1 |
|
|
/* $OpenBSD: ec2_mult.c,v 1.8 2016/03/12 21:44:11 bcook Exp $ */ |
2 |
|
|
/* ==================================================================== |
3 |
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
4 |
|
|
* |
5 |
|
|
* The Elliptic Curve Public-Key Crypto Library (ECC Code) included |
6 |
|
|
* herein is developed by SUN MICROSYSTEMS, INC., and is contributed |
7 |
|
|
* to the OpenSSL project. |
8 |
|
|
* |
9 |
|
|
* The ECC Code is licensed pursuant to the OpenSSL open source |
10 |
|
|
* license provided below. |
11 |
|
|
* |
12 |
|
|
* The software is originally written by Sheueling Chang Shantz and |
13 |
|
|
* Douglas Stebila of Sun Microsystems Laboratories. |
14 |
|
|
* |
15 |
|
|
*/ |
16 |
|
|
/* ==================================================================== |
17 |
|
|
* Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. |
18 |
|
|
* |
19 |
|
|
* Redistribution and use in source and binary forms, with or without |
20 |
|
|
* modification, are permitted provided that the following conditions |
21 |
|
|
* are met: |
22 |
|
|
* |
23 |
|
|
* 1. Redistributions of source code must retain the above copyright |
24 |
|
|
* notice, this list of conditions and the following disclaimer. |
25 |
|
|
* |
26 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
27 |
|
|
* notice, this list of conditions and the following disclaimer in |
28 |
|
|
* the documentation and/or other materials provided with the |
29 |
|
|
* distribution. |
30 |
|
|
* |
31 |
|
|
* 3. All advertising materials mentioning features or use of this |
32 |
|
|
* software must display the following acknowledgment: |
33 |
|
|
* "This product includes software developed by the OpenSSL Project |
34 |
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
35 |
|
|
* |
36 |
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
37 |
|
|
* endorse or promote products derived from this software without |
38 |
|
|
* prior written permission. For written permission, please contact |
39 |
|
|
* openssl-core@openssl.org. |
40 |
|
|
* |
41 |
|
|
* 5. Products derived from this software may not be called "OpenSSL" |
42 |
|
|
* nor may "OpenSSL" appear in their names without prior written |
43 |
|
|
* permission of the OpenSSL Project. |
44 |
|
|
* |
45 |
|
|
* 6. Redistributions of any form whatsoever must retain the following |
46 |
|
|
* acknowledgment: |
47 |
|
|
* "This product includes software developed by the OpenSSL Project |
48 |
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
49 |
|
|
* |
50 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
51 |
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
52 |
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
53 |
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
54 |
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
55 |
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
56 |
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
57 |
