1 |
|
|
/* $OpenBSD: sha256.c,v 1.9 2015/09/10 15:56:26 jsing Exp $ */ |
2 |
|
|
/* ==================================================================== |
3 |
|
|
* Copyright (c) 2004 The OpenSSL Project. All rights reserved |
4 |
|
|
* according to the OpenSSL license [found in ../../LICENSE]. |
5 |
|
|
* ==================================================================== |
6 |
|
|
*/ |
7 |
|
|
|
8 |
|
|
#include <openssl/opensslconf.h> |
9 |
|
|
|
10 |
|
|
#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256) |
11 |
|
|
|
12 |
|
|
#include <machine/endian.h> |
13 |
|
|
|
14 |
|
|
#include <stdlib.h> |
15 |
|
|
#include <string.h> |
16 |
|
|
|
17 |
|
|
#include <openssl/crypto.h> |
18 |
|
|
#include <openssl/sha.h> |
19 |
|
|
#include <openssl/opensslv.h> |
20 |
|
|
|
21 |
|
|
int SHA224_Init(SHA256_CTX *c) |
22 |
|
5 |
{ |
23 |
|
5 |
memset (c,0,sizeof(*c)); |
24 |
|
5 |
c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL; |
25 |
|
5 |
c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL; |
26 |
|
5 |
c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL; |
27 |
|
5 |
c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL; |
28 |
|
5 |
c->md_len=SHA224_DIGEST_LENGTH; |
29 |
|
5 |
return 1; |
30 |
|
|
} |
31 |
|
|
|
32 |
|
|
int SHA256_Init(SHA256_CTX *c) |
33 |
|
118 |
{ |
34 |
|
118 |
memset (c,0,sizeof(*c)); |
35 |
|
118 |
c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL; |
36 |
|
118 |
c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL; |
37 |
|
118 |
c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL; |
38 |
|
118 |
c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL; |
39 |
|
118 |
c->md_len=SHA256_DIGEST_LENGTH; |
40 |
|
118 |
return 1; |
41 |
|
|
} |
42 |
|
|
|
43 |
|
|
unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md) |
44 |
|
|
{ |
45 |
|
|
SHA256_CTX c; |
46 |
|
|
static unsigned char m[SHA224_DIGEST_LENGTH]; |
47 |
|
|
|
48 |
|
|
if (md == NULL) md=m; |
49 |
|
|
SHA224_Init(&c); |
50 |
|
|
SHA256_Update(&c,d,n); |
51 |
|
|
SHA256_Final(md,&c); |
52 |
|
|
explicit_bzero(&c,sizeof(c)); |
53 |
|
|
return(md); |
54 |
|
|
} |
55 |
|
|
|
56 |
|
|
unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md) |
57 |
|
|
{ |
58 |
|
|
SHA256_CTX c; |
59 |
|
|
static unsigned char m[SHA256_DIGEST_LENGTH]; |
60 |
|
|
|
61 |
|
|
if (md == NULL) md=m; |
62 |
|
|
SHA256_Init(&c); |
63 |
|
|
SHA256_Update(&c,d,n); |
64 |
|
|
SHA256_Final(md,&c); |
65 |
|
|
explicit_bzero(&c,sizeof(c)); |
66 |
|
|
return(md); |
67 |
|
|
} |
68 |
|
|
|
69 |
|
|
int SHA224_Update(SHA256_CTX *c, const void *data, size_t len) |
70 |
|
|
{ return SHA256_Update (c,data,len); } |
71 |
|
|
int SHA224_Final (unsigned char *md, SHA256_CTX *c) |
72 |
|
|
{ return SHA256_Final (md,c); } |
73 |
|
|
|
74 |
|
|
#define DATA_ORDER_IS_BIG_ENDIAN |
75 |
|
|
|
76 |
|
|
#define HASH_LONG SHA_LONG |
77 |
|
|
#define HASH_CTX SHA256_CTX |
78 |
|
|
#define HASH_CBLOCK SHA_CBLOCK |
79 |
|
|
/* |
80 |
|
|
* Note that FIPS180-2 discusses "Truncation of the Hash Function Output." |
81 |
|
|
* default: case below covers for it. It's not clear however if it's |
82 |
|
|
* permitted to truncate to amount of bytes not divisible by 4. I bet not, |
83 |
|
|
* but if it is, then default: case shall be extended. For reference. |
84 |
|
|
* Idea behind separate cases for pre-defined lenghts is to let the |
85 |
|
|
* compiler decide if it's appropriate to unroll small loops. |
86 |
|
|
*/ |
87 |
|
|
#define HASH_MAKE_STRING(c,s) do { \ |
88 |
|
|
unsigned long ll; \ |
89 |
|
|
unsigned int nn; \ |
90 |
|
|
switch ((c)->md_len) \ |
91 |
|
|
{ case SHA224_DIGEST_LENGTH: \ |
92 |
|
|
for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \ |
93 |
|
|
{ ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \ |
94 |
|
|
break; \ |
95 |
|
|
case SHA256_DIGEST_LENGTH: \ |
96 |
|
|
for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \ |
97 |
|
|
{ ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \ |
98 |
|
|
break; \ |
99 |
|
|
default: \ |
100 |
|
|
if ((c)->md_len > SHA256_DIGEST_LENGTH) \ |
101 |
|
|
return 0; \ |
102 |
|
|
for (nn=0;nn<(c)->md_len/4;nn++) \ |
103 |
|
|
{ ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \ |
104 |
|
|
break; \ |
105 |
