GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libcrypto/crypto/../../libssl/src/crypto/ec/ec_mult.c Lines: 286 405 70.6 %
Date: 2016-12-06 Branches: 188 294 63.9 %

Line Branch Exec Source
1
/* $OpenBSD: ec_mult.c,v 1.19 2015/09/10 15:56:25 jsing Exp $ */
2
/*
3
 * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4
 */
5
/* ====================================================================
6
 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
7
 *
8
 * Redistribution and use in source and binary forms, with or without
9
 * modification, are permitted provided that the following conditions
10
 * are met:
11
 *
12
 * 1. Redistributions of source code must retain the above copyright
13
 *    notice, this list of conditions and the following disclaimer.
14
 *
15
 * 2. Redistributions in binary form must reproduce the above copyright
16
 *    notice, this list of conditions and the following disclaimer in
17
 *    the documentation and/or other materials provided with the
18
 *    distribution.
19
 *
20
 * 3. All advertising materials mentioning features or use of this
21
 *    software must display the following acknowledgment:
22
 *    "This product includes software developed by the OpenSSL Project
23
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24
 *
25
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26
 *    endorse or promote products derived from this software without
27
 *    prior written permission. For written permission, please contact
28
 *    openssl-core@openssl.org.
29
 *
30
 * 5. Products derived from this software may not be called "OpenSSL"
31
 *    nor may "OpenSSL" appear in their names without prior written
32
 *    permission of the OpenSSL Project.
33
 *
34
 * 6. Redistributions of any form whatsoever must retain the following
35
 *    acknowledgment:
36
 *    "This product includes software developed by the OpenSSL Project
37
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38
 *
39
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50
 * OF THE POSSIBILITY OF SUCH DAMAGE.
51
 * ====================================================================
52
 *
53
 * This product includes cryptographic software written by Eric Young
54
 * (eay@cryptsoft.com).  This product includes software written by Tim
55
 * Hudson (tjh@cryptsoft.com).
56
 *
57
 */
58
/* ====================================================================
59
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60
 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61
 * and contributed to the OpenSSL project.
62
 */
63
64
#include <string.h>
65
66
#include <openssl/err.h>
67
68
#include "ec_lcl.h"
69
70
71
/*
72
 * This file implements the wNAF-based interleaving multi-exponentation method
73
 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
74
 * for multiplication with precomputation, we use wNAF splitting
75
 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
76
 */
77
78
79
80
81
/* structure for precomputed multiples of the generator */
82
typedef struct ec_pre_comp_st {
83
	const EC_GROUP *group;	/* parent EC_GROUP object */
84
	size_t blocksize;	/* block size for wNAF splitting */
85
	size_t numblocks;	/* max. number of blocks for which we have
86
				 * precomputation */
87
	size_t w;		/* window size */
88
	EC_POINT **points;	/* array with pre-calculated multiples of
89
				 * generator: 'num' pointers to EC_POINT
90
				 * objects followed by a NULL */
91
	size_t num;		/* numblocks * 2^(w-1) */
92
	int references;
93
} EC_PRE_COMP;
94
95
/* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
96
static void *ec_pre_comp_dup(void *);
97
static void ec_pre_comp_free(void *);
98
