GCC Code Coverage Report | |||||||||||||||||||||
|
|||||||||||||||||||||
Line | Branch | Exec | Source |
1 |
/* $OpenBSD: dfa.c,v 1.8 2015/11/19 23:20:34 tedu Exp $ */ |
||
2 |
|||
3 |
/* dfa - DFA construction routines */ |
||
4 |
|||
5 |
/* Copyright (c) 1990 The Regents of the University of California. */ |
||
6 |
/* All rights reserved. */ |
||
7 |
|||
8 |
/* This code is derived from software contributed to Berkeley by */ |
||
9 |
/* Vern Paxson. */ |
||
10 |
|||
11 |
/* The United States Government has rights in this work pursuant */ |
||
12 |
/* to contract no. DE-AC03-76SF00098 between the United States */ |
||
13 |
/* Department of Energy and the University of California. */ |
||
14 |
|||
15 |
/* Redistribution and use in source and binary forms, with or without */ |
||
16 |
/* modification, are permitted provided that the following conditions */ |
||
17 |
/* are met: */ |
||
18 |
|||
19 |
/* 1. Redistributions of source code must retain the above copyright */ |
||
20 |
/* notice, this list of conditions and the following disclaimer. */ |
||
21 |
/* 2. Redistributions in binary form must reproduce the above copyright */ |
||
22 |
/* notice, this list of conditions and the following disclaimer in the */ |
||
23 |
/* documentation and/or other materials provided with the distribution. */ |
||
24 |
|||
25 |
/* Neither the name of the University nor the names of its contributors */ |
||
26 |
/* may be used to endorse or promote products derived from this software */ |
||
27 |
/* without specific prior written permission. */ |
||
28 |
|||
29 |
/* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */ |
||
30 |
/* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */ |
||
31 |
/* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */ |
||
32 |
/* PURPOSE. */ |
||
33 |
|||
34 |
#include "flexdef.h" |
||
35 |
#include "tables.h" |
||
36 |
|||
37 |
/* declare functions that have forward references */ |
||
38 |
|||
39 |
void dump_associated_rules PROTO ((FILE *, int)); |
||
40 |
void dump_transitions PROTO ((FILE *, int[])); |
||
41 |
void sympartition PROTO ((int[], int, int[], int[])); |
||
42 |
int symfollowset PROTO ((int[], int, int, int[])); |
||
43 |
|||
44 |
|||
45 |
/* check_for_backing_up - check a DFA state for backing up |
||
46 |
* |
||
47 |
* synopsis |
||
48 |
* void check_for_backing_up( int ds, int state[numecs] ); |
||
49 |
* |
||
50 |
* ds is the number of the state to check and state[] is its out-transitions, |
||
51 |
* indexed by equivalence class. |
||
52 |
*/ |
||
53 |
|||
54 |
void check_for_backing_up (ds, state) |
||
55 |
int ds; |
||
56 |
int state[]; |
||
57 |
951 |
{ |
|
58 |
✓✓✓✗ ✓✓✓✓ |
951 |
if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) { /* state is non-accepting */ |
59 |
7 |
++num_backing_up; |
|
60 |
|||
61 |
✗✓ | 7 |
if (backing_up_report) { |
62 |
fprintf (backing_up_file, |
||
63 |
_("State #%d is non-accepting -\n"), ds); |
||
64 |
|||
65 |
/* identify the state */ |
||
66 |
dump_associated_rules (backing_up_file, ds); |
||
67 |
|||
68 |
/* Now identify it further using the out- and |
||
69 |
* jam-transitions. |
||
70 |
*/ |
||
71 |
dump_transitions (backing_up_file, state); |
||
72 |
|||
73 |
putc ('\n', backing_up_file); |
||
74 |
} |
||
75 |
} |
||
76 |
951 |
} |
|
77 |
|||
78 |
|||
79 |