|
|
} \ |
106 |
|
|
} while (0) |
107 |
|
|
|
108 |
|
|
#define HASH_UPDATE SHA256_Update |
109 |
|
|
#define HASH_TRANSFORM SHA256_Transform |
110 |
|
|
#define HASH_FINAL SHA256_Final |
111 |
|
|
#define HASH_BLOCK_DATA_ORDER sha256_block_data_order |
112 |
|
|
#ifndef SHA256_ASM |
113 |
|
|
static |
114 |
|
|
#endif |
115 |
|
|
void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num); |
116 |
|
|
|
117 |
|
|
#include "md32_common.h" |
118 |
|
|
|
119 |
|
|
#ifndef SHA256_ASM |
120 |
|
|
static const SHA_LONG K256[64] = { |
121 |
|
|
0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL, |
122 |
|
|
0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL, |
123 |
|
|
0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL, |
124 |
|
|
0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL, |
125 |
|
|
0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL, |
126 |
|
|
0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL, |
127 |
|
|
0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL, |
128 |
|
|
0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL, |
129 |
|
|
0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL, |
130 |
|
|
0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL, |
131 |
|
|
0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL, |
132 |
|
|
0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL, |
133 |
|
|
0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL, |
134 |
|
|
0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL, |
135 |
|
|
0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL, |
136 |
|
|
0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL }; |
137 |
|
|
|
138 |
|
|
/* |
139 |
|
|
* FIPS specification refers to right rotations, while our ROTATE macro |
140 |
|
|
* is left one. This is why you might notice that rotation coefficients |
141 |
|
|
* differ from those observed in FIPS document by 32-N... |
142 |
|
|
*/ |
143 |
|
|
#define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10)) |
144 |
|
|
#define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7)) |
145 |
|
|
#define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3)) |
146 |
|
|
#define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10)) |
147 |
|
|
|
148 |
|
|
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
149 |
|
|
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
150 |
|
|
|
151 |
|
|
#ifdef OPENSSL_SMALL_FOOTPRINT |
152 |
|
|
|
153 |
|
|
static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num) |
154 |
|
|
{ |
155 |
|
|
unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2; |
156 |
|
|
SHA_LONG X[16],l; |
157 |
|
|
int i; |
158 |
|
|
const unsigned char *data=in; |
159 |
|
|
|
160 |
|
|
while (num--) { |
161 |
|
|
|
162 |
|
|
a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; |
163 |
|
|
e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; |
164 |
|
|
|
165 |
|
|
for (i=0;i<16;i++) |
166 |
|
|
{ |
167 |
|
|
HOST_c2l(data,l); T1 = X[i] = l; |
168 |
|
|
T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; |
169 |
|
|
T2 = Sigma0(a) + Maj(a,b,c); |
170 |
|
|
h = g; g = f; f = e; e = d + T1; |
171 |
|
|
d = c; c = b; b = a; a = T1 + T2; |
172 |
|
|
} |
173 |
|
|
|
174 |
|
|
for (;i<64;i++) |
175 |
|
|
{ |
176 |
|
|
s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); |
177 |
|
|
s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); |
178 |
|
|
|
179 |
|
|
T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf]; |
180 |
|
|
T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; |
181 |
|
|
T2 = Sigma0(a) + Maj(a,b,c); |
182 |
|
|
h = g; g = f; f = e; e = d + T1; |
183 |
|
|
d = c; c = b; b = a; a = T1 + T2; |
184 |
|
|
} |
185 |
|
|
|
186 |
|
|
ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; |
187 |
|
|
ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; |
188 |
|
|
|
189 |
|
|
} |
190 |
|
|
} |
191 |
|
|
|
192 |
|
|
#else |
193 |
|
|
|
194 |
|
|
#define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ |
195 |
|
|
T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \ |
196 |
|
|
h = Sigma0(a) + Maj(a,b,c); \ |
197 |
|
|
d += T1; h += T1; } while (0) |
198 |
|
|
|
199 |
|
|
#define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \ |
200 |