static void ec_pre_comp_clear_free(void *);
99
100
static EC_PRE_COMP *
101
ec_pre_comp_new(const EC_GROUP * group)
102
16
{
103
16
	EC_PRE_COMP *ret = NULL;
104
105
16
	if (!group)
106
		return NULL;
107
108
16
	ret = malloc(sizeof(EC_PRE_COMP));
109
16
	if (!ret) {
110
		ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
111
		return ret;
112
	}
113
16
	ret->group = group;
114
16
	ret->blocksize = 8;	/* default */
115
16
	ret->numblocks = 0;
116
16
	ret->w = 4;		/* default */
117
16
	ret->points = NULL;
118
16
	ret->num = 0;
119
16
	ret->references = 1;
120
16
	return ret;
121
}
122
123
static void *
124
ec_pre_comp_dup(void *src_)
125
16
{
126
16
	EC_PRE_COMP *src = src_;
127
128
	/* no need to actually copy, these objects never change! */
129
130
16
	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
131
132
16
	return src_;
133
}
134
135
static void
136
ec_pre_comp_free(void *pre_)
137
48
{
138
	int i;
139
48
	EC_PRE_COMP *pre = pre_;
140
141
48
	if (!pre)
142
16
		return;
143
144
32
	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
145
32
	if (i > 0)
146
16
		return;
147
148
16
	if (pre->points) {
149
		EC_POINT **p;
150
151
5128
		for (p = pre->points; *p != NULL; p++)
152
5112
			EC_POINT_free(*p);
153
16
		free(pre->points);
154
	}
155
16
	free(pre);
156
}
157
158
static void
159
ec_pre_comp_clear_free(void *pre_)
160
{
161
	int i;
162
	EC_PRE_COMP *pre = pre_;
163
164
	if (!pre)
165
		return;
166
167
	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
168
	if (i > 0)
169
		return;
170
171
	if (pre->points) {
172
		EC_POINT **p;
173
174
		for (p = pre->points; *p != NULL; p++) {
175
			EC_POINT_clear_free(*p);
176
			explicit_bzero(p, sizeof *p);
177
		}
178
		free(pre->points);
179
	}
180
	explicit_bzero(pre, sizeof *pre);
181
	free(pre);
182
}
183
184
185
186
187
/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
188
 * This is an array  r[]  of values that are either zero or odd with an
189
 * absolute value less than  2^w  satisfying
190
 *     scalar = \sum_j r[j]*2^j
191
 * where at most one of any  w+1  consecutive digits is non-zero
192
 * with the exception that the most significant digit may be only
193
 * w-1 zeros away from that next non-zero digit.
194
 */
195
static signed char *
196
compute_wNAF(const BIGNUM * scalar, int w, size_t * ret_len)
197
784
{
198
	int window_val;
199
784
	int ok = 0;
200
784
	signed char *r = NULL;
201
784
	int sign = 1;
202
	int bit, next_bit, mask;
203
784
	size_t len = 0, j;
204
205
784
	if (BN_is_zero(scalar)) {
206
1
		r = malloc(1);
207
1
		if (!r) {
208
			ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
209
			goto err;
210
		}
211
1
		r[0] = 0;
212
1
		*ret_len = 1;
213
1
		return r;
214
	}
215
783
	if (w <= 0 || w > 7) {
216
		/* 'signed char' can represent integers with
217
		 * absolute values less than 2^7 */
218
		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
219
		goto err;
220
	}
221
783
	bit = 1 << w;		/* at most 128 */
222
783
	next_bit = bit << 1;	/* at most 256 */
223
783
	mask = next_bit - 1;	/* at most 255 */
224
225
783
	if (BN_is_negative(scalar)) {
226
15
		sign = -1;
227
	}
228

783
	if (scalar->d == NULL || scalar->top == 0) {
229
		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
230
		goto err;
231
	}
232
783
	len = BN_num_bits(scalar);
233
783
	r = malloc(len + 1);	/* modified wNAF may be one digit longer than
234
				 * binary representation (*ret_len will be
235
				 * set to the actual length, i.e. at most
236
				 * BN_num_bits(scalar) + 1) */
237
783
	if (r == NULL) {
238
		ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
239
		goto err;
240
	}
241
783
	window_val = scalar->d[0] & mask;
242
783
	j = 0;
