GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: sbin/growfs/growfs.c Lines: 0 802 0.0 %
Date: 2016-12-06 Branches: 0 643 0.0 %

Line Branch Exec Source
1
/*	$OpenBSD: growfs.c,v 1.51 2016/05/28 20:40:23 tb Exp $	*/
2
/*
3
 * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
4
 * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
5
 * All rights reserved.
6
 *
7
 * This code is derived from software contributed to Berkeley by
8
 * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
9
 *
10
 * Redistribution and use in source and binary forms, with or without
11
 * modification, are permitted provided that the following conditions
12
 * are met:
13
 * 1. Redistributions of source code must retain the above copyright
14
 *    notice, this list of conditions and the following disclaimer.
15
 * 2. Redistributions in binary form must reproduce the above copyright
16
 *    notice, this list of conditions and the following disclaimer in the
17
 *    documentation and/or other materials provided with the distribution.
18
 * 3. All advertising materials mentioning features or use of this software
19
 *    must display the following acknowledgment:
20
 *      This product includes software developed by the University of
21
 *      California, Berkeley and its contributors, as well as Christoph
22
 *      Herrmann and Thomas-Henning von Kamptz.
23
 * 4. Neither the name of the University nor the names of its contributors
24
 *    may be used to endorse or promote products derived from this software
25
 *    without specific prior written permission.
26
 *
27
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37
 * SUCH DAMAGE.
38
 *
39
 * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
40
 * $FreeBSD: src/sbin/growfs/growfs.c,v 1.25 2006/07/17 20:48:36 stefanf Exp $
41
 *
42
 */
43
44
#include <sys/param.h>	/* DEV_BSIZE MAXBSIZE setbit isset isclr clrbit */
45
#include <sys/types.h>
46
#include <sys/disklabel.h>
47
#include <sys/ioctl.h>
48
#include <sys/dkio.h>
49
#include <sys/stat.h>
50
51
#include <stdio.h>
52
#include <paths.h>
53
#include <ctype.h>
54
#include <err.h>
55
#include <fcntl.h>
56
#include <limits.h>
57
#include <stdlib.h>
58
#include <stdint.h>
59
#include <string.h>
60
#include <time.h>
61
#include <unistd.h>
62
#include <util.h>
63
64
#include <ufs/ufs/dinode.h>
65
#include <ufs/ffs/fs.h>
66
67
#define MINIMUM(a, b)	(((a) < (b)) ? (a) : (b))
68
#define MAXIMUM(a, b)	(((a) > (b)) ? (a) : (b))
69
70
#define	rounddown(x, y)	(((x)/(y))*(y))
71
#define	roundup(x, y)	((((x)+((y)-1))/(y))*(y))
72
73
static int quiet;		/* quiet flag */
74
75
static union {
76
	struct	fs fs;
77
	char	pad[SBLOCKSIZE];
78
} fsun1, fsun2;
79
#define	sblock	fsun1.fs	/* the new superblock */
80
#define	osblock	fsun2.fs	/* the old superblock */
81
82
/*
83
 * Possible superblock locations ordered from most to least likely.
84
 */
85
static int sblock_try[] = SBLOCKSEARCH;
86
static daddr_t sblockloc;
87
88
static union {
89
	struct	cg cg;
90
	char	pad[MAXBSIZE];
91
} cgun1, cgun2;
92
#define	acg	cgun1.cg	/* a cylinder cgroup (new) */
93
#define	aocg	cgun2.cg	/* an old cylinder group */
94
95
static char	ablk[MAXBSIZE];		/* a block */
96
97
static struct csum	*fscs;	/* cylinder summary */
98
99
union dinode {
100
	struct ufs1_dinode dp1;
101
	struct ufs2_dinode dp2;
102
};
103
#define	DIP(dp, field) \
104
	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
105
	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
106
#define	DIP_SET(dp, field, val) do { \
107
	if (sblock.fs_magic == FS_UFS1_MAGIC) \
108
		(dp)->dp1.field = (val); \
109
	else \
110
		(dp)->dp2.field = (val); \
111
	} while (0)
112
static daddr_t		inoblk;			/* inode block address */
113
static char		inobuf[MAXBSIZE];	/* inode block */
114
ino_t			maxino;			/* last valid inode */
115
116
/*
117
 * An array of elements of type struct gfs_bpp describes all blocks to
118
 * be relocated in order to free the space needed for the cylinder group
119
 * summary for all cylinder groups located in the first cylinder group.
120
 */
121
struct gfs_bpp {
122
	daddr_t		old;		/* old block number */
123
	daddr_t		new;		/* new block number */
124
#define GFS_FL_FIRST	1
125
#define GFS_FL_LAST	2
126
	unsigned int	flags;		/* special handling required */
127
	int		found;		/* how many references were updated */
128
};
129
130
static void	growfs(int, int, unsigned int);
131
static void	rdfs(daddr_t, size_t, void *, int);
132
static void	wtfs(daddr_t, size_t, void *, int, unsigned int);
133
static daddr_t alloc(void);
134
static int	charsperline(void);
135
static void	usage(void);
136
static int	isblock(struct fs *, unsigned char *, int);
137
static void	clrblock(struct fs *, unsigned char *, int);
138
static void	setblock(struct fs *, unsigned char *, int);
139
static void	initcg(int, time_t, int, unsigned int);
140
static void	updjcg(int, time_t, int, int, unsigned int);
141
static void	updcsloc(time_t, int, int, unsigned int);
142
static struct disklabel	*get_disklabel(int);
143
static void	return_disklabel(int, struct disklabel *, unsigned int);
144
static union dinode *ginode(ino_t, int, int);
145
static void	frag_adjust(daddr_t, int);
146
static int	cond_bl_upd(daddr_t *, struct gfs_bpp *, int, int,
147
		    unsigned int);
148
static void	updclst(int);
149
static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
150
static void	indirchk(daddr_t, daddr_t, daddr_t, daddr_t,
151
		    struct gfs_bpp *, int, int, unsigned int);
152
static void	ffs1_sb_update(struct fs *, daddr_t);
153
154
int	colwidth;
155
156
/*
157
 * Here we actually start growing the filesystem. We basically read the
158
 * cylinder summary from the first cylinder group as we want to update
159
 * this on the fly during our various operations. First we handle the
160
 * changes in the former last cylinder group. Afterwards we create all new
161
 * cylinder groups. Now we handle the cylinder group containing the
162
 * cylinder summary which might result in a relocation of the whole
163
 * structure. In the end we write back the updated cylinder summary, the
164
 * new superblock, and slightly patched versions of the super block
165
 * copies.
166
 */
167
static void
168
growfs(int fsi, int fso, unsigned int Nflag)
169
{
170
	int	i;
171
	int	cylno, j;
172
	time_t	utime;
173
	char	tmpbuf[100];
174
175
	time(&utime);
176
177
	/*
178
	 * Get the cylinder summary into the memory.
179
	 */
180
	fscs = calloc(1, (size_t)sblock.fs_cssize);
181
	if (fscs == NULL)
182
		errx(1, "calloc failed");
183
	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
184
		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
185
		    numfrags(&osblock, i)), (size_t)MINIMUM(osblock.fs_cssize - i,
186
		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
187
	}
188
189
	/*
190
	 * Do all needed changes in the former last cylinder group.
191
	 */
192
	updjcg(osblock.fs_ncg - 1, utime, fsi, fso, Nflag);
193
194
	/*
195
	 * Dump out summary information about filesystem.
196
	 */
197
#define B2MBFACTOR (1 / (1024.0 * 1024.0))
198
	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
199
	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
200
	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
201
	    sblock.fs_fsize);
202
	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
203
	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
204
	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
205
	if (sblock.fs_flags & FS_DOSOFTDEP)
206
		printf("\twith soft updates\n");
207
#undef B2MBFACTOR
208
209
	/*
210
	 * Now build the cylinders group blocks and
211
	 * then print out indices of cylinder groups.
212
	 */
213
	if (!quiet)
214
		printf("super-block backups (for fsck -b #) at:\n");
215
	i = 0;
216
217
	/*
218
	 * Iterate for only the new cylinder groups.
219
	 */
220
	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
221
		initcg(cylno, utime, fso, Nflag);
222
		if (quiet)
223
			continue;
224
		j = snprintf(tmpbuf, sizeof(tmpbuf), " %lld%s",
225
		    fsbtodb(&sblock, cgsblock(&sblock, cylno)),
226
		    cylno < (sblock.fs_ncg - 1) ? "," : "");
227
		if (j >= sizeof(tmpbuf))
228
			j = sizeof(tmpbuf) - 1;
229
		if (j == -1 || i + j >= colwidth) {
230
			printf("\n");
231
			i = 0;
232
		}
233
		i += j;
234
		printf("%s", tmpbuf);
235
		fflush(stdout);
236
	}
237
	if (!quiet)
238
		printf("\n");
239
240
	/*
241
	 * Do all needed changes in the first cylinder group.
242
	 * allocate blocks in new location
243
	 */
244
	updcsloc(utime, fsi, fso, Nflag);
245
246
	/*
247
	 * Now write the cylinder summary back to disk.
248
	 */
249
	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
250
		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
251
		    (size_t)MINIMUM(sblock.fs_cssize - i, sblock.fs_bsize),
252
		    (void *)(((char *)fscs) + i), fso, Nflag);
253
	}
254
255
	/*
256
	 * Now write the new superblock back to disk.
257
	 */
258
	sblock.fs_time = utime;
259
	sblock.fs_clean = 0;
260
	if (sblock.fs_magic == FS_UFS1_MAGIC) {
261
		sblock.fs_ffs1_time = (int32_t)sblock.fs_time;
262
		sblock.fs_ffs1_size = (int32_t)sblock.fs_size;
263
		sblock.fs_ffs1_dsize = (int32_t)sblock.fs_dsize;
264
		sblock.fs_ffs1_csaddr = (int32_t)sblock.fs_csaddr;
265
		sblock.fs_ffs1_cstotal.cs_ndir =
266
		    (int32_t)sblock.fs_cstotal.cs_ndir;
267
		sblock.fs_ffs1_cstotal.cs_nbfree =
268
		    (int32_t)sblock.fs_cstotal.cs_nbfree;
269
		sblock.fs_ffs1_cstotal.cs_nifree =
270
		    (int32_t)sblock.fs_cstotal.cs_nifree;
271
		sblock.fs_ffs1_cstotal.cs_nffree =
272
		    (int32_t)sblock.fs_cstotal.cs_nffree;
273
	}
274
	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
275
276
	/*
277
	 * Clean up the dynamic fields in our superblock copies.