|
|
s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \ |
201 |
|
|
s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \ |
202 |
|
|
T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \ |
203 |
|
|
ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0) |
204 |
|
|
|
205 |
|
|
static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num) |
206 |
|
|
{ |
207 |
|
|
unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1; |
208 |
|
|
SHA_LONG X[16]; |
209 |
|
|
int i; |
210 |
|
|
const unsigned char *data=in; |
211 |
|
|
|
212 |
|
|
while (num--) { |
213 |
|
|
|
214 |
|
|
a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; |
215 |
|
|
e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; |
216 |
|
|
|
217 |
|
|
if (BYTE_ORDER != LITTLE_ENDIAN && |
218 |
|
|
sizeof(SHA_LONG)==4 && ((size_t)in%4)==0) |
219 |
|
|
{ |
220 |
|
|
const SHA_LONG *W=(const SHA_LONG *)data; |
221 |
|
|
|
222 |
|
|
T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h); |
223 |
|
|
T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g); |
224 |
|
|
T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f); |
225 |
|
|
T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e); |
226 |
|
|
T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d); |
227 |
|
|
T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c); |
228 |
|
|
T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b); |
229 |
|
|
T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a); |
230 |
|
|
T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h); |
231 |
|
|
T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g); |
232 |
|
|
T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f); |
233 |
|
|
T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e); |
234 |
|
|
T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d); |
235 |
|
|
T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c); |
236 |
|
|
T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b); |
237 |
|
|
T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a); |
238 |
|
|
|
239 |
|
|
data += SHA256_CBLOCK; |
240 |
|
|
} |
241 |
|
|
else |
242 |
|
|
{ |
243 |
|
|
SHA_LONG l; |
244 |
|
|
|
245 |
|
|
HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h); |
246 |
|
|
HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g); |
247 |
|
|
HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f); |
248 |
|
|
HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e); |
249 |
|
|
HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d); |
250 |
|
|
HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c); |
251 |
|
|
HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b); |
252 |
|
|
HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a); |
253 |
|
|
HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h); |
254 |
|
|
HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g); |
255 |
|
|
HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f); |
256 |
|
|
HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e); |
257 |
|
|
HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d); |
258 |
|
|
HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c); |
259 |
|
|
HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b); |
260 |
|
|
HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a); |
261 |
|
|
} |
262 |
|
|
|
263 |
|
|
for (i=16;i<64;i+=8) |
264 |
|
|
{ |
265 |
|
|
ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X); |
266 |
|
|
ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X); |
267 |
|
|
ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X); |
268 |
|
|
ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X); |
269 |
|
|
ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X); |
270 |
|
|
ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X); |
271 |
|
|
ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X); |
272 |
|
|
ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X); |
273 |
|
|
} |
274 |
|
|
|
275 |
|
|
ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; |
276 |
|
|
ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; |
277 |
|
|
|
278 |
|
|
} |
279 |
|
|
} |
280 |
|
|
|
281 |
|
|
#endif |
282 |
|
|
#endif /* SHA256_ASM */ |
283 |
|
|
|
284 |
|
|
#endif /* OPENSSL_NO_SHA256 */ |