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
58 |
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
59 |
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
60 |
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
61 |
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
62 |
|
|
* ==================================================================== |
63 |
|
|
* |
64 |
|
|
* This product includes cryptographic software written by Eric Young |
65 |
|
|
* (eay@cryptsoft.com). This product includes software written by Tim |
66 |
|
|
* Hudson (tjh@cryptsoft.com). |
67 |
|
|
* |
68 |
|
|
*/ |
69 |
|
|
|
70 |
|
|
#include <openssl/opensslconf.h> |
71 |
|
|
|
72 |
|
|
#include <openssl/err.h> |
73 |
|
|
|
74 |
|
|
#include "ec_lcl.h" |
75 |
|
|
|
76 |
|
|
#ifndef OPENSSL_NO_EC2M |
77 |
|
|
|
78 |
|
|
|
79 |
|
|
/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective |
80 |
|
|
* coordinates. |
81 |
|
|
* Uses algorithm Mdouble in appendix of |
82 |
|
|
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
83 |
|
|
* GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
84 |
|
|
* modified to not require precomputation of c=b^{2^{m-1}}. |
85 |
|
|
*/ |
86 |
|
|
static int |
87 |
|
|
gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) |
88 |
|
153560 |
{ |
89 |
|
|
BIGNUM *t1; |
90 |
|
153560 |
int ret = 0; |
91 |
|
|
|
92 |
|
|
/* Since Mdouble is static we can guarantee that ctx != NULL. */ |
93 |
|
153560 |
BN_CTX_start(ctx); |
94 |
✗✓ |
153560 |
if ((t1 = BN_CTX_get(ctx)) == NULL) |
95 |
|
|
goto err; |
96 |
|
|
|
97 |
✗✓ |
153560 |
if (!group->meth->field_sqr(group, x, x, ctx)) |
98 |
|
|
goto err; |
99 |
✗✓ |
153560 |
if (!group->meth->field_sqr(group, t1, z, ctx)) |
100 |
|
|
goto err; |
101 |
✗✓ |
153560 |
if (!group->meth->field_mul(group, z, x, t1, ctx)) |
102 |
|
|
goto err; |
103 |
✗✓ |
153560 |
if (!group->meth->field_sqr(group, x, x, ctx)) |
104 |
|
|
goto err; |
105 |
✗✓ |
153560 |
if (!group->meth->field_sqr(group, t1, t1, ctx)) |
106 |
|
|
goto err; |
107 |
✗✓ |
153560 |
if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) |
108 |
|
|
goto err; |
109 |
✗✓ |
153560 |
if (!BN_GF2m_add(x, x, t1)) |
110 |
|
|
goto err; |
111 |
|
|
|
112 |
|
153560 |
ret = 1; |
113 |
|
|
|
114 |
|
153560 |
err: |
115 |
|
153560 |
BN_CTX_end(ctx); |
116 |
|
153560 |
return ret; |
117 |
|
|
} |
118 |
|
|
|
119 |
|
|
/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery |
120 |
|
|
* projective coordinates. |
121 |
|
|
* Uses algorithm Madd in appendix of |
122 |
|
|
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
123 |
|
|
* GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
124 |
|
|
*/ |
125 |
|
|
static int |
126 |
|
|
gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, |
127 |
|
|
const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) |
128 |
|
153560 |
{ |
129 |
|
|
BIGNUM *t1, *t2; |
130 |
|
153560 |
int ret = 0; |
131 |
|
|
|
132 |
|
|