278
	 */
279
	sblock.fs_fmod = 0;
280
	sblock.fs_clean = 1;
281
	sblock.fs_ronly = 0;
282
	sblock.fs_cgrotor = 0;
283
	sblock.fs_state = 0;
284
	memset(&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
285
	sblock.fs_flags &= FS_DOSOFTDEP;
286
	if (sblock.fs_magic == FS_UFS1_MAGIC)
287
		sblock.fs_ffs1_flags &= FS_DOSOFTDEP;
288
289
	/*
290
	 * XXX
291
	 * The following fields are currently distributed from the  superblock
292
	 * to the copies:
293
	 *     fs_minfree
294
	 *     fs_rotdelay
295
	 *     fs_maxcontig
296
	 *     fs_maxbpg
297
	 *     fs_minfree,
298
	 *     fs_optim
299
	 *     fs_flags regarding SOFTPDATES
300
	 *
301
	 * We probably should rather change the summary for the cylinder group
302
	 * statistics here to the value of what would be in there, if the file
303
	 * system were created initially with the new size. Therefore we still
304
	 * need to find an easy way of calculating that.
305
	 * Possibly we can try to read the first superblock copy and apply the
306
	 * "diffed" stats between the old and new superblock by still  copying
307
	 * certain parameters onto that.
308
	 */
309
310
	/*
311
	 * Write out the duplicate superblocks.
312
	 */
313
	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
314
		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
315
		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
316
	}
317
}
318
319
/*
320
 * This creates a new cylinder group structure, for more details please  see
321
 * the  source of newfs(8), as this function is taken over almost unchanged.
322
 * As  this  is  never called for the  first  cylinder  group,  the  special
323
 * provisions for that case are removed here.
324
 */
325
static void
326
initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
327
{
328
	static char *iobuf;
329
	daddr_t d, dlower, dupper, blkno, start;
330
	daddr_t i, cbase, dmax;
331
	struct ufs1_dinode *dp1;
332
	struct ufs2_dinode *dp2;
333
	struct csum *cs;
334
	ino_t j;
335
	size_t iobufsize;
336
337
	if (sblock.fs_bsize < SBLOCKSIZE)
338
		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
339
	else
340
		iobufsize = 4 * sblock.fs_bsize;
341
342
	if (iobuf == NULL && (iobuf = malloc(iobufsize)) == NULL)
343
		errx(37, "panic: cannot allocate I/O buffer");
344
	bzero(iobuf, iobufsize);
345
346
	/*
347
	 * Determine block bounds for cylinder group.
348
	 * Allow space for super block summary information in first
349
	 * cylinder group.
350
	 */
351
	cbase = cgbase(&sblock, cylno);
352
	dmax = cbase + sblock.fs_fpg;
353
	if (dmax > sblock.fs_size)
354
		dmax = sblock.fs_size;
355
	dlower = cgsblock(&sblock, cylno) - cbase;
356
	dupper = cgdmin(&sblock, cylno) - cbase;
357
	if (cylno == 0) /* XXX fscs may be relocated */
358
		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
359
	cs = &fscs[cylno];
360
	memset(&acg, 0, sblock.fs_cgsize);
361
	acg.cg_ffs2_time = utime;
362
	acg.cg_magic = CG_MAGIC;
363
	acg.cg_cgx = cylno;
364
	acg.cg_ffs2_niblk = sblock.fs_ipg;
365
	acg.cg_initediblk = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock));
366
	acg.cg_ndblk = dmax - cbase;
367
	if (sblock.fs_contigsumsize > 0)
368
		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
369
	start = sizeof(struct cg);
370
	if (sblock.fs_magic == FS_UFS2_MAGIC) {
371
		acg.cg_iusedoff = start;
372
	} else {
373
		if (cylno == sblock.fs_ncg - 1)
374
			acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
375
		else
376
			acg.cg_ncyl = sblock.fs_cpg;
377
		acg.cg_time = (int32_t)acg.cg_ffs2_time;
378
		acg.cg_ffs2_time = 0;
379
		acg.cg_niblk = (int16_t)acg.cg_ffs2_niblk;
380
		acg.cg_ffs2_niblk = 0;
381
		acg.cg_initediblk = 0;
382
		acg.cg_btotoff = start;
383
		acg.cg_boff = acg.cg_btotoff +
384
		    sblock.fs_cpg * sizeof(int32_t);
385
		acg.cg_iusedoff = acg.cg_boff +
386
		    sblock.fs_cpg * sizeof(u_int16_t);
387
	}
388
	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
389
	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
390
	if (sblock.fs_contigsumsize > 0) {
391
		acg.cg_clustersumoff =
392
		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
393
		acg.cg_clustersumoff -= sizeof(u_int32_t);
394
		acg.cg_clusteroff = acg.cg_clustersumoff +
395
		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
396
		acg.cg_nextfreeoff = acg.cg_clusteroff +
397
		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
398
	}
399
	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
400
		/*
401
		 * This should never happen as we would have had that panic
402
		 *     already on filesystem creation
403
		 */
404
		errx(37, "panic: cylinder group too big");
405
	}
406
	acg.cg_cs.cs_nifree += sblock.fs_ipg;
407
	if (cylno == 0) {
408
		for (i = 0; i < ROOTINO; i++) {
409
			setbit(cg_inosused(&acg), i);
410
			acg.cg_cs.cs_nifree--;
411
		}
412
	}
413
	if (cylno > 0) {
414
		/*
415
		 * In cylno 0, beginning space is reserved
416
		 * for boot and super blocks.
417
		 */
418
		for (d = 0; d < dlower; d += sblock.fs_frag) {
419
			blkno = d / sblock.fs_frag;
420
			setblock(&sblock, cg_blksfree(&acg), blkno);
421
			if (sblock.fs_contigsumsize > 0)
422
				setbit(cg_clustersfree(&acg), blkno);
423
			acg.cg_cs.cs_nbfree++;
424
		}
425
		sblock.fs_dsize += dlower;
426
	}
427
	sblock.fs_dsize += acg.cg_ndblk - dupper;
428
	if ((i = dupper % sblock.fs_frag)) {
429
		acg.cg_frsum[sblock.fs_frag - i]++;
430
		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
431
			setbit(cg_blksfree(&acg), dupper);
432
			acg.cg_cs.cs_nffree++;
433
		}
434
	}
435
	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
436
	    d += sblock.fs_frag) {
437
		blkno = d / sblock.fs_frag;
438
		setblock(&sblock, cg_blksfree(&acg), blkno);
439
		if (sblock.fs_contigsumsize > 0)
440
			setbit(cg_clustersfree(&acg), blkno);
441
		acg.cg_cs.cs_nbfree++;
442
	}
443
	if (d < acg.cg_ndblk) {
444
		acg.cg_frsum[acg.cg_ndblk - d]++;
445
		for (; d < acg.cg_ndblk; d++) {
446
			setbit(cg_blksfree(&acg), d);
447
			acg.cg_cs.cs_nffree++;
448
		}
449
	}
450
	if (sblock.fs_contigsumsize > 0) {
451
		int32_t	*sump = cg_clustersum(&acg);
452
		u_char	*mapp = cg_clustersfree(&acg);
453
		int	map = *mapp++;
454
		int	bit = 1;
455
		int	run = 0;
456
457
		for (i = 0; i < acg.cg_nclusterblks; i++) {
458
			if ((map & bit) != 0)
459
				run++;
460
			else if (run != 0) {
461
				if (run > sblock.fs_contigsumsize)
462
					run = sblock.fs_contigsumsize;
463
				sump[run]++;
464
				run = 0;
465
			}
466
			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
467
				bit <<= 1;
468
			else {
469
				map = *mapp++;
470
				bit = 1;
471
			}
472
		}
473
		if (run != 0) {
474
			if (run > sblock.fs_contigsumsize)
475
				run = sblock.fs_contigsumsize;
476
			sump[run]++;
477
		}
478
	}
479
	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
480
	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
481
	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
482
	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
483
	*cs = acg.cg_cs;
484
485
	/*
486
	 * Write out the duplicate superblock, the cylinder group map
487
	 * and two blocks worth of inodes in a single write.
488
	 */
489
	bcopy(&sblock, iobuf, SBLOCKSIZE);
490
	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
491
	bcopy(&acg, &iobuf[start], sblock.fs_cgsize);
492
	start += sblock.fs_bsize;
493
	dp1 = (struct ufs1_dinode *)&iobuf[start];
494
	dp2 = (struct ufs2_dinode *)&iobuf[start];
495
	for (i = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock)); i != 0; i--) {
496
		if (sblock.fs_magic == FS_UFS1_MAGIC) {
497
			dp1->di_gen = arc4random();
498
			dp1++;
499
		} else {
500
			dp2->di_gen = arc4random();
501
			dp2++;
502
		}
503
	}
504
	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize,
505
	    iobuf, fso, Nflag);
506
507
	/* Initialize inodes for FFS1. */
508
	if (sblock.fs_magic == FS_UFS1_MAGIC) {
509
		for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock);
510
		    i += sblock.fs_frag) {
511
			dp1 = (struct ufs1_dinode *)&iobuf[start];
512
			for (j = 0; j < INOPB(&sblock); j++) {
513
				dp1->di_gen = arc4random();
514
				dp1++;
515
			}
516
			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
517
			    (size_t)sblock.fs_bsize, &iobuf[start], fso, Nflag);
518
		}
519
	}
520
}
521
522
/*
523
 * Here  we add or subtract (sign +1/-1) the available fragments in  a  given
524
 * block to or from the fragment statistics. By subtracting before and adding
525
 * after  an operation on the free frag map we can easy update  the  fragment
526
 * statistic, which seems to be otherwise a rather complex operation.