243

220642
	while ((window_val != 0) || (j + w + 1 < len)) {
244
		/* if j+w+1 >= len, window_val will not increase */
245
219076
		int digit = 0;
246
247
		/* 0 <= window_val <= 2^(w+1) */
248
219076
		if (window_val & 1) {
249
			/* 0 < window_val < 2^(w+1) */
250
38056
			if (window_val & bit) {
251
18628
				digit = window_val - next_bit;	/* -2^w < digit < 0 */
252
253
#if 1				/* modified wNAF */
254
18628
				if (j + w + 1 >= len) {
255
					/*
256
					 * special case for generating
257
					 * modified wNAFs: no new bits will
258
					 * be added into window_val, so using
259
					 * a positive digit here will
260
					 * decrease the total length of the
261
					 * representation
262
					 */
263
264
118
					digit = window_val & (mask >> 1);	/* 0 < digit < 2^w */
265
				}
266
#endif
267
			} else {
268
19428
				digit = window_val;	/* 0 < digit < 2^w */
269
			}
270
271

38056
			if (digit <= -bit || digit >= bit || !(digit & 1)) {
272
				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
273
				goto err;
274
			}
275
38056
			window_val -= digit;
276
277
			/*
278
			 * now window_val is 0 or 2^(w+1) in standard wNAF
279
			 * generation; for modified window NAFs, it may also
280
			 * be 2^w
281
			 */
282

38056
			if (window_val != 0 && window_val != next_bit && window_val != bit) {
283
				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
284
				goto err;
285
			}
286
		}
287
219076
		r[j++] = sign * digit;
288
289
219076
		window_val >>= 1;
290
219076
		window_val += bit * BN_is_bit_set(scalar, j + w);
291
292
219076
		if (window_val > next_bit) {
293
			ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
294
			goto err;
295
		}
296
	}
297
298
783
	if (j > len + 1) {
299
		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
300
		goto err;
301
	}
302
783
	len = j;
303
783
	ok = 1;
304
305
783
err:
306
783
	if (!ok) {
307
		free(r);
308
		r = NULL;
309
	}
310
783
	if (ok)
311
783
		*ret_len = len;
312
783
	return r;
313
}
314
315
316
/* TODO: table should be optimised for the wNAF-based implementation,
317
 *       sometimes smaller windows will give better performance
318
 *       (thus the boundaries should be increased)
319
 */
320
#define EC_window_bits_for_scalar_size(b) \
321
		((size_t) \
322
		 ((b) >= 2000 ? 6 : \
323
		  (b) >=  800 ? 5 : \
324
		  (b) >=  300 ? 4 : \
325
		  (b) >=   70 ? 3 : \
326
		  (b) >=   20 ? 2 : \
327
		  1))
328
329
/* Compute
330
 *      \sum scalars[i]*points[i],
331
 * also including
332
 *      scalar*generator
333
 * in the addition if scalar != NULL
334
 */
335
int
336
ec_wNAF_mul(const EC_GROUP * group, EC_POINT * r, const BIGNUM * scalar,
337
    size_t num, const EC_POINT * points[], const BIGNUM * scalars[], BN_CTX * ctx)
338
561
{
339
561
	BN_CTX *new_ctx = NULL;
340
561
	const EC_POINT *generator = NULL;
341
561
	EC_POINT *tmp = NULL;
342
	size_t totalnum;
343
561
	size_t blocksize = 0, numblocks = 0;	/* for wNAF splitting */
344
561
	size_t pre_points_per_block = 0;
345
	size_t i, j;
346
	int k;
347
561
	int r_is_inverted = 0;
348
561
	int r_is_at_infinity = 1;
349
561
	size_t *wsize = NULL;	/* individual window sizes */
350
561
	signed char **wNAF = NULL;	/* individual wNAFs */
351
561
	signed char *tmp_wNAF = NULL;
352
561
	size_t *wNAF_len = NULL;
353
561
	size_t max_len = 0;
354
	size_t num_val;
355
561
	EC_POINT **val = NULL;	/* precomputation */
356
	EC_POINT **v;
357
561
	EC_POINT ***val_sub = NULL;	/* pointers to sub-arrays of 'val' or
358
					 * 'pre_comp->points' */
359
561
	const EC_PRE_COMP *pre_comp = NULL;
360
561
	int num_scalar = 0;	/* flag: will be set to 1 if 'scalar' must be
361
				 * treated like other scalars, i.e.