/* Since Madd is static we can guarantee that ctx != NULL. */ |
133 |
|
153560 |
BN_CTX_start(ctx); |
134 |
✗✓ |
153560 |
if ((t1 = BN_CTX_get(ctx)) == NULL) |
135 |
|
|
goto err; |
136 |
✗✓ |
153560 |
if ((t2 = BN_CTX_get(ctx)) == NULL) |
137 |
|
|
goto err; |
138 |
|
|
|
139 |
✗✓ |
153560 |
if (!BN_copy(t1, x)) |
140 |
|
|
goto err; |
141 |
✗✓ |
153560 |
if (!group->meth->field_mul(group, x1, x1, z2, ctx)) |
142 |
|
|
goto err; |
143 |
✗✓ |
153560 |
if (!group->meth->field_mul(group, z1, z1, x2, ctx)) |
144 |
|
|
goto err; |
145 |
✗✓ |
153560 |
if (!group->meth->field_mul(group, t2, x1, z1, ctx)) |
146 |
|
|
goto err; |
147 |
✗✓ |
153560 |
if (!BN_GF2m_add(z1, z1, x1)) |
148 |
|
|
goto err; |
149 |
✗✓ |
153560 |
if (!group->meth->field_sqr(group, z1, z1, ctx)) |
150 |
|
|
goto err; |
151 |
✗✓ |
153560 |
if (!group->meth->field_mul(group, x1, z1, t1, ctx)) |
152 |
|
|
goto err; |
153 |
✗✓ |
153560 |
if (!BN_GF2m_add(x1, x1, t2)) |
154 |
|
|
goto err; |
155 |
|
|
|
156 |
|
153560 |
ret = 1; |
157 |
|
|
|
158 |
|
153560 |
err: |
159 |
|
153560 |
BN_CTX_end(ctx); |
160 |
|
153560 |
return ret; |
161 |
|
|
} |
162 |
|
|
|
163 |
|
|
/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) |
164 |
|
|
* using Montgomery point multiplication algorithm Mxy() in appendix of |
165 |
|
|
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
166 |
|
|
* GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
167 |
|
|
* Returns: |
168 |
|
|
* 0 on error |
169 |
|
|
* 1 if return value should be the point at infinity |
170 |
|
|
* 2 otherwise |
171 |
|
|
*/ |
172 |
|
|
static int |
173 |
|
|
gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, |
174 |
|
|
BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) |
175 |
|
593 |
{ |
176 |
|
|
BIGNUM *t3, *t4, *t5; |
177 |
|
593 |
int ret = 0; |
178 |
|
|
|
179 |
✓✓ |
593 |
if (BN_is_zero(z1)) { |
180 |
|
77 |
BN_zero(x2); |
181 |
|
77 |
BN_zero(z2); |
182 |
|
77 |
return 1; |
183 |
|
|
} |
184 |
✗✓ |
516 |
if (BN_is_zero(z2)) { |
185 |
|
|
if (!BN_copy(x2, x)) |
186 |
|
|
return 0; |
187 |
|
|
if (!BN_GF2m_add(z2, x, y)) |
188 |
|
|
return 0; |
189 |
|
|
return 2; |
190 |
|
|
} |
191 |
|
|
/* Since Mxy is static we can guarantee that ctx != NULL. */ |
192 |
|
516 |
BN_CTX_start(ctx); |
193 |
✗✓ |
516 |
if ((t3 = BN_CTX_get(ctx)) == NULL) |
194 |
|
|
goto err; |
195 |
✗✓ |
516 |
if ((t4 = BN_CTX_get(ctx)) == NULL) |
196 |
|
|
goto err; |
197 |
✗✓ |
516 |
if ((t5 = BN_CTX_get(ctx)) == NULL) |
198 |
|
|
goto err; |
199 |
|
|
|
200 |
✗✓ |
516 |
if (!BN_one(t5)) |
201 |
|
|
goto err; |
202 |
|
|
|
203 |
✗✓ |
516 |
if (!group->meth->field_mul(group, t3, z1, z2, ctx)) |
204 |
|
|
goto err; |
205 |
|
|
|
206 |
✗✓ |
516 |
if (!group->meth->field_mul(group, z1, z1, x, ctx)) |
207 |
|
|
goto err; |
208 |
✗✓ |
516 |
if (!BN_GF2m_add(z1, z1, x1)) |
209 |
|
|
goto err; |
210 |
✗✓ |
516 |
if (!group->meth->field_mul(group, z2, z2, x, ctx)) |
211 |
|
|
goto err; |
212 |
✗✓ |
516 |