527
 */
528
static void
529
frag_adjust(daddr_t frag, int sign)
530
{
531
	int fragsize;
532
	int f;
533
534
	fragsize = 0;
535
	/*
536
	 * Here frag only needs to point to any fragment in the block we want
537
	 * to examine.
538
	 */
539
	for (f = rounddown(frag, sblock.fs_frag);
540
	    f < roundup(frag + 1, sblock.fs_frag);
541
	    f++) {
542
		/*
543
		 * Count contiguous free fragments.
544
		 */
545
		if (isset(cg_blksfree(&acg), f)) {
546
			fragsize++;
547
		} else {
548
			if (fragsize && fragsize < sblock.fs_frag) {
549
				/*
550
				 * We found something in between.
551
				 */
552
				acg.cg_frsum[fragsize] += sign;
553
			}
554
			fragsize = 0;
555
		}
556
	}
557
	if (fragsize && fragsize < sblock.fs_frag) {
558
		/*
559
		 * We found something.
560
		 */
561
		acg.cg_frsum[fragsize] += sign;
562
	}
563
}
564
565
/*
566
 * Here we conditionally update a pointer to a fragment. We check for all
567
 * relocated blocks if any of its fragments is referenced by the current
568
 * field,  and update the pointer to the respective fragment in  our  new
569
 * block.  If  we find a reference we write back the  block  immediately,
570
 * as there is no easy way for our general block reading engine to figure
571
 * out if a write back operation is needed.
572
 */
573
static int
574
cond_bl_upd(daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
575
    unsigned int Nflag)
576
{
577
	struct gfs_bpp	*f;
578
	daddr_t src, dst;
579
	int fragnum;
580
	void *ibuf;
581
582
	for (f = field; f->old != 0; f++) {
583
		src = *block;
584
		if (fragstoblks(&sblock, src) != f->old)
585
			continue;
586
		/*
587
		 * The fragment is part of the block, so update.
588
		 */
589
		dst = blkstofrags(&sblock, f->new);
590
		fragnum = fragnum(&sblock, src);
591
		*block = dst + fragnum;
592
		f->found++;
593
594
		/*
595
		 * Copy the block back immediately.
596
		 *
597
		 * XXX	If src is from an indirect block we have
598
		 *	to implement copy on write here in case of
599
		 *	active snapshots.
600
		 */
601
		ibuf = malloc(sblock.fs_bsize);
602
		if (!ibuf)
603
			errx(1, "malloc failed");
604
		src -= fragnum;
605
		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
606
		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
607
		free(ibuf);
608
		/*
609
		 * The same block can't be found again in this loop.
610
		 */
611
		return (1);
612
	}
613
614
	return (0);
615
}
616
617
/*
618
 * Here we do all needed work for the former last cylinder group. It has to be
619
 * changed  in  any case, even if the filesystem ended exactly on the  end  of
620
 * this  group, as there is some slightly inconsistent handling of the  number
621
 * of cylinders in the cylinder group. We start again by reading the  cylinder
622
 * group from disk. If the last block was not fully available, we first handle
623
 * the  missing  fragments, then we handle all new full blocks  in  that  file
624
 * system  and  finally we handle the new last fragmented block  in  the  file
625
 * system.  We again have to handle the fragment statistics rotational  layout
626
 * tables and cluster summary during all those operations.
627
 */
628
static void
629
updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
630
{
631
	daddr_t	cbase, dmax, dupper;
632
	struct csum	*cs;
633
	int	i, k;
634
	int	j = 0;
635
636
	/*
637
	 * Read the former last (joining) cylinder group from disk, and make
638
	 * a copy.
639
	 */
640
	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
641
	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
642
643
	memcpy(&cgun1, &cgun2, sizeof(cgun2));
644
645
	/*
646
	 * If the cylinder group had already its new final size almost
647
	 * nothing is to be done ... except:
648
	 * For some reason the value of cg_ncyl in the last cylinder group has
649
	 * to  be  zero instead of fs_cpg. As this is now no longer  the  last
650
	 * cylinder group we have to change that value now to fs_cpg.
651
	 */
652
	if (cgbase(&osblock, cylno+1) == osblock.fs_size) {
653
		if (sblock.fs_magic == FS_UFS1_MAGIC)
654
			acg.cg_ncyl = sblock.fs_cpg;
655
656
		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
657
		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
658
659
		return;
660
	}
661
662
	/*
663
	 * Set up some variables needed later.
664
	 */
665
	cbase = cgbase(&sblock, cylno);
666
	dmax = cbase + sblock.fs_fpg;
667
	if (dmax > sblock.fs_size)
668
		dmax = sblock.fs_size;
669
	dupper = cgdmin(&sblock, cylno) - cbase;
670
	if (cylno == 0)	/* XXX fscs may be relocated */
671
		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
672
673
	/*
674
	 * Set pointer to the cylinder summary for our cylinder group.
675
	 */
676
	cs = fscs + cylno;
677
678
	/*
679
	 * Touch the cylinder group, update all fields in the cylinder group as
680
	 * needed, update the free space in the superblock.
681
	 */
682
	acg.cg_time = utime;
683
	if (sblock.fs_magic == FS_UFS1_MAGIC) {
684
		if (cylno == sblock.fs_ncg - 1) {
685
			/*
686
			 * This is still the last cylinder group.
687
			 */
688
			acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
689
		} else {
690
			acg.cg_ncyl = sblock.fs_cpg;
691
		}
692
	}
693
	acg.cg_ndblk = dmax - cbase;
694
	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
695
	if (sblock.fs_contigsumsize > 0)
696
		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
697
698
	/*
699
	 * Now  we have to update the free fragment bitmap for our new  free
700
	 * space.  There again we have to handle the fragmentation and  also
701
	 * the  rotational  layout tables and the cluster summary.  This  is
702
	 * also  done per fragment for the first new block if the  old  file
703
	 * system end was not on a block boundary, per fragment for the  new
704
	 * last block if the new filesystem end is not on a block boundary,
705
	 * and per block for all space in between.
706
	 *
707
	 * Handle the first new block here if it was partially available
708
	 * before.
709
	 */
710
	if (osblock.fs_size % sblock.fs_frag) {
711
		if (roundup(osblock.fs_size, sblock.fs_frag) <= sblock.fs_size) {
712
			/*
713
			 * The new space is enough to fill at least this
714
			 * block
715
			 */
716
			j = 0;
717
			for (i = roundup(osblock.fs_size-cbase, sblock.fs_frag) - 1;
718
			    i >= osblock.fs_size-cbase; i--) {
719
				setbit(cg_blksfree(&acg), i);
720
				acg.cg_cs.cs_nffree++;
721
				j++;
722
			}
723
724
			/*
725
			 * Check  if the fragment just created could join  an
726
			 * already existing fragment at the former end of the
727
			 * filesystem.
728
			 */
729
			if (isblock(&sblock, cg_blksfree(&acg),
730
			    ((osblock.fs_size - cgbase(&sblock, cylno))/
731
			    sblock.fs_frag))) {
732
				/*
733
				 * The block is now completely available.
734
				 */
735
				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
736
				acg.cg_cs.cs_nbfree++;
737
				acg.cg_cs.cs_nffree-=sblock.fs_frag;
738
				k = rounddown(osblock.fs_size-cbase,
739
				    sblock.fs_frag);
740
				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
741
			} else {
742
				/*
743
				 * Lets rejoin a possible partially growed
744
				 * fragment.
745
				 */
746
				k = 0;
747
				while (isset(cg_blksfree(&acg), i) &&
748
				    (i >= rounddown(osblock.fs_size - cbase,
749
				    sblock.fs_frag))) {
750
					i--;
751
					k++;
752
				}
753
				if (k)
754
					acg.cg_frsum[k]--;
755
				acg.cg_frsum[k + j]++;
756
			}
757
		} else {
758
			/*
759
			 * We only grow by some fragments within this last
760
			 * block.
761
			 */
762
			for (i = sblock.fs_size-cbase-1;
763
			    i >= osblock.fs_size-cbase; i--) {
764
				setbit(cg_blksfree(&acg), i);
765
				acg.cg_cs.cs_nffree++;
766
				j++;
767
			}
768
			/*
769
			 * Lets rejoin a possible partially growed fragment.
770
			 */
771
			k = 0;
772
			while (isset(cg_blksfree(&acg), i) &&
773
			    (i >= rounddown(osblock.fs_size - cbase,
774
			    sblock.fs_frag))) {
775
				i--;
776
				k++;
777
			}
778
			if (k)
779
				acg.cg_frsum[k]--;
780
			acg.cg_frsum[k + j]++;
781
		}
782
	}
783
784
	/*
785
	 * Handle all new complete blocks here.
786
	 */
787
	for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag);
788
	    i + sblock.fs_frag <= dmax-cbase;	/* XXX <= or only < ? */
789
	    i += sblock.fs_frag) {
790
		j = i / sblock.fs_frag;
791
		setblock(&sblock, cg_blksfree(&acg), j);
792
		updclst(j);
793
		acg.cg_cs.cs_nbfree++;
794
	}
795
796
	/*
797
	 * Handle the last new block if there are stll some new fragments left.
798
	 * Here  we don't have to bother about the cluster summary or the  even
799
	 * the rotational layout table.
800
	 */
801
	if (i < (dmax - cbase)) {
802
		acg.cg_frsum[dmax - cbase - i]++;
803
		for (; i < dmax - cbase; i++) {
804
			setbit(cg_blksfree(&acg), i);
805
			acg.cg_cs.cs_nffree++;
806
		}
807
	}
808
809
	sblock.fs_cstotal.cs_nffree +=
810
	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
811
	sblock.fs_cstotal.cs_nbfree +=
812
	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
813
	/*
814
	 * The following statistics are not changed here:
815
	 *     sblock.fs_cstotal.cs_ndir
816
	 *     sblock.fs_cstotal.cs_nifree
817
	 * As the statistics for this cylinder group are ready, copy it to
818
	 * the summary information array.
