalar && (num > 1)) || (num > 2) ||  | 
    
    
    391  | 
     | 
     | 
    	    (num == 0 && EC_GROUP_have_precompute_mult(group))) { | 
    
    
    392  | 
     | 
    21  | 
    		ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);  | 
    
    
    393  | 
     | 
    21  | 
    		goto err;  | 
    
    
    394  | 
     | 
     | 
    	}  | 
    
    
    395  | 
    ✗✓ | 
    453  | 
    	if ((p = EC_POINT_new(group)) == NULL)  | 
    
    
    396  | 
     | 
     | 
    		goto err;  | 
    
    
    397  | 
    ✗✓ | 
    453  | 
    	if ((acc = EC_POINT_new(group)) == NULL)  | 
    
    
    398  | 
     | 
     | 
    		goto err;  | 
    
    
    399  | 
     | 
     | 
     | 
    
    
    400  | 
    ✗✓ | 
    453  | 
    	if (!EC_POINT_set_to_infinity(group, acc))  | 
    
    
    401  | 
     | 
     | 
    		goto err;  | 
    
    
    402  | 
     | 
     | 
     | 
    
    
    403  | 
    ✓✓ | 
    453  | 
    	if (scalar) { | 
    
    
    404  | 
    ✗✓ | 
    367  | 
    		if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx))  | 
    
    
    405  | 
     | 
     | 
    			goto err;  | 
    
    
    406  | 
    ✗✓ | 
    367  | 
    		if (BN_is_negative(scalar))  | 
    
    
    407  | 
     | 
     | 
    			if (!group->meth->invert(group, p, ctx))  | 
    
    
    408  | 
     | 
     | 
    				goto err;  | 
    
    
    409  | 
    ✗✓ | 
    367  | 
    		if (!group->meth->add(group, acc, acc, p, ctx))  | 
    
    
    410  | 
     | 
     | 
    			goto err;  | 
    
    
    411  | 
     | 
     | 
    	}  | 
    
    
    412  | 
    ✓✓ | 
    709  | 
    	for (i = 0; i < num; i++) { | 
    
    
    413  | 
    ✗✓ | 
    256  | 
    		if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx))  | 
    
    
    414  | 
     | 
     | 
    			goto err;  | 
    
    
    415  | 
    ✓✓ | 
    256  | 
    		if (BN_is_negative(scalars[i]))  | 
    
    
    416  | 
    ✗✓ | 
    21  | 
    			if (!group->meth->invert(group, p, ctx))  | 
    
    
    417  | 
     | 
     | 
    				goto err;  | 
    
    
    418  | 
    ✗✓ | 
    256  | 
    		if (!group->meth->add(group, acc, acc, p, ctx))  | 
    
    
    419  | 
     | 
     | 
    			goto err;  | 
    
    
    420  | 
     | 
     | 
    	}  | 
    
    
    421  | 
     | 
     | 
     | 
    
    
    422  | 
    ✗✓ | 
    453  | 
    	if (!EC_POINT_copy(r, acc))  | 
    
    
    423  | 
     | 
     | 
    		goto err;  | 
    
    
    424  | 
     | 
     | 
     | 
    
    
    425  | 
     | 
    453  | 
    	ret = 1;  | 
    
    
    426  | 
     | 
     | 
     | 
    
    
    427  | 
     | 
    474  | 
    err:  | 
    
    
    428  | 
     | 
    474  | 
    	EC_POINT_free(p);  | 
    
    
    429  | 
     | 
    474  | 
    	EC_POINT_free(acc);  | 
    
    
    430  | 
     | 
    474  | 
    	BN_CTX_free(new_ctx);  | 
    
    
    431  | 
     | 
    474  | 
    	return ret;  | 
    
    
    432  | 
     | 
     | 
    }  | 
    
    
    433  | 
     | 
     | 
     | 
    
    
    434  | 
     | 
     | 
     | 
    
    
    435  | 
     | 
     | 
    /* Precomputation for point multiplication: fall back to wNAF methods  | 
    
    
    436  | 
     | 
     | 
     * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */  | 
    
    
    437  | 
     | 
     | 
     | 
    
    
    438  | 
     | 
     | 
    int  | 
    
    
    439  | 
     | 
     | 
    ec_GF2m_precompute_mult(EC_GROUP * group, BN_CTX * ctx)  | 
    
    
    440  | 
     | 
    10  | 
    { | 
    
    
    441  | 
     | 
    10  | 
    	return ec_wNAF_precompute_mult(group, ctx);  | 
    
    
    442  | 
     | 
     | 
    }  | 
    
    
    443  | 
     | 
     | 
     | 
    
    
    444  | 
     | 
     | 
    int  | 
    
    
    445  | 
     | 
     | 
    ec_GF2m_have_precompute_mult(const EC_GROUP * group)  | 
    
    
    446  | 
     | 
    218  | 
    { | 
    
    
    447  | 
     | 
    218  | 
    	return ec_wNAF_have_precompute_mult(group);  | 
    
    
    448  | 
     | 
     | 
    }  | 
    
    
    449  | 
     | 
     | 
     | 
    
    
    450  | 
     | 
     | 
    #endif  |