if (!group->meth->field_mul(group, x1, z2, x1, ctx)) |
213 |
|
|
goto err; |
214 |
✗✓ |
516 |
if (!BN_GF2m_add(z2, z2, x2)) |
215 |
|
|
goto err; |
216 |
|
|
|
217 |
✗✓ |
516 |
if (!group->meth->field_mul(group, z2, z2, z1, ctx)) |
218 |
|
|
goto err; |
219 |
✗✓ |
516 |
if (!group->meth->field_sqr(group, t4, x, ctx)) |
220 |
|
|
goto err; |
221 |
✗✓ |
516 |
if (!BN_GF2m_add(t4, t4, y)) |
222 |
|
|
goto err; |
223 |
✗✓ |
516 |
if (!group->meth->field_mul(group, t4, t4, t3, ctx)) |
224 |
|
|
goto err; |
225 |
✗✓ |
516 |
if (!BN_GF2m_add(t4, t4, z2)) |
226 |
|
|
goto err; |
227 |
|
|
|
228 |
✗✓ |
516 |
if (!group->meth->field_mul(group, t3, t3, x, ctx)) |
229 |
|
|
goto err; |
230 |
✗✓ |
516 |
if (!group->meth->field_div(group, t3, t5, t3, ctx)) |
231 |
|
|
goto err; |
232 |
✗✓ |
516 |
if (!group->meth->field_mul(group, t4, t3, t4, ctx)) |
233 |
|
|
goto err; |
234 |
✗✓ |
516 |
if (!group->meth->field_mul(group, x2, x1, t3, ctx)) |
235 |
|
|
goto err; |
236 |
✗✓ |
516 |
if (!BN_GF2m_add(z2, x2, x)) |
237 |
|
|
goto err; |
238 |
|
|
|
239 |
✗✓ |
516 |
if (!group->meth->field_mul(group, z2, z2, t4, ctx)) |
240 |
|
|
goto err; |
241 |
✗✓ |
516 |
if (!BN_GF2m_add(z2, z2, y)) |
242 |
|
|
goto err; |
243 |
|
|
|
244 |
|
516 |
ret = 2; |
245 |
|
|
|
246 |
|
516 |
err: |
247 |
|
516 |
BN_CTX_end(ctx); |
248 |
|
516 |
return ret; |
249 |
|
|
} |
250 |
|
|
|
251 |
|
|
|
252 |
|
|
/* Computes scalar*point and stores the result in r. |
253 |
|
|
* point can not equal r. |
254 |
|
|
* Uses a modified algorithm 2P of |
255 |
|
|
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
256 |
|
|
* GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
257 |
|
|
* |
258 |
|
|
* To protect against side-channel attack the function uses constant time swap, |
259 |
|
|
* avoiding conditional branches. |
260 |
|
|
*/ |
261 |
|
|
static int |
262 |
|
|
ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, |
263 |
|
|
const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) |
264 |
|
623 |
{ |
265 |
|
|
BIGNUM *x1, *x2, *z1, *z2; |
266 |
|
623 |
int ret = 0, i; |
267 |
|
|
BN_ULONG mask, word; |
268 |
|
|
|
269 |
✗✓ |
623 |
if (r == point) { |
270 |
|
|
ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT); |
271 |
|
|
return 0; |
272 |
|
|
} |
273 |
|
|
/* if result should be point at infinity */ |
274 |
✓✗✓✗ ✓✓ |
623 |
if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || |
275 |
|
|
EC_POINT_is_at_infinity(group, point) > 0) { |
276 |
|
30 |
return EC_POINT_set_to_infinity(group, r); |
277 |
|
|
} |
278 |
|
|
/* only support affine coordinates */ |
279 |
✗✓ |
593 |
if (!point->Z_is_one) |
280 |
|
|
return 0; |
281 |
|
|
|
282 |
|
|
/* Since point_multiply is static we can guarantee that ctx != NULL. */ |
283 |
|
593 |
BN_CTX_start(ctx); |
284 |
✗✓ |
593 |
if ((x1 = BN_CTX_get(ctx)) == NULL) |
285 |
|
|
goto err; |
286 |
✗✓ |
593 |
if ((z1 = BN_CTX_get(ctx)) == NULL) |
287 |
|
|
goto err; |
288 |
|
|
|
289 |
|
593 |