819
	 */
820
	*cs = acg.cg_cs;
821
822
	/*
823
	 * Write the updated "joining" cylinder group back to disk.
824
	 */
825
	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
826
	    (void *)&acg, fso, Nflag);
827
}
828
829
/*
830
 * Here  we update the location of the cylinder summary. We have  two  possible
831
 * ways of growing the cylinder summary.
832
 * (1)	We can try to grow the summary in the current location, and  relocate
833
 *	possibly used blocks within the current cylinder group.
834
 * (2)	Alternatively we can relocate the whole cylinder summary to the first
835
 *	new completely empty cylinder group. Once the cylinder summary is  no
836
 *	longer in the beginning of the first cylinder group you should  never
837
 *	use  a version of fsck which is not aware of the possibility to  have
838
 *	this structure in a non standard place.
839
 * Option (1) is considered to be less intrusive to the structure of the  file-
840
 * system. So we try to stick to that whenever possible. If there is not enough
841
 * space  in the cylinder group containing the cylinder summary we have to  use
842
 * method  (2). In case of active snapshots in the filesystem we  probably  can
843
 * completely avoid implementing copy on write if we stick to method (2) only.
844
 */
845
static void
846
updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
847
{
848
	struct csum	*cs;
849
	int	ocscg, ncscg;
850
	int	blocks;
851
	daddr_t	cbase, dupper, odupper, d, f, g;
852
	int	ind;
853
	int	cylno, inc;
854
	struct gfs_bpp	*bp;
855
	int	i, l;
856
	int	lcs = 0;
857
	int	block;
858
859
	if (howmany(sblock.fs_cssize, sblock.fs_fsize) ==
860
	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
861
		/*
862
		 * No new fragment needed.
863
		 */
864
		return;
865
	}
866
	ocscg = dtog(&osblock, osblock.fs_csaddr);
867
	cs = fscs + ocscg;
868
	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
869
	    howmany(osblock.fs_cssize, osblock.fs_bsize);
870
871
	/*
872
	 * Read original cylinder group from disk, and make a copy.
873
	 * XXX	If Nflag is set in some very rare cases we now miss
874
	 *	some changes done in updjcg by reading the unmodified
875
	 *	block from disk.
876
	 */
877
	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
878
	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
879
880
	memcpy(&cgun1, &cgun2, sizeof(cgun2));
881
882
	/*
883
	 * Touch the cylinder group, set up local variables needed later
884
	 * and update the superblock.
885
	 */
886
	acg.cg_time = utime;
887
888
	/*
889
	 * XXX	In the case of having active snapshots we may need much more
890
	 *	blocks for the copy on write. We need each block twice,  and
891
	 *	also  up to 8*3 blocks for indirect blocks for all  possible
892
	 *	references.
893
	 */
894
	if (/*((int)sblock.fs_time & 0x3) > 0 || */ cs->cs_nbfree < blocks) {
895
		/*
896
		 * There  is  not enough space in the old cylinder  group  to
897
		 * relocate  all blocks as needed, so we relocate  the  whole
898
		 * cylinder  group summary to a new group. We try to use  the
899
		 * first complete new cylinder group just created. Within the
900
		 * cylinder  group we align the area immediately  after  the
901
		 * cylinder  group  information location in order  to  be  as
902
		 * close as possible to the original implementation of ffs.
903
		 *
904
		 * First  we have to make sure we'll find enough space in  the
905
		 * new  cylinder  group. If not, then we  currently  give  up.
906
		 * We  start  with freeing everything which was  used  by  the
907
		 * fragments of the old cylinder summary in the current group.
908
		 * Now  we write back the group meta data, read in the  needed
909
		 * meta data from the new cylinder group, and start allocating
910
		 * within  that  group. Here we can assume, the  group  to  be
911
		 * completely empty. Which makes the handling of fragments and
912
		 * clusters a lot easier.
913
		 */
914
		if (sblock.fs_ncg-osblock.fs_ncg < 2)
915
			errx(2, "panic: not enough space");
916
917
		/*
918
		 * Point "d" to the first fragment not used by the cylinder
919
		 * summary.
920
		 */
921
		d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize);
922
923
		/*
924
		 * Set up last cluster size ("lcs") already here. Calculate
925
		 * the size for the trailing cluster just behind where  "d"
926
		 * points to.
927
		 */
928
		if (sblock.fs_contigsumsize > 0) {
929
			for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag),
930
			    lcs = 0; lcs < sblock.fs_contigsumsize;
931
			    block++, lcs++) {
932
				if (isclr(cg_clustersfree(&acg), block))
933
					break;
934
			}
935
		}
936
937
		/*
938
		 * Point "d" to the last frag used by the cylinder summary.
939
		 */
940
		d--;
941
942
		if ((d + 1) % sblock.fs_frag) {
943
			/*
944
			 * The end of the cylinder summary is not a complete
945
			 * block.
946
			 */
947
			frag_adjust(d % sblock.fs_fpg, -1);
948
			for (; (d + 1) % sblock.fs_frag; d--) {
949
				setbit(cg_blksfree(&acg), d % sblock.fs_fpg);
950
				acg.cg_cs.cs_nffree++;
951
				sblock.fs_cstotal.cs_nffree++;
952
			}
953
			/*
954
			 * Point  "d" to the last fragment of the  last
955
			 * (incomplete) block of the cylinder summary.
956
			 */
957
			d++;
958
			frag_adjust(d % sblock.fs_fpg, 1);
959
960
			if (isblock(&sblock, cg_blksfree(&acg),
961
			    (d % sblock.fs_fpg) / sblock.fs_frag)) {
962
				acg.cg_cs.cs_nffree -= sblock.fs_frag;
963
				acg.cg_cs.cs_nbfree++;
964
				sblock.fs_cstotal.cs_nffree -= sblock.fs_frag;
965
				sblock.fs_cstotal.cs_nbfree++;
966
				if (sblock.fs_contigsumsize > 0) {
967
					setbit(cg_clustersfree(&acg),
968
					    (d % sblock.fs_fpg) / sblock.fs_frag);
969
					if (lcs < sblock.fs_contigsumsize) {
970
						if (lcs) {
971
							cg_clustersum(&acg)
972
							    [lcs]--;
973
						}
974
						lcs++;
975
						cg_clustersum(&acg)[lcs]++;
976
					}
977
				}
978
			}
979
			/*
980
			 * Point "d" to the first fragment of the block before
981
			 * the last incomplete block.
982
			 */
983
			d--;
984
		}
985
986
		for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
987
		    d -= sblock.fs_frag) {
988
			setblock(&sblock, cg_blksfree(&acg),
989
			    (d % sblock.fs_fpg) / sblock.fs_frag);
990
			acg.cg_cs.cs_nbfree++;
991
			sblock.fs_cstotal.cs_nbfree++;
992
			 if (sblock.fs_contigsumsize > 0) {
993
				setbit(cg_clustersfree(&acg),
994
				    (d % sblock.fs_fpg) / sblock.fs_frag);
995
				/*
996
				 * The last cluster size is already set up.
997
				 */
998
				if (lcs < sblock.fs_contigsumsize) {
999
					if (lcs) {
1000
						cg_clustersum(&acg)[lcs]--;
1001
					}
1002
					lcs++;
1003
					cg_clustersum(&acg)[lcs]++;
1004
				}
1005
			}
1006
		}
1007
		*cs = acg.cg_cs;
1008
1009
		/*
1010
		 * Now write the former cylinder group containing the cylinder
1011
		 * summary back to disk.
1012
		 */
1013
		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1014
		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1015
1016
		/*
1017
		 * Find the beginning of the new cylinder group containing the
1018
		 * cylinder summary.
1019
		 */
1020
		sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg);
1021
		ncscg = dtog(&sblock, sblock.fs_csaddr);
1022
		cs = fscs + ncscg;
1023
1024
1025
		/*
1026
		 * If Nflag is specified, we would now read random data instead
1027
		 * of an empty cg structure from disk. So we can't simulate that
1028
		 * part for now.
1029
		 */
1030
		if (Nflag)
1031
			return;
1032
1033
		/*
1034
		 * Read the future cylinder group containing the cylinder
1035
		 * summary from disk, and make a copy.
1036
		 */
1037
		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1038
		    (size_t)sblock.fs_cgsize, &aocg, fsi);
1039
1040
		memcpy(&cgun1, &cgun2, sizeof(cgun2));
1041
1042
		/*
1043
		 * Allocate all complete blocks used by the new cylinder
1044
		 * summary.
1045
		 */
1046
		for (d = sblock.fs_csaddr; d + sblock.fs_frag <=
1047
		    sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize);
1048
		    d += sblock.fs_frag) {
1049
			clrblock(&sblock, cg_blksfree(&acg),
1050
			    (d%sblock.fs_fpg)/sblock.fs_frag);
1051
			acg.cg_cs.cs_nbfree--;
1052
			sblock.fs_cstotal.cs_nbfree--;
1053
			if (sblock.fs_contigsumsize > 0) {
1054
				clrbit(cg_clustersfree(&acg),
1055
				    (d % sblock.fs_fpg) / sblock.fs_frag);
1056
			}
1057
		}
1058
1059
		/*
1060
		 * Allocate all fragments used by the cylinder summary in the
1061
		 * last block.