/* check_trailing_context - check to see if NFA state set constitutes |
||
80 |
* "dangerous" trailing context |
||
81 |
* |
||
82 |
* synopsis |
||
83 |
* void check_trailing_context( int nfa_states[num_states+1], int num_states, |
||
84 |
* int accset[nacc+1], int nacc ); |
||
85 |
* |
||
86 |
* NOTES |
||
87 |
* Trailing context is "dangerous" if both the head and the trailing |
||
88 |
* part are of variable size \and/ there's a DFA state which contains |
||
89 |
* both an accepting state for the head part of the rule and NFA states |
||
90 |
* which occur after the beginning of the trailing context. |
||
91 |
* |
||
92 |
* When such a rule is matched, it's impossible to tell if having been |
||
93 |
* in the DFA state indicates the beginning of the trailing context or |
||
94 |
* further-along scanning of the pattern. In these cases, a warning |
||
95 |
* message is issued. |
||
96 |
* |
||
97 |
* nfa_states[1 .. num_states] is the list of NFA states in the DFA. |
||
98 |
* accset[1 .. nacc] is the list of accepting numbers for the DFA state. |
||
99 |
*/ |
||
100 |
|||
101 |
void check_trailing_context (nfa_states, num_states, accset, nacc) |
||
102 |
int *nfa_states, num_states; |
||
103 |
int *accset; |
||
104 |
int nacc; |
||
105 |
{ |
||
106 |
int i, j; |
||
107 |
|||
108 |
for (i = 1; i <= num_states; ++i) { |
||
109 |
int ns = nfa_states[i]; |
||
110 |
int type = state_type[ns]; |
||
111 |
int ar = assoc_rule[ns]; |
||
112 |
|||
113 |
if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) { /* do nothing */ |
||
114 |
} |
||
115 |
|||
116 |
else if (type == STATE_TRAILING_CONTEXT) { |
||
117 |
/* Potential trouble. Scan set of accepting numbers |
||
118 |
* for the one marking the end of the "head". We |
||
119 |
* assume that this looping will be fairly cheap |
||
120 |
* since it's rare that an accepting number set |
||
121 |
* is large. |
||
122 |
*/ |
||
123 |
for (j = 1; j <= nacc; ++j) |
||
124 |
if (accset[j] & YY_TRAILING_HEAD_MASK) { |
||
125 |
line_warning (_ |
||
126 |
("dangerous trailing context"), |
||
127 |
rule_linenum[ar]); |
||
128 |
return; |
||
129 |
} |
||
130 |
} |
||
131 |
} |
||
132 |
} |
||
133 |
|||
134 |
|||
135 |
/* dump_associated_rules - list the rules associated with a DFA state |
||
136 |
* |
||
137 |
* Goes through the set of NFA states associated with the DFA and |
||
138 |
* extracts the first MAX_ASSOC_RULES unique rules, sorts them, |
||
139 |
* and writes a report to the given file. |
||
140 |
*/ |
||
141 |
|||
142 |
void dump_associated_rules (file, ds) |
||
143 |
FILE *file; |
||
144 |
int ds; |
||
145 |
{ |
||
146 |
int i, j; |
||
147 |
int num_associated_rules = 0; |
||
148 |
int rule_set[MAX_ASSOC_RULES + 1]; |
||
149 |
int *dset = dss[ds]; |
||
150 |
int size = dfasiz[ds]; |
||
151 |
|||
152 |
for (i = 1; i <= size; ++i) { |
||
153 |
int rule_num = rule_linenum[assoc_rule[dset[i]]]; |
||
154 |
|||
155 |
for (j = 1; j <= num_associated_rules; ++j) |
||
156 |
if (rule_num == rule_set[j]) |
||
157 |
break; |
||
158 |
|||
159 |
if (j > num_associated_rules) { /* new rule */ |
||
160 |
if (num_associated_rules < MAX_ASSOC_RULES) |
||
161 |
rule_set[++num_associated_rules] = |
||
162 |
rule_num; |
||
163 |
} |
||
164 |
} |
||
165 |
|||
166 |
qsort (&rule_set [1], num_associated_rules, sizeof (rule_set [1]), intcmp); |
||
167 |
|||
168 |