x2 = &r->X; |
290 |
|
593 |
z2 = &r->Y; |
291 |
|
|
|
292 |
✓✓✗✓
|
593 |
if (!bn_wexpand(x1, group->field.top)) |
293 |
|
|
goto err; |
294 |
✓✓✗✓
|
593 |
if (!bn_wexpand(z1, group->field.top)) |
295 |
|
|
goto err; |
296 |
✓✓✗✓
|
593 |
if (!bn_wexpand(x2, group->field.top)) |
297 |
|
|
goto err; |
298 |
✓✓✗✓
|
593 |
if (!bn_wexpand(z2, group->field.top)) |
299 |
|
|
goto err; |
300 |
|
|
|
301 |
✗✓ |
593 |
if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) |
302 |
|
|
goto err; /* x1 = x */ |
303 |
✗✓ |
593 |
if (!BN_one(z1)) |
304 |
|
|
goto err; /* z1 = 1 */ |
305 |
✗✓ |
593 |
if (!group->meth->field_sqr(group, z2, x1, ctx)) |
306 |
|
|
goto err; /* z2 = x1^2 = x^2 */ |
307 |
✗✓ |
593 |
if (!group->meth->field_sqr(group, x2, z2, ctx)) |
308 |
|
|
goto err; |
309 |
✗✓ |
593 |
if (!BN_GF2m_add(x2, x2, &group->b)) |
310 |
|
|
goto err; /* x2 = x^4 + b */ |
311 |
|
|
|
312 |
|
|
/* find top most bit and go one past it */ |
313 |
|
593 |
i = scalar->top - 1; |
314 |
|
593 |
mask = BN_TBIT; |
315 |
|
593 |
word = scalar->d[i]; |
316 |
✓✓ |
15673 |
while (!(word & mask)) |
317 |
|
14487 |
mask >>= 1; |
318 |
|
593 |
mask >>= 1; |
319 |
|
|
/* if top most bit was at word break, go to next word */ |
320 |
✓✓ |
593 |
if (!mask) { |
321 |
|
8 |
i--; |
322 |
|
8 |
mask = BN_TBIT; |
323 |
|
|
} |
324 |
✓✓ |
2627 |
for (; i >= 0; i--) { |
325 |
|
2627 |
word = scalar->d[i]; |
326 |
✓✓ |
158814 |
while (mask) { |
327 |
|
153560 |
BN_consttime_swap(word & mask, x1, x2, group->field.top); |
328 |
|
153560 |
BN_consttime_swap(word & mask, z1, z2, group->field.top); |
329 |
✗✓ |
153560 |
if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) |
330 |
|
|
goto err; |
331 |
✗✓ |
153560 |
if (!gf2m_Mdouble(group, x1, z1, ctx)) |
332 |
|
|
goto err; |
333 |
|
153560 |
BN_consttime_swap(word & mask, x1, x2, group->field.top); |
334 |
|
153560 |
BN_consttime_swap(word & mask, z1, z2, group->field.top); |
335 |
|
153560 |
mask >>= 1; |
336 |
|
|
} |
337 |
|
2627 |
mask = BN_TBIT; |
338 |
|
|
} |
339 |
|
|
|
340 |
|
|
/* convert out of "projective" coordinates */ |
341 |
|
593 |
i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); |
342 |
✗✓ |
593 |
if (i == 0) |
343 |
|
|
goto err; |
344 |
✓✓ |
593 |
else if (i == 1) { |
345 |
✗✓ |
77 |
if (!EC_POINT_set_to_infinity(group, r)) |
346 |
|
|
goto err; |
347 |
|
|
} else { |
348 |
✗✓ |
516 |
if (!BN_one(&r->Z)) |
349 |
|
|
goto err; |
350 |
|
516 |
r->Z_is_one = 1; |
351 |
|
|
} |
352 |
|
|
|
353 |
|
|
/* GF(2^m) field elements should always have BIGNUM::neg = 0 */ |
354 |
|
593 |
BN_set_negative(&r->X, 0); |
355 |
|
593 |
BN_set_negative(&r->Y, 0); |
356 |
|
|
|
357 |
|
593 |
ret = 1; |
358 |
|
|
|
359 |
|
593 |
err: |
360 |
|
593 |
BN_CTX_end(ctx); |
361 |
|
593 |
return ret; |
362 |
|
|
} |
363 |
|
|
|
364 |
|
|
|
365 |
|
|
/* Computes the sum |
366 |
|
|
* scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] |
367 |
|
|
* gracefully ignoring NULL scalar values. |