1062
		 */
1063
		if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) {
1064
			for (; d - sblock.fs_csaddr <
1065
			    sblock.fs_cssize/sblock.fs_fsize;
1066
			    d++) {
1067
				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1068
				acg.cg_cs.cs_nffree--;
1069
				sblock.fs_cstotal.cs_nffree--;
1070
			}
1071
			acg.cg_cs.cs_nbfree--;
1072
			acg.cg_cs.cs_nffree += sblock.fs_frag;
1073
			sblock.fs_cstotal.cs_nbfree--;
1074
			sblock.fs_cstotal.cs_nffree += sblock.fs_frag;
1075
			if (sblock.fs_contigsumsize > 0) {
1076
				clrbit(cg_clustersfree(&acg),
1077
				    (d%sblock.fs_fpg) / sblock.fs_frag);
1078
			}
1079
1080
			frag_adjust(d % sblock.fs_fpg, 1);
1081
		}
1082
		/*
1083
		 * XXX	Handle the cluster statistics here in the case  this
1084
		 *	cylinder group is now almost full, and the remaining
1085
		 *	space is less then the maximum cluster size. This is
1086
		 *	probably not needed, as you would hardly find a file
1087
		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1088
		 *	space right behind the cylinder group information in
1089
		 *	any new cylinder group.
1090
		 */
1091
1092
		/*
1093
		 * Update our statistics in the cylinder summary.
1094
		 */
1095
		*cs = acg.cg_cs;
1096
1097
		/*
1098
		 * Write the new cylinder group containing the cylinder summary
1099
		 * back to disk.
1100
		 */
1101
		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1102
		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1103
		return;
1104
	}
1105
	/*
1106
	 * We have got enough of space in the current cylinder group, so we
1107
	 * can relocate just a few blocks, and let the summary  information
1108
	 * grow in place where it is right now.
1109
	 */
1110
	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1111
	dupper = sblock.fs_csaddr - cbase +
1112
	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1113
	odupper = osblock.fs_csaddr - cbase +
1114
	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1115
1116
	sblock.fs_dsize -= dupper-odupper;
1117
1118
	/*
1119
	 * Allocate the space for the array of blocks to be relocated.
1120
	 */
1121
	bp = calloc(((dupper-odupper) / sblock.fs_frag + 2),
1122
	    sizeof(struct gfs_bpp));
1123
	if (bp == NULL)
1124
		errx(1, "calloc failed");
1125
1126
	/*
1127
	 * Lock all new frags needed for the cylinder group summary. This  is
1128
	 * done per fragment in the first and last block of the new  required
1129
	 * area, and per block for all other blocks.
1130
	 *
1131
	 * Handle the first new  block here (but only if some fragments where
1132
	 * already used for the cylinder summary).
1133
	 */
1134
	ind = 0;
1135
	frag_adjust(odupper, -1);
1136
	for (d = odupper; ((d < dupper) && (d % sblock.fs_frag)); d++) {
1137
		if (isclr(cg_blksfree(&acg), d)) {
1138
			if (!ind) {
1139
				bp[ind].old = d / sblock.fs_frag;
1140
				bp[ind].flags|=GFS_FL_FIRST;
1141
				if (roundup(d, sblock.fs_frag) >= dupper)
1142
					bp[ind].flags |= GFS_FL_LAST;
1143
				ind++;
1144
			}
1145
		} else {
1146
			clrbit(cg_blksfree(&acg), d);
1147
			acg.cg_cs.cs_nffree--;
1148
			sblock.fs_cstotal.cs_nffree--;
1149
		}
1150
		/*
1151
		 * No cluster handling is needed here, as there was at least
1152
		 * one  fragment in use by the cylinder summary in  the  old
1153
		 * filesystem.
1154
		 * No block - free counter handling here as this block was not
1155
		 * a free block.
1156
		 */
1157
	}
1158
	frag_adjust(odupper, 1);
1159
1160
	/*
1161
	 * Handle all needed complete blocks here.
1162
	 */
1163
	for (; d + sblock.fs_frag <= dupper; d += sblock.fs_frag) {
1164
		if (!isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) {
1165
			for (f = d; f < d + sblock.fs_frag; f++) {
1166
				if (isset(cg_blksfree(&aocg), f)) {
1167
					acg.cg_cs.cs_nffree--;
1168
					sblock.fs_cstotal.cs_nffree--;
1169
				}
1170
			}
1171
			clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
1172
			bp[ind].old = d / sblock.fs_frag;
1173
			ind++;
1174
		} else {
1175
			clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
1176
			acg.cg_cs.cs_nbfree--;
1177
			sblock.fs_cstotal.cs_nbfree--;
1178
			if (sblock.fs_contigsumsize > 0) {
1179
				clrbit(cg_clustersfree(&acg), d / sblock.fs_frag);
1180
				for (lcs = 0, l = (d / sblock.fs_frag) + 1;
1181
				    lcs < sblock.fs_contigsumsize;
1182
				    l++, lcs++) {
1183
					if (isclr(cg_clustersfree(&acg), l))
1184
						break;
1185
				}
1186
				if (lcs < sblock.fs_contigsumsize) {
1187
					cg_clustersum(&acg)[lcs + 1]--;
1188
					if (lcs)
1189
						cg_clustersum(&acg)[lcs]++;
1190
				}
1191
			}
1192
		}
1193
		/*
1194
		 * No fragment counter handling is needed here, as this finally
1195
		 * doesn't change after the relocation.
1196
		 */
1197
	}
1198
1199
	/*
1200
	 * Handle all fragments needed in the last new affected block.
1201
	 */
1202
	if (d < dupper) {
1203
		frag_adjust(dupper - 1, -1);
1204
1205
		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) {
1206
			acg.cg_cs.cs_nbfree--;
1207
			sblock.fs_cstotal.cs_nbfree--;
1208
			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1209
			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1210
			if (sblock.fs_contigsumsize > 0) {
1211
				clrbit(cg_clustersfree(&acg), d / sblock.fs_frag);
1212
				for (lcs = 0, l = (d / sblock.fs_frag) + 1;
1213
				    lcs < sblock.fs_contigsumsize;
1214
				    l++, lcs++) {
1215
					if (isclr(cg_clustersfree(&acg), l))
1216
						break;
1217
				}
1218
				if (lcs < sblock.fs_contigsumsize) {
1219
					cg_clustersum(&acg)[lcs + 1]--;
1220
					if (lcs)
1221
						cg_clustersum(&acg)[lcs]++;
1222
				}
1223
			}
1224
		}
1225
1226
		for (; d < dupper; d++) {
1227
			if (isclr(cg_blksfree(&acg), d)) {
1228
				bp[ind].old = d / sblock.fs_frag;
1229
				bp[ind].flags |= GFS_FL_LAST;
1230
			} else {
1231
				clrbit(cg_blksfree(&acg), d);
1232
				acg.cg_cs.cs_nffree--;
1233
				sblock.fs_cstotal.cs_nffree--;
1234
			}
1235
		}
1236
		if (bp[ind].flags & GFS_FL_LAST) /* we have to advance here */
1237
			ind++;
1238
		frag_adjust(dupper - 1, 1);
1239
	}
1240
1241
	/*
1242
	 * If we found a block to relocate just do so.
1243
	 */
1244
	if (ind) {
1245
		for (i = 0; i < ind; i++) {
1246
			if (!bp[i].old) { /* no more blocks listed */
1247
				/*
1248
				 * XXX	A relative blocknumber should not be
1249
				 *	zero,   which  is   not   explicitly
1250
				 *	guaranteed by our code.
1251
				 */
1252
				break;
1253
			}
1254
			/*
1255
			 * Allocate a complete block in the same (current)
1256
			 * cylinder group.
1257
			 */
1258
			bp[i].new = alloc() / sblock.fs_frag;
1259
1260
			/*
1261
			 * There is no frag_adjust() needed for the new block
1262
			 * as it will have no fragments yet :-).
1263
			 */
1264
			for (f = bp[i].old * sblock.fs_frag,
1265
			    g = bp[i].new * sblock.fs_frag;
1266
			    f < (bp[i].old + 1) * sblock.fs_frag;
1267
			    f++, g++) {
1268
				if (isset(cg_blksfree(&aocg), f)) {
1269
					setbit(cg_blksfree(&acg), g);
1270
					acg.cg_cs.cs_nffree++;
1271
					sblock.fs_cstotal.cs_nffree++;
1272
				}
1273
			}
1274
1275
			/*
1276
			 * Special handling is required if this was the  first
1277
			 * block. We have to consider the fragments which were
1278
			 * used by the cylinder summary in the original  block
1279
			 * which  re to be free in the copy of our  block.  We
1280
			 * have  to be careful if this first block happens  to
1281
			 * be also the last block to be relocated.
1282
			 */
1283
			if (bp[i].flags & GFS_FL_FIRST) {
1284
				for (f = bp[i].old * sblock.fs_frag,
1285
				    g = bp[i].new * sblock.fs_frag;
1286
				    f < odupper;
1287
				    f++, g++) {
1288
					setbit(cg_blksfree(&acg), g);
1289
					acg.cg_cs.cs_nffree++;
1290
					sblock.fs_cstotal.cs_nffree++;
1291
				}
1292
				if (!(bp[i].flags & GFS_FL_LAST))
1293
					frag_adjust(bp[i].new * sblock.fs_frag, 1);
1294
			}
1295
1296
			/*
1297
			 * Special handling is required if this is the last
1298
			 * block to be relocated.
1299
			 */
1300
			if (bp[i].flags & GFS_FL_LAST) {
1301
				frag_adjust(bp[i].new * sblock.fs_frag, 1);
1302
				frag_adjust(bp[i].old * sblock.fs_frag, -1);
1303
				for (f = dupper;
1304
				    f < roundup(dupper, sblock.fs_frag);
1305
				    f++) {
1306
					if (isclr(cg_blksfree(&acg), f)) {
1307
						setbit(cg_blksfree(&acg), f);
1308
						acg.cg_cs.cs_nffree++;
1309
						sblock.fs_cstotal.cs_nffree++;
1310
					}
1311
				}
1312
				frag_adjust(bp[i].old * sblock.fs_frag, 1);
1313
			}
1314
1315
			/*
1316
			 * !!! Attach the cylindergroup offset here.
1317
			 */
1318
			bp[i].old += cbase / sblock.fs_frag;
1319
			bp[i].new += cbase / sblock.fs_frag;
1320
1321
			/*
1322
			 * Copy the content of the block.
1323
			 */
1324
			/*
1325
			 * XXX	Here we will have to implement a copy on write
1326
			 *	in the case we have any active snapshots.