362
				 * precomputation is not available */
363
561
	int ret = 0;
364
365
561
	if (group->meth != r->meth) {
366
		ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
367
		return 0;
368
	}
369
561
	if ((scalar == NULL) && (num == 0)) {
370
		return EC_POINT_set_to_infinity(group, r);
371
	}
372
866
	for (i = 0; i < num; i++) {
373
305
		if (group->meth != points[i]->meth) {
374
			ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
375
			return 0;
376
		}
377
	}
378
379
561
	if (ctx == NULL) {
380
6
		ctx = new_ctx = BN_CTX_new();
381
6
		if (ctx == NULL)
382
			goto err;
383
	}
384
561
	if (scalar != NULL) {
385
479
		generator = EC_GROUP_get0_generator(group);
386
479
		if (generator == NULL) {
387
			ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
388
			goto err;
389
		}
390
		/* look if we can use precomputed multiples of generator */
391
392
479
		pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
393
394

479
		if (pre_comp && pre_comp->numblocks &&
395
		    (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0)) {
396
18
			blocksize = pre_comp->blocksize;
397
398
			/*
399
			 * determine maximum number of blocks that wNAF
400
			 * splitting may yield (NB: maximum wNAF length is
401
			 * bit length plus one)
402
			 */
403
18
			numblocks = (BN_num_bits(scalar) / blocksize) + 1;
404
405
			/*
406
			 * we cannot use more blocks than we have
407
			 * precomputation for
408
			 */
409
18
			if (numblocks > pre_comp->numblocks)
410
5
				numblocks = pre_comp->numblocks;
411
412
18
			pre_points_per_block = (size_t) 1 << (pre_comp->w - 1);
413
414
			/* check that pre_comp looks sane */
415
18
			if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
416
				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
417
				goto err;
418
			}
419
		} else {
420
			/* can't use precomputation */
421
461
			pre_comp = NULL;
422
461
			numblocks = 1;
423
461
			num_scalar = 1;	/* treat 'scalar' like 'num'-th
424
					 * element of 'scalars' */
425
		}
426
	}
427
561
	totalnum = num + numblocks;
428
429
	/* includes space for pivot */
430
561
	wNAF = reallocarray(NULL, (totalnum + 1), sizeof wNAF[0]);
431
561
	if (wNAF == NULL) {
432
		ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
433
		goto err;
434
	}
435
436
561
	wNAF[0] = NULL;		/* preliminary pivot */
437
438
561
	wsize = reallocarray(NULL, totalnum, sizeof wsize[0]);
439
561
	wNAF_len = reallocarray(NULL, totalnum, sizeof wNAF_len[0]);
440
561
	val_sub = reallocarray(NULL, totalnum, sizeof val_sub[0]);
441
442

561
	if (wsize == NULL || wNAF_len == NULL || val_sub == NULL) {
443
		ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
444
		goto err;
445
	}
446
447
	/* num_val will be the total number of temporarily precomputed points */
448
561
	num_val = 0;
449
450
1327
	for (i = 0; i < num + num_scalar; i++) {
451
		size_t bits;
452
453
766
		bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
454


766
		wsize[i] = EC_window_bits_for_scalar_size(bits);
455
766
		num_val += (size_t) 1 << (wsize[i] - 1);
456
766
		wNAF[i + 1] = NULL;	/* make sure we always have a pivot */
457
766
		wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
458
766
		if (wNAF[i] == NULL)
459
			goto err;
460
766
		if (wNAF_len[i] > max_len)
461
648
			max_len = wNAF_len[i];
462
	}
463
464
561
	if (numblocks) {
465
		/* we go here iff scalar != NULL */
466
467
479
		if (pre_comp == NULL) {
468
461
			if (num_scalar != 1) {
469
				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
470
				goto err;
471
			}
472
			/* we have already generated a wNAF for 'scalar' */
473
		} else {
474
18
			size_t tmp_len = 0;
475
476
18
			if (num_scalar != 0) {
477
				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
478
				goto err;
479
			}
480
			/*
481
			 * use the window size for which we have
482
			 * precomputation
483
			 */
484
18
			wsize[num] = pre_comp->w;
485
18
			tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
486
18
			if (tmp_wNAF == NULL)
487
				goto err;
488
489
18
			if (tmp_len <= max_len) {
490
				/*
491
				 * One of the other wNAFs is at least as long
492
				 * as the wNAF belonging to the generator, so
493
				 * wNAF splitting will not buy us anything.