368 |
|
|
*/ |
369 |
|
|
int |
370 |
|
|
ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
371 |
|
|
size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) |
372 |
|
474 |
{ |
373 |
|
474 |
BN_CTX *new_ctx = NULL; |
374 |
|
474 |
int ret = 0; |
375 |
|
|
size_t i; |
376 |
|
474 |
EC_POINT *p = NULL; |
377 |
|
474 |
EC_POINT *acc = NULL; |
378 |
|
|
|
379 |
✗✓ |
474 |
if (ctx == NULL) { |
380 |
|
|
ctx = new_ctx = BN_CTX_new(); |
381 |
|
|
if (ctx == NULL) |
382 |
|
|
return 0; |
383 |
|
|
} |
384 |
|
|
/* |
385 |
|
|
* This implementation is more efficient than the wNAF implementation |
386 |
|
|
* for 2 or fewer points. Use the ec_wNAF_mul implementation for 3 |
387 |
|
|
* or more points, or if we can perform a fast multiplication based |
388 |
|
|
* on precomputation. |
389 |
|
|
*/ |
390 |
✓✓✓✓ ✓✓✓✓
|
474 |
if ((scalar && (num > 1)) || (num > 2) || |
391 |
|
|
(num == 0 && EC_GROUP_have_precompute_mult(group))) { |
392 |
|
21 |
ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); |
393 |
|
21 |
goto err; |
394 |
|
|
} |
395 |
✗✓ |
453 |
if ((p = EC_POINT_new(group)) == NULL) |
396 |
|
|
goto err; |
397 |
✗✓ |
453 |
if ((acc = EC_POINT_new(group)) == NULL) |
398 |
|
|
goto err; |
399 |
|
|
|
400 |
✗✓ |
453 |
if (!EC_POINT_set_to_infinity(group, acc)) |
401 |
|
|
goto err; |
402 |
|
|
|
403 |
✓✓ |
453 |
if (scalar) { |
404 |
✗✓ |
367 |
if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) |
405 |
|
|
goto err; |
406 |
✗✓ |
367 |
if (BN_is_negative(scalar)) |
407 |
|
|
if (!group->meth->invert(group, p, ctx)) |
408 |
|
|
goto err; |
409 |
✗✓ |
367 |
if (!group->meth->add(group, acc, acc, p, ctx)) |
410 |
|
|
goto err; |
411 |
|
|
} |
412 |
✓✓ |
709 |
for (i = 0; i < num; i++) { |
413 |
✗✓ |
256 |
if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) |
414 |
|
|
goto err; |
415 |
✓✓ |
256 |
if (BN_is_negative(scalars[i])) |
416 |
✗✓ |
21 |
if (!group->meth->invert(group, p, ctx)) |
417 |
|
|
goto err; |
418 |
✗✓ |
256 |
if (!group->meth->add(group, acc, acc, p, ctx)) |
419 |
|
|
goto err; |
420 |
|
|
} |
421 |
|
|
|
422 |
✗✓ |
453 |
if (!EC_POINT_copy(r, acc)) |
423 |
|
|
goto err; |
424 |
|
|
|
425 |
|
453 |
ret = 1; |
426 |
|
|
|
427 |
|
474 |
err: |
428 |
|
474 |
EC_POINT_free(p); |
429 |
|
474 |
EC_POINT_free(acc); |
430 |
|
474 |
BN_CTX_free(new_ctx); |
431 |
|
474 |
return ret; |
432 |
|
|
} |
433 |
|
|
|
434 |
|
|
|
435 |
|
|
/* Precomputation for point multiplication: fall back to wNAF methods |
436 |
|
|
* because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ |
437 |
|
|
|
438 |
|
|
int |
439 |
|
|
ec_GF2m_precompute_mult(EC_GROUP * group, BN_CTX * ctx) |
440 |
|
10 |
{ |
441 |
|
10 |
return ec_wNAF_precompute_mult(group, ctx); |
442 |
|
|
} |
443 |
|
|
|
444 |
|
|
int |
445 |
|
|
ec_GF2m_have_precompute_mult(const EC_GROUP * group) |
446 |
|
218 |
{ |
447 |
|
218 |
return ec_wNAF_have_precompute_mult(group); |
448 |
|
|
} |
449 |
|
|
|
450 |
|
|
#endif |