1327
			 */
1328
			rdfs(fsbtodb(&sblock, bp[i].old * sblock.fs_frag),
1329
			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1330
			wtfs(fsbtodb(&sblock, bp[i].new * sblock.fs_frag),
1331
			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1332
		}
1333
1334
		/*
1335
		 * Now we have to update all references to any fragment which
1336
		 * belongs  to any block relocated. We iterate now  over  all
1337
		 * cylinder  groups,  within those over all non  zero  length
1338
		 * inodes.
1339
		 */
1340
		for (cylno = 0; cylno < osblock.fs_ncg; cylno++) {
1341
			for (inc = osblock.fs_ipg - 1; inc > 0; inc--) {
1342
				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1343
			}
1344
		}
1345
1346
		/*
1347
		 * All inodes are checked, now make sure the number of
1348
		 * references found make sense.
1349
		 */
1350
		for (i = 0; i < ind; i++) {
1351
			if (!bp[i].found || (bp[i].found > sblock.fs_frag)) {
1352
				warnx("error: %jd refs found for block %jd.",
1353
				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1354
			}
1355
1356
		}
1357
	}
1358
	/*
1359
	 * The following statistics are not changed here:
1360
	 *     sblock.fs_cstotal.cs_ndir
1361
	 *     sblock.fs_cstotal.cs_nifree
1362
	 * The following statistics were already updated on the fly:
1363
	 *     sblock.fs_cstotal.cs_nffree
1364
	 *     sblock.fs_cstotal.cs_nbfree
1365
	 * As the statistics for this cylinder group are ready, copy it to
1366
	 * the summary information array.
1367
	 */
1368
1369
	*cs = acg.cg_cs;
1370
1371
	/*
1372
	 * Write summary cylinder group back to disk.
1373
	 */
1374
	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1375
	    (void *)&acg, fso, Nflag);
1376
}
1377
1378
/*
1379
 * Here we read some block(s) from disk.
1380
 */
1381
static void
1382
rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1383
{
1384
	ssize_t	n;
1385
1386
	if (bno < 0) {
1387
		err(32, "rdfs: attempting to read negative block number");
1388
	}
1389
	if (lseek(fsi, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1390
		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1391
	}
1392
	n = read(fsi, bf, size);
1393
	if (n != (ssize_t)size) {
1394
		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1395
	}
1396
}
1397
1398
/*
1399
 * Here we write some block(s) to disk.
1400
 */
1401
static void
1402
wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1403
{
1404
	ssize_t	n;
1405
1406
	if (Nflag)
1407
		return;
1408
1409
	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0)
1410
		err(35, "wtfs: seek error: %ld", (long)bno);
1411
	n = write(fso, bf, size);
1412
	if (n != (ssize_t)size)
1413
		err(36, "wtfs: write error: %ld", (long)bno);
1414
}
1415
1416
/*
1417
 * Here we allocate a free block in the current cylinder group. It is assumed,
1418
 * that  acg contains the current cylinder group. As we may take a block  from
1419
 * somewhere in the filesystem we have to handle cluster summary here.
1420
 */
1421
static daddr_t
1422
alloc(void)
1423
{
1424
	daddr_t	d, blkno;
1425
	int	lcs1, lcs2;
1426
	int	l;
1427
	int	csmin, csmax;
1428
	int	dlower, dupper, dmax;
1429
1430
	if (acg.cg_magic != CG_MAGIC) {
1431
		warnx("acg: bad magic number");
1432
		return (0);
1433
	}
1434
	if (acg.cg_cs.cs_nbfree == 0) {
1435
		warnx("error: cylinder group ran out of space");
1436
		return (0);
1437
	}
1438
	/*
1439
	 * We start seeking for free blocks only from the space available after
1440
	 * the  end of the new grown cylinder summary. Otherwise we allocate  a
1441
	 * block here which we have to relocate a couple of seconds later again
1442
	 * again, and we are not prepared to to this anyway.
1443
	 */
1444
	blkno = -1;
1445
	dlower = cgsblock(&sblock, acg.cg_cgx) - cgbase(&sblock, acg.cg_cgx);
1446
	dupper = cgdmin(&sblock, acg.cg_cgx) - cgbase(&sblock, acg.cg_cgx);
1447
	dmax = cgbase(&sblock, acg.cg_cgx) + sblock.fs_fpg;
1448
	if (dmax > sblock.fs_size) {
1449
		dmax = sblock.fs_size;
1450
	}
1451
	dmax -= cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1452
	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1453
	csmax = csmin + howmany(sblock.fs_cssize, sblock.fs_fsize);
1454
1455
	for (d = 0; (d < dlower && blkno == -1); d += sblock.fs_frag) {
1456
		if (d >= csmin && d <= csmax) {
1457
			continue;
1458
		}
1459
		if (isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1460
		    d))) {
1461
			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1462
			break;
1463
		}
1464
	}
1465
	for (d = dupper; (d < dmax && blkno == -1); d += sblock.fs_frag) {
1466
		if (d >= csmin && d <= csmax) {
1467
			continue;
1468
		}
1469
		if (isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1470
		    d))) {
1471
			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1472
			break;
1473
		}
1474
	}
1475
	if (blkno == -1) {
1476
		warnx("internal error: couldn't find promised block in cg");
1477
		return (0);
1478
	}
1479
1480
	/*
1481
	 * This is needed if the block was found already in the first loop.
1482
	 */
1483
	d = blkstofrags(&sblock, blkno);
1484
1485
	clrblock(&sblock, cg_blksfree(&acg), blkno);
1486
	if (sblock.fs_contigsumsize > 0) {
1487
		/*
1488
		 * Handle the cluster allocation bitmap.
1489
		 */
1490
		clrbit(cg_clustersfree(&acg), blkno);
1491
		/*
1492
		 * We  possibly have split a cluster here, so we have  to  do
1493
		 * recalculate the sizes of the remaining cluster halves now,
1494
		 * and use them for updating the cluster summary information.
1495
		 *
1496
		 * Lets start with the blocks before our allocated block ...
1497
		 */
1498
		for (lcs1 = 0, l = blkno - 1; lcs1 < sblock.fs_contigsumsize;
1499
		    l--, lcs1++) {
1500
			if (isclr(cg_clustersfree(&acg), l))
1501
				break;
1502
		}
1503
		/*
1504
		 * ... and continue with the blocks right after our allocated
1505
		 * block.
1506
		 */
1507
		for (lcs2 = 0, l = blkno + 1; lcs2 < sblock.fs_contigsumsize;
1508
		    l++, lcs2++) {
1509
			if (isclr(cg_clustersfree(&acg), l))
1510
				break;
1511
		}
1512
1513
		/*
1514
		 * Now update all counters.
1515
		 */
1516
		cg_clustersum(&acg)[MINIMUM(lcs1 + lcs2 + 1, sblock.fs_contigsumsize)]--;
1517
		if (lcs1)
1518
			cg_clustersum(&acg)[lcs1]++;
1519
		if (lcs2)
1520
			cg_clustersum(&acg)[lcs2]++;
1521
	}
1522
	/*
1523
	 * Update all statistics based on blocks.
1524
	 */
1525
	acg.cg_cs.cs_nbfree--;
1526
	sblock.fs_cstotal.cs_nbfree--;
1527
1528
	return (d);
1529
}
1530
1531
/*
1532
 * Here  we check if all frags of a block are free. For more details  again
1533
 * please see the source of newfs(8), as this function is taken over almost
1534
 * unchanged.
1535
 */
1536
static int
1537
isblock(struct fs *fs, unsigned char *cp, int h)
1538
{
1539
	unsigned char	mask;
1540
1541
	switch (fs->fs_frag) {
1542
	case 8:
1543
		return (cp[h] == 0xff);
1544
	case 4:
1545
		mask = 0x0f << ((h & 0x1) << 2);
1546
		return ((cp[h >> 1] & mask) == mask);
1547
	case 2:
1548
		mask = 0x03 << ((h & 0x3) << 1);
1549
		return ((cp[h >> 2] & mask) == mask);
1550
	case 1:
1551
		mask = 0x01 << (h & 0x7);
1552
		return ((cp[h >> 3] & mask) == mask);
1553
	default:
1554
		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1555
		return (0);
1556
	}
1557
}
1558
1559
/*
1560
 * Here we allocate a complete block in the block map. For more details again
1561
 * please  see the source of newfs(8), as this function is taken over  almost
1562
 * unchanged.
1563
 */
1564
static void
1565
clrblock(struct fs *fs, unsigned char *cp, int h)
1566
{
1567
	switch ((fs)->fs_frag) {
1568
	case 8:
1569
		cp[h] = 0;
1570
		break;
1571
	case 4:
1572
		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1573
		break;
1574
	case 2:
1575
		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1576
		break;
1577
	case 1:
1578
		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1579
		break;
1580
	default:
1581
		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1582
		break;
1583
	}
1584
}
1585
1586
/*
1587
 * Here we free a complete block in the free block map. For more details again
1588
 * please  see the source of newfs(8), as this function is taken  over  almost
1589
 * unchanged.
1590
 */
1591
static void
1592
setblock(struct fs *fs, unsigned char *cp, int h)
1593
{
1594
	switch (fs->fs_frag) {
1595
	case 8:
1596
		cp[h] = 0xff;
1597
		break;
1598
	case 4:
1599
		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1600
		break;
1601
	case 2:
1602
		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1603
		break;
1604
	case 1:
1605
		cp[h >> 3] |= (0x01 << (h & 0x7));
1606
		break;
1607
	default:
1608
		warnx("setblock bad fs_frag %d", fs->fs_frag);
1609
		break;
1610
	}
1611
}
1612
1613
/*
1614
 * This function provides access to an individual inode. We find out in which
1615
 * block  the  requested inode is located, read it from disk if  needed,  and
1616
 * return  the pointer into that block. We maintain a cache of one  block  to
1617
 * not  read the same block again and again if we iterate linearly  over  all
1618
 * inodes.