494
				 */
495
496
				numblocks = 1;
497
				totalnum = num + 1;	/* don't use wNAF
498
							 * splitting */
499
				wNAF[num] = tmp_wNAF;
500
				tmp_wNAF = NULL;
501
				wNAF[num + 1] = NULL;
502
				wNAF_len[num] = tmp_len;
503
				if (tmp_len > max_len)
504
					max_len = tmp_len;
505
				/*
506
				 * pre_comp->points starts with the points
507
				 * that we need here:
508
				 */
509
				val_sub[num] = pre_comp->points;
510
			} else {
511
				/*
512
				 * don't include tmp_wNAF directly into wNAF
513
				 * array - use wNAF splitting and include the
514
				 * blocks
515
				 */
516
517
				signed char *pp;
518
				EC_POINT **tmp_points;
519
520
18
				if (tmp_len < numblocks * blocksize) {
521
					/*
522
					 * possibly we can do with fewer
523
					 * blocks than estimated
524
					 */
525
12
					numblocks = (tmp_len + blocksize - 1) / blocksize;
526
12
					if (numblocks > pre_comp->numblocks) {
527
						ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
528
						goto err;
529
					}
530
12
					totalnum = num + numblocks;
531
				}
532
				/* split wNAF in 'numblocks' parts */
533
18
				pp = tmp_wNAF;
534
18
				tmp_points = pre_comp->points;
535
536
795
				for (i = num; i < totalnum; i++) {
537
777
					if (i < totalnum - 1) {
538
759
						wNAF_len[i] = blocksize;
539
759
						if (tmp_len < blocksize) {
540
							ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
541
							goto err;
542
						}
543
759
						tmp_len -= blocksize;
544
					} else
545
						/*
546
						 * last block gets whatever
547
						 * is left (this could be
548
						 * more or less than
549
						 * 'blocksize'!)
550
						 */
551
18
						wNAF_len[i] = tmp_len;
552
553
777
					wNAF[i + 1] = NULL;
554
777
					wNAF[i] = malloc(wNAF_len[i]);
555
777
					if (wNAF[i] == NULL) {
556
						ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
557
						goto err;
558
					}
559
777
					memcpy(wNAF[i], pp, wNAF_len[i]);
560
777
					if (wNAF_len[i] > max_len)
561
20
						max_len = wNAF_len[i];
562
563
777
					if (*tmp_points == NULL) {
564
						ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
565
						goto err;
566
					}
567
777
					val_sub[i] = tmp_points;
568
777
					tmp_points += pre_points_per_block;
569
777
					pp += blocksize;
570
				}
571
			}
572
		}
573
	}
574
	/*
575
	 * All points we precompute now go into a single array 'val'.
576
	 * 'val_sub[i]' is a pointer to the subarray for the i-th point, or
577
	 * to a subarray of 'pre_comp->points' if we already have
578
	 * precomputation.
579
	 */
580
561
	val = reallocarray(NULL, (num_val + 1), sizeof val[0]);
581
561
	if (val == NULL) {
582
		ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
583
		goto err;
584
	}
585
561
	val[num_val] = NULL;	/* pivot element */
586
587
	/* allocate points for precomputation */
588
561
	v = val;
589
1327
	for (i = 0; i < num + num_scalar; i++) {
590
766
		val_sub[i] = v;
591
4667
		for (j = 0; j < ((size_t) 1 << (wsize[i] - 1)); j++) {
592
3901
			*v = EC_POINT_new(group);
593
3901
			if (*v == NULL)
594
				goto err;
595
3901
			v++;
596
		}
597
	}
598
561
	if (!(v == val + num_val)) {
599
		ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
600
		goto err;
601
	}
602
561
	if (!(tmp = EC_POINT_new(group)))
603
		goto err;
604
605
	/*
606
	 * prepare precomputed values: val_sub[i][0] :=     points[i]
607
	 * val_sub[i][1] := 3 * points[i] val_sub[i][2] := 5 * points[i] ...