1619
 */
1620
static union dinode *
1621
ginode(ino_t inumber, int fsi, int cg)
1622
{
1623
	static ino_t	startinum = 0;	/* first inode in cached block */
1624
1625
	/*
1626
	 * The inumber passed in is relative to the cg, so use it here to see
1627
	 * if the inode has been allocated yet.
1628
	 */
1629
	if (isclr(cg_inosused(&aocg), inumber)) {
1630
		return NULL;
1631
	}
1632
	/*
1633
	 * Now make the inumber relative to the entire inode space so it can
1634
	 * be sanity checked.
1635
	 */
1636
	inumber += (cg * sblock.fs_ipg);
1637
	if (inumber < ROOTINO) {
1638
		return NULL;
1639
	}
1640
	if (inumber > maxino)
1641
		errx(8, "bad inode number %llu to ginode",
1642
		    (unsigned long long)inumber);
1643
	if (startinum == 0 ||
1644
	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1645
		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1646
		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1647
		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1648
	}
1649
	if (sblock.fs_magic == FS_UFS1_MAGIC)
1650
		return (union dinode *)((uintptr_t)inobuf +
1651
		    (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1652
	return (union dinode *)((uintptr_t)inobuf +
1653
	    (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1654
}
1655
1656
/*
1657
 * Figure out how many lines our current terminal has. For more details again
1658
 * please see the source of newfs(8), as this function is taken over almost
1659
 * unchanged.
1660
 */
1661
static int
1662
charsperline(void)
1663
{
1664
	int	columns;
1665
	char	*cp;
1666
	struct winsize	ws;
1667
1668
	columns = 0;
1669
	if ((cp = getenv("COLUMNS")) != NULL)
1670
		columns = strtonum(cp, 1, INT_MAX, NULL);
1671
	if (columns == 0 && ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) == 0 &&
1672
	    ws.ws_col > 0)
1673
		columns = ws.ws_col;
1674
	if (columns == 0)
1675
		columns = 80;
1676
1677
	return columns;
1678
}
1679
1680
/*
1681
 * growfs(8) is a utility which allows to increase the size of an existing
1682
 * ufs filesystem. Currently this can only be done on unmounted file system.
1683
 * It recognizes some command line options to specify the new desired size,
1684
 * and it does some basic checkings. The old filesystem size is determined
1685
 * and after some more checks like we can really access the new last block
1686
 * on the disk etc. we calculate the new parameters for the superblock. After
1687
 * having done this we just call growfs() which will do the work. Before
1688
 * we finish the only thing left is to update the disklabel.
1689
 * We still have to provide support for snapshots. Therefore we first have to
1690
 * understand what data structures are always replicated in the snapshot on
1691
 * creation, for all other blocks we touch during our procedure, we have to
1692
 * keep the old blocks unchanged somewhere available for the snapshots. If we
1693
 * are lucky, then we only have to handle our blocks to be relocated in that
1694
 * way.
1695
 * Also we have to consider in what order we actually update the critical
1696
 * data structures of the filesystem to make sure, that in case of a disaster
1697
 * fsck(8) is still able to restore any lost data.
1698
 * The foreseen last step then will be to provide for growing even mounted
1699
 * file systems. There we have to extend the mount() system call to provide
1700
 * userland access to the filesystem locking facility.
1701
 */
1702
int
1703
main(int argc, char **argv)
1704
{
1705
	char	*device, *lastsector;
1706
	int	ch;
1707
	long long	size = 0;
1708
	unsigned int	Nflag = 0;
1709
	int	ExpertFlag = 0;
1710
	struct stat	st;
1711
	struct disklabel	*lp;
1712
	struct partition	*pp;
1713
	int	i, fsi, fso;
1714
	char	reply[5];
1715
	const char *errstr;
1716
#ifdef FSMAXSNAP
1717
	int	j;
1718
#endif /* FSMAXSNAP */
1719
1720
	while ((ch = getopt(argc, argv, "Nqs:vy")) != -1) {
1721
		switch (ch) {
1722
		case 'N':
1723
			Nflag = 1;
1724
			break;
1725
		case 'q':
1726
			quiet = 1;
1727
			break;
1728
		case 's':
1729
			size = strtonum(optarg, 1, LLONG_MAX, &errstr);
1730
			if (errstr)
1731
				usage();
1732
			break;
1733
		case 'v': /* for compatibility to newfs */
1734
			break;
1735
		case 'y':
1736
			ExpertFlag = 1;
1737
			break;
1738
		case '?':
1739
			/* FALLTHROUGH */
1740
		default:
1741
			usage();
1742
		}
1743
	}
1744
	argc -= optind;
1745
	argv += optind;
1746
1747
	if (argc != 1)
1748
		usage();
1749
1750
	colwidth = charsperline();
1751
1752
	/*
1753
	 * Rather than guessing, use opendev() to get the device
1754
	 * name, which we open for reading.
1755
	 */
1756
	if ((fsi = opendev(*argv, O_RDONLY, 0, &device)) < 0)
1757
		err(1, "%s", *argv);
1758
1759
	/*
1760
	 * Try to access our devices for writing ...
1761
	 */
1762
	if (Nflag) {
1763
		fso = -1;
1764
	} else {
1765
		fso = open(device, O_WRONLY);
1766
		if (fso < 0)
1767
			err(1, "%s", device);
1768
	}
1769
1770
	/*
1771
	 * Now we have a file descriptor for our device, fstat() it to
1772
	 * figure out the partition number.
1773
	 */
1774
	if (fstat(fsi, &st) != 0)
1775
		err(1, "%s: fstat()", device);
1776
1777
	/*
1778
	 * Try to read a label from the disk. Then get the partition from the
1779
	 * device minor number, using DISKPART(). Probably don't need to
1780
	 * check against getmaxpartitions().
1781
	 */
1782
	lp = get_disklabel(fsi);
1783
	if (DISKPART(st.st_rdev) < getmaxpartitions())
1784
		pp = &lp->d_partitions[DISKPART(st.st_rdev)];
1785
	else
1786
		errx(1, "%s: invalid partition number %u",
1787
		    device, DISKPART(st.st_rdev));
1788
1789
	if (pledge("stdio disklabel rpath cpath wpath", NULL) == -1)
1790
		err(1, "pledge");
1791
1792
	/*
1793
	 * Check if that partition is suitable for growing a file system.
1794
	 */
1795
	if (DL_GETPSIZE(pp) < 1)
1796
		errx(1, "partition is unavailable");
1797
	if (pp->p_fstype != FS_BSDFFS)
1798
		errx(1, "can only grow ffs partitions");
1799
1800
	/*
1801
	 * Read the current superblock, and take a backup.
1802
	 */
1803
	for (i = 0; sblock_try[i] != -1; i++) {
1804
		sblockloc = sblock_try[i] / DEV_BSIZE;
1805
		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
1806
		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
1807
		     (osblock.fs_magic == FS_UFS2_MAGIC &&
1808
		      osblock.fs_sblockloc == sblock_try[i])) &&
1809
		    osblock.fs_bsize <= MAXBSIZE &&
1810
		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
1811
			break;
1812
	}
1813
	if (sblock_try[i] == -1)
1814
		errx(1, "superblock not recognized");
1815
	if (osblock.fs_clean == 0)
1816
		errx(1, "filesystem not clean - run fsck");
1817
	if (sblock.fs_magic == FS_UFS1_MAGIC &&
1818
	    (sblock.fs_ffs1_flags & FS_FLAGS_UPDATED) == 0)
1819
		ffs1_sb_update(&sblock, sblock_try[i]);
1820
	memcpy(&fsun1, &fsun2, sizeof(fsun2));
1821
	maxino = sblock.fs_ncg * sblock.fs_ipg;
1822
1823
	/*
1824
	 * Determine size to grow to. Default to the full size specified in
1825
	 * the disk label.
1826
	 */
1827
	sblock.fs_size = dbtofsb(&osblock, DL_SECTOBLK(lp, DL_GETPSIZE(pp)));
1828
	if (size != 0) {
1829
		if (size > DL_GETPSIZE(pp)) {
1830
			errx(1, "there is not enough space (%llu < %lld)",
1831
			    DL_GETPSIZE(pp), size);
1832
		}
1833
		sblock.fs_size = dbtofsb(&osblock, DL_SECTOBLK(lp, size));
1834
	}
1835
1836
	/*
1837
	 * Are we really growing ?
1838
	 */
1839
	if (osblock.fs_size >= sblock.fs_size) {
1840
		errx(1, "we are not growing (%jd->%jd)",
1841
		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
1842
	}
1843
1844
1845
#ifdef FSMAXSNAP
1846
	/*
1847
	 * Check if we find an active snapshot.
1848
	 */
1849
	if (ExpertFlag == 0) {
1850
		for (j = 0; j < FSMAXSNAP; j++) {
1851
			if (sblock.fs_snapinum[j]) {
1852
				errx(1, "active snapshot found in filesystem\n"
1853
				    "	please remove all snapshots before "
1854
				    "using growfs");
1855
			}
1856
			if (!sblock.fs_snapinum[j])	/* list is dense */
1857
				break;
1858
		}
1859
	}
1860
#endif
1861
1862
	if (ExpertFlag == 0 && Nflag == 0) {
1863
		printf("We strongly recommend you to make a backup "
1864
		    "before growing the Filesystem\n\n"
1865
		    " Did you backup your data (Yes/No) ? ");
1866
		if (fgets(reply, (int)sizeof(reply), stdin) == NULL ||
1867
		    strncasecmp(reply, "Yes", 3)) {
1868
			printf("\n Nothing done \n");
1869
			exit (0);
1870
		}
1871
	}
1872
1873
	if (!quiet)
1874
		printf("new filesystem size is: %jd frags\n",
1875
		    (intmax_t)sblock.fs_size);
1876
1877
	/*
1878
	 * Try to access our new last sector in the filesystem. Even if we
1879
	 * later on realize we have to abort our operation, on that sector
1880
	 * there should be no data, so we can't destroy something yet.