608
	 */
609
1327
	for (i = 0; i < num + num_scalar; i++) {
610
766
		if (i < num) {
611
305
			if (!EC_POINT_copy(val_sub[i][0], points[i]))
612
				goto err;
613
		} else {
614
461
			if (!EC_POINT_copy(val_sub[i][0], generator))
615
				goto err;
616
		}
617
618
766
		if (wsize[i] > 1) {
619
765
			if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
620
				goto err;
621
3900
			for (j = 1; j < ((size_t) 1 << (wsize[i] - 1)); j++) {
622
3135
				if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
623
					goto err;
624
			}
625
		}
626
	}
627
628
561
	if (!EC_POINTs_make_affine(group, num_val, val, ctx))
629
		goto err;
630
631
561
	r_is_at_infinity = 1;
632
633
152793
	for (k = max_len - 1; k >= 0; k--) {
634
152232
		if (!r_is_at_infinity) {
635
151671
			if (!EC_POINT_dbl(group, r, r, ctx))
636
				goto err;
637
		}
638
446743
		for (i = 0; i < totalnum; i++) {
639
294511
			if (wNAF_len[i] > (size_t) k) {
640
219077
				int digit = wNAF[i][k];
641
				int is_neg;
642
643
219077
				if (digit) {
644
38056
					is_neg = digit < 0;
645
646
38056
					if (is_neg)
647
18503
						digit = -digit;
648
649
38056
					if (is_neg != r_is_inverted) {
650
18595
						if (!r_is_at_infinity) {
651
18572
							if (!EC_POINT_invert(group, r, ctx))
652
								goto err;
653
						}
654
18595
						r_is_inverted = !r_is_inverted;
655
					}
656
					/* digit > 0 */
657
658
38056
					if (r_is_at_infinity) {
659
561
						if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
660
							goto err;
661
561
						r_is_at_infinity = 0;
662
					} else {
663
37495
						if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx))
664
							goto err;
665
					}
666
				}
667
			}
668
		}
669
	}
670
671
561
	if (r_is_at_infinity) {
672
		if (!EC_POINT_set_to_infinity(group, r))
673
			goto err;
674
	} else {
675
561
		if (r_is_inverted)
676
271
			if (!EC_POINT_invert(group, r, ctx))
677
				goto err;
678
	}
679
680
561
	ret = 1;
681
682
561
err:
683
561
	BN_CTX_free(new_ctx);
684
561
	EC_POINT_free(tmp);
685
561
	free(wsize);
686
561
	free(wNAF_len);
687
561
	free(tmp_wNAF);
688
561
	if (wNAF != NULL) {
689
		signed char **w;
690
691
2104
		for (w = wNAF; *w != NULL; w++)
692
1543
			free(*w);
693
694
561
		free(wNAF);
695
	}
696
561
	if (val != NULL) {
697
4462
		for (v = val; *v != NULL; v++)
698
3901
			EC_POINT_clear_free(*v);
699
561
		free(val);
700
	}
701
561
	free(val_sub);
702
561
	return ret;
703
}
704
705
706
/* ec_wNAF_precompute_mult()
707
 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
708
 * for use with wNAF splitting as implemented in ec_wNAF_mul().
709
 *
710
 * 'pre_comp->points' is an array of multiples of the generator
711
 * of the following form:
712
 * points[0] =     generator;
713
 * points[1] = 3 * generator;
714
 * ...
715
 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
716
 * points[2^(w-1)]   =     2^blocksize * generator;
717
 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
718
 * ...
719
 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
720
 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
721
 * ...
722
 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
723
 * points[2^(w-1)*numblocks]       = NULL
724
 */
725
int
726
ec_wNAF_precompute_mult(EC_GROUP * group, BN_CTX * ctx)
727
16
{
728
	const EC_POINT *generator;
729
16
	EC_POINT *tmp_point = NULL, *base = NULL, **var;
730
16
	BN_CTX *new_ctx = NULL;
731
	BIGNUM *order;
732
	size_t i, bits, w, pre_points_per_block, blocksize, numblocks,
733
	 num;
734
16
	EC_POINT **points = NULL;
735
	EC_PRE_COMP *pre_comp;
736
16
	int ret = 0;
737
738
	/* if there is an old EC_PRE_COMP object, throw it away */
739
16
	EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
740
741
16
	if ((pre_comp = ec_pre_comp_new(group)) == NULL)
742
		return 0;
743
744
16
	generator = EC_GROUP_get0_generator(group);
745
16
	if (generator == NULL) {
746
		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
747
		goto err;
748
	}
749
16
	if (ctx == NULL) {
750
		ctx = new_ctx = BN_CTX_new();
751
		if (ctx == NULL)
752
			goto err;
753
	}
754
16
	BN_CTX_start(ctx);
755
16
	if ((order = BN_CTX_get(ctx)) == NULL)
756
		goto err;
757
758
16
	if (!EC_GROUP_get_order(group, order, ctx))
759
		goto err;
760
16
	if (BN_is_zero(order)) {
761
		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
762
		goto err;
763
	}
764
16
	bits = BN_num_bits(order);
765
	/*
766
	 * The following parameters mean we precompute (approximately) one
767
	 * point per bit.
768
	 *
769
	 * TBD: The combination  8, 4  is perfect for 160 bits; for other bit
770
	 * lengths, other parameter combinations might provide better
771
	 * efficiency.
772
	 */
773
16
	blocksize = 8;
774
16
	w = 4;
775



16
	if (EC_window_bits_for_scalar_size(bits) > w) {
776
		/* let's not make the window too small ... */
777
		w = EC_window_bits_for_scalar_size(bits);
778
	}
779
16
	numblocks = (bits + blocksize - 1) / blocksize;	/* max. number of blocks
780
							 * to use for wNAF
781
							 * splitting */
782
783
16
	pre_points_per_block = (size_t) 1 << (w - 1);
784
16
	num = pre_points_per_block * numblocks;	/* number of points to
785
						 * compute and store */
786
787
16
	points = reallocarray(NULL, (num + 1), sizeof(EC_POINT *));
788
16
	if (!points) {
789
		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
790
		goto err;
791
	}
792
16
	var = points;
793
16
	var[num] = NULL;	/* pivot */
794
5128
	for (i = 0; i < num; i++) {
795
5112
		if ((var[i] = EC_POINT_new(group)) == NULL) {
796
			ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
797
			goto err;
798
		}
799
	}
800
801

16
	if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) {
802
		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
803
		goto err;
804
	}
805
16
	if (!EC_POINT_copy(base, generator))
806
		goto err;
807
808
	/* do the precomputation */
809
655
	for (i = 0; i < numblocks; i++) {
810
		size_t j;
811
812
639
		if (!EC_POINT_dbl(group, tmp_point, base, ctx))
813
			goto err;
814
815
639
		if (!EC_POINT_copy(*var++, base))
816
			goto err;
817
818
5112
		for (j = 1; j < pre_points_per_block; j++, var++) {
819
			/* calculate odd multiples of the current base point */
820
4473
			if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
821
				goto err;
822
		}
823
824
639
		if (i < numblocks - 1) {
825
			/*
826
			 * get the next base (multiply current one by
827
			 * 2^blocksize)
828
			 */
829
			size_t k;
830
831
623
			if (blocksize <= 2) {
832
				ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
833
				goto err;
834
			}
835
623
			if (!EC_POINT_dbl(group, base, tmp_point, ctx))
836
				goto err;
837
4361
			for (k = 2; k < blocksize; k++) {
838
3738
				if (!EC_POINT_dbl(group, base, base, ctx))
839
					goto err;
840
			}
841
		}
842
	}
843
844
16
	if (!EC_POINTs_make_affine(group, num, points, ctx))
845
		goto err;
846
847
16
	pre_comp->group = group;
848
16
	pre_comp->blocksize = blocksize;
849
16
	pre_comp->numblocks = numblocks;
850
16
	pre_comp->w = w;
851
16
	pre_comp->points = points;
852
16
	points = NULL;
853
16
	pre_comp->num = num;
854
855
16
	if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
856
		ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
857
		goto err;
858
16
	pre_comp = NULL;
859
860
16
	ret = 1;
861
16
err:
862
16
	if (ctx != NULL)
863
16
		BN_CTX_end(ctx);
864
16
	BN_CTX_free(new_ctx);
865
16
	ec_pre_comp_free(pre_comp);
866
16
	if (points) {
867
		EC_POINT **p;
868
869
		for (p = points; *p != NULL; p++)
870
			EC_POINT_free(*p);
871
		free(points);
872
	}
873
16
	EC_POINT_free(tmp_point);
874
16
	EC_POINT_free(base);
875
16
	return ret;
876
}
877
878
879
int
880
ec_wNAF_have_precompute_mult(const EC_GROUP * group)
881
218
{
882
218
	if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
883
19
		return 1;
884
	else
885
199
		return 0;
886
}