1881
	 */
1882
	lastsector = calloc(1, lp->d_secsize);
1883
	if (!lastsector)
1884
		err(1, "No memory for last sector test write");
1885
	wtfs(DL_SECTOBLK(lp, DL_GETPSIZE(pp) - 1), lp->d_secsize,
1886
	    lastsector, fso, Nflag);
1887
	free(lastsector);
1888
1889
	/*
1890
	 * Now calculate new superblock values and check for reasonable
1891
	 * bound for new filesystem size:
1892
	 *     fs_size:    is derived from label or user input
1893
	 *     fs_dsize:   should get updated in the routines creating or
1894
	 *                 updating the cylinder groups on the fly
1895
	 *     fs_cstotal: should get updated in the routines creating or
1896
	 *                 updating the cylinder groups
1897
	 */
1898
1899
	/*
1900
	 * Update the number of cylinders and cylinder groups in the file system.
1901
	 */
1902
	if (sblock.fs_magic == FS_UFS1_MAGIC) {
1903
		sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
1904
		if (sblock.fs_size * NSPF(&sblock) >
1905
		    sblock.fs_ncyl * sblock.fs_spc)
1906
		sblock.fs_ncyl++;
1907
	}
1908
	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
1909
	maxino = sblock.fs_ncg * sblock.fs_ipg;
1910
1911
	if (sblock.fs_size % sblock.fs_fpg != 0 &&
1912
	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
1913
		/*
1914
		 * The space in the new last cylinder group is too small,
1915
		 * so revert back.
1916
		 */
1917
		sblock.fs_ncg--;
1918
		if (sblock.fs_magic == FS_UFS1_MAGIC)
1919
			sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
1920
		if (!quiet)
1921
			printf("Warning: %jd sector(s) cannot be allocated.\n",
1922
			    (intmax_t)fsbtodb(&sblock,
1923
			    sblock.fs_size % sblock.fs_fpg));
1924
		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
1925
	}
1926
1927
	/*
1928
	 * Update the space for the cylinder group summary information in the
1929
	 * respective cylinder group data area.
1930
	 */
1931
	sblock.fs_cssize =
1932
	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
1933
1934
	if (osblock.fs_size >= sblock.fs_size)
1935
		errx(1, "not enough new space");
1936
1937
	/*
1938
	 * Ok, everything prepared, so now let's do the tricks.
1939
	 */
1940
	growfs(fsi, fso, Nflag);
1941
1942
	/*
1943
	 * Update the disk label.
1944
	 */
1945
	pp->p_fragblock =
1946
	    DISKLABELV1_FFS_FRAGBLOCK(sblock.fs_fsize, sblock.fs_frag);
1947
	pp->p_cpg = sblock.fs_fpg;
1948
1949
	return_disklabel(fso, lp, Nflag);
1950
1951
	close(fsi);
1952
	if (fso > -1)
1953
		close(fso);
1954
1955
	return 0;
1956
}
1957
1958
/*
1959
 * Write the updated disklabel back to disk.
1960
 */
1961
static void
1962
return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
1963
{
1964
	u_short	sum;
1965
	u_short	*ptr;
1966
1967
	if (!lp)
1968
		return;
1969
1970
	if (!Nflag) {
1971
		lp->d_checksum = 0;
1972
		sum = 0;
1973
		ptr = (u_short *)lp;
1974
1975
		/*
1976
		 * recalculate checksum
1977
		 */
1978
		while (ptr < (u_short *)&lp->d_partitions[lp->d_npartitions])
1979
			sum ^= *ptr++;
1980
		lp->d_checksum = sum;
1981
1982
		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0)
1983
			errx(1, "DIOCWDINFO failed");
1984
	}
1985
	free(lp);
1986
1987
	return ;
1988
}
1989
1990
/*
1991
 * Read the disklabel from disk.
1992
 */
1993
static struct disklabel *
1994
get_disklabel(int fd)
1995
{
1996
	static struct	disklabel *lab;
1997
1998
	lab = malloc(sizeof(struct disklabel));
1999
	if (!lab)
2000
		errx(1, "malloc failed");
2001
	if (ioctl(fd, DIOCGDINFO, (char *)lab) != 0)
2002
		err(1, "DIOCGDINFO");
2003
2004
	return (lab);
2005
}
2006
2007
2008
/*
2009
 * Dump a line of usage.
2010
 */
2011
static void
2012
usage(void)
2013
{
2014
	fprintf(stderr, "usage: growfs [-Nqy] [-s size] special\n");
2015
	exit(1);
2016
}
2017
2018
/*
2019
 * This updates most parameters and the bitmap related to cluster. We have to
2020
 * assume that sblock, osblock, acg are set up.
2021
 */
2022
static void
2023
updclst(int block)
2024
{
2025
	static int	lcs = 0;
2026
2027
	if (sblock.fs_contigsumsize < 1)	/* no clustering */
2028
		return;
2029
2030
	/*
2031
	 * update cluster allocation map
2032
	 */
2033
	setbit(cg_clustersfree(&acg), block);
2034
2035
	/*
2036
	 * update cluster summary table
2037
	 */
2038
	if (!lcs) {
2039
		/*
2040
		 * calculate size for the trailing cluster
2041
		 */
2042
		for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++) {
2043
			if (isclr(cg_clustersfree(&acg), block))
2044
				break;
2045
		}
2046
	}
2047
	if (lcs < sblock.fs_contigsumsize) {
2048
		if (lcs)
2049
			cg_clustersum(&acg)[lcs]--;
2050
		lcs++;
2051
		cg_clustersum(&acg)[lcs]++;
2052
	}
2053
}
2054
2055
/*
2056
 * This updates all references to relocated blocks for the given inode.  The
2057
 * inode is given as number within the cylinder group, and the number of the
2058
 * cylinder group.
2059
 */
2060
static void
2061
updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2062
    Nflag)
2063
{
2064
	daddr_t	len, lbn, numblks;
2065
	daddr_t	iptr, blksperindir;
2066
	union dinode	*ino;
2067
	int		i, mode, inodeupdated;
2068
2069
	ino = ginode(in, fsi, cg);
2070
	if (ino == NULL)
2071
		return;
2072
2073
	mode = DIP(ino, di_mode) & IFMT;
2074
	if (mode != IFDIR && mode != IFREG && mode != IFLNK)
2075
		return; /* only check DIR, FILE, LINK */
2076
	if (mode == IFLNK &&
2077
	    DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen)
2078
		return;	/* skip short symlinks */
2079
	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2080
	if (numblks == 0)
2081
		return;	/* skip empty file */
2082
	if (DIP(ino, di_blocks) == 0)
2083
		return;	/* skip empty swiss cheesy file or old fastlink */
2084
2085
	/*
2086
	 * Check all the blocks.
2087
	 */
2088
	inodeupdated = 0;
2089
	len = numblks < NDADDR ? numblks : NDADDR;
2090
	for (i = 0; i < len; i++) {
2091
		iptr = DIP(ino, di_db[i]);
2092
		if (iptr == 0)
2093
			continue;
2094
		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2095
			DIP_SET(ino, di_db[i], iptr);
2096
			inodeupdated++;
2097
		}
2098
	}
2099
2100
	blksperindir = 1;
2101
	len = numblks - NDADDR;
2102
	lbn = NDADDR;
2103
	for (i = 0; len > 0 && i < NIADDR; i++) {
2104
		iptr = DIP(ino, di_ib[i]);
2105
		if (iptr == 0)
2106
			continue;
2107
		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2108
			DIP_SET(ino, di_ib[i], iptr);
2109
			inodeupdated++;
2110
		}
2111
		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2112
		blksperindir *= NINDIR(&sblock);
2113
		lbn += blksperindir;
2114
		len -= blksperindir;
2115
	}
2116
	if (inodeupdated)
2117
		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2118
}
2119
2120
/*
2121
 * Recursively check all the indirect blocks.
2122
 */
2123
static void
2124
indirchk(daddr_t blksperindir, daddr_t lbn, daddr_t blkno,
2125
    daddr_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2126
{
2127
	void *ibuf;
2128
	int i, last;
2129
	daddr_t iptr;
2130
2131
	/* read in the indirect block. */
2132
	ibuf = malloc(sblock.fs_bsize);
2133
	if (!ibuf)
2134
		errx(1, "malloc failed");
2135
	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2136
	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2137
	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2138
	for (i = 0; i < last; i++) {
2139
		if (sblock.fs_magic == FS_UFS1_MAGIC)
2140
			iptr = ((int32_t *)ibuf)[i];
2141
		else
2142
			iptr = ((daddr_t *)ibuf)[i];
2143
		if (iptr == 0)
2144
			continue;
2145
		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2146
			if (sblock.fs_magic == FS_UFS1_MAGIC)
2147
				((int32_t *)ibuf)[i] = iptr;
2148
			else
2149
				((daddr_t *)ibuf)[i] = iptr;
2150
		}
2151
		if (blksperindir == 1)
2152
			continue;
2153
		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2154
		    iptr, lastlbn, bp, fsi, fso, Nflag);
2155
	}
2156
	free(ibuf);
2157
}
2158
2159
static void
2160
ffs1_sb_update(struct fs *fs, daddr_t sbloc)
2161
{
2162
	fs->fs_flags = fs->fs_ffs1_flags;
2163
	fs->fs_sblockloc = sbloc;
2164
	fs->fs_maxbsize = fs->fs_bsize;
2165
	fs->fs_time = fs->fs_ffs1_time;
2166
	fs->fs_size = fs->fs_ffs1_size;
2167
	fs->fs_dsize = fs->fs_ffs1_dsize;
2168
	fs->fs_csaddr = fs->fs_ffs1_csaddr;
2169
	fs->fs_cstotal.cs_ndir = fs->fs_ffs1_cstotal.cs_ndir;
2170
	fs->fs_cstotal.cs_nbfree = fs->fs_ffs1_cstotal.cs_nbfree;
2171
	fs->fs_cstotal.cs_nifree = fs->fs_ffs1_cstotal.cs_nifree;
2172
	fs->fs_cstotal.cs_nffree = fs->fs_ffs1_cstotal.cs_nffree;
2173
	fs->fs_ffs1_flags |= FS_FLAGS_UPDATED;
2174
}