fprintf (file, _(" associated rule line numbers:")); |
||
169 |
|||
170 |
for (i = 1; i <= num_associated_rules; ++i) { |
||
171 |
if (i % 8 == 1) |
||
172 |
putc ('\n', file); |
||
173 |
|||
174 |
fprintf (file, "\t%d", rule_set[i]); |
||
175 |
} |
||
176 |
|||
177 |
putc ('\n', file); |
||
178 |
} |
||
179 |
|||
180 |
|||
181 |
/* dump_transitions - list the transitions associated with a DFA state |
||
182 |
* |
||
183 |
* synopsis |
||
184 |
* dump_transitions( FILE *file, int state[numecs] ); |
||
185 |
* |
||
186 |
* Goes through the set of out-transitions and lists them in human-readable |
||
187 |
* form (i.e., not as equivalence classes); also lists jam transitions |
||
188 |
* (i.e., all those which are not out-transitions, plus EOF). The dump |
||
189 |
* is done to the given file. |
||
190 |
*/ |
||
191 |
|||
192 |
void dump_transitions (file, state) |
||
193 |
FILE *file; |
||
194 |
int state[]; |
||
195 |
{ |
||
196 |
int i, ec; |
||
197 |
int out_char_set[CSIZE]; |
||
198 |
|||
199 |
for (i = 0; i < csize; ++i) { |
||
200 |
ec = ABS (ecgroup[i]); |
||
201 |
out_char_set[i] = state[ec]; |
||
202 |
} |
||
203 |
|||
204 |
fprintf (file, _(" out-transitions: ")); |
||
205 |
|||
206 |
list_character_set (file, out_char_set); |
||
207 |
|||
208 |
/* now invert the members of the set to get the jam transitions */ |
||
209 |
for (i = 0; i < csize; ++i) |
||
210 |
out_char_set[i] = !out_char_set[i]; |
||
211 |
|||
212 |
fprintf (file, _("\n jam-transitions: EOF ")); |
||
213 |
|||
214 |
list_character_set (file, out_char_set); |
||
215 |
|||
216 |
putc ('\n', file); |
||
217 |
} |
||
218 |
|||
219 |
|||
220 |
/* epsclosure - construct the epsilon closure of a set of ndfa states |
||
221 |
* |
||
222 |
* synopsis |
||
223 |
* int *epsclosure( int t[num_states], int *numstates_addr, |
||
224 |
* int accset[num_rules+1], int *nacc_addr, |
||
225 |
* int *hashval_addr ); |
||
226 |
* |
||
227 |
* NOTES |
||
228 |
* The epsilon closure is the set of all states reachable by an arbitrary |
||
229 |
* number of epsilon transitions, which themselves do not have epsilon |
||
230 |
* transitions going out, unioned with the set of states which have non-null |
||
231 |
* accepting numbers. t is an array of size numstates of nfa state numbers. |
||
232 |
* Upon return, t holds the epsilon closure and *numstates_addr is updated. |
||
233 |
* accset holds a list of the accepting numbers, and the size of accset is |
||
234 |
* given by *nacc_addr. t may be subjected to reallocation if it is not |
||
235 |
* large enough to hold the epsilon closure. |
||
236 |
* |
||
237 |
* hashval is the hash value for the dfa corresponding to the state set. |
||
238 |
*/ |
||
239 |
|||
240 |
int *epsclosure (t, ns_addr, accset, nacc_addr, hv_addr) |
||
241 |
int *t, *ns_addr, accset[], *nacc_addr, *hv_addr; |
||
242 |
3520 |
{ |
|
243 |
int stkpos, ns, tsp; |
||
244 |
3520 |
int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum; |
|
245 |
int stkend, nstate; |
||
246 |
static int did_stk_init = false, *stk; |
||
247 |
|||
248 |
#define MARK_STATE(state) \ |
||
249 |
do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0) |
||
250 |
|||
251 |
#define IS_MARKED(state) (trans1[state] < 0) |
||
252 |
|||
253 |
#define UNMARK_STATE(state) \ |
||
254 |
do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0) |
||
255 |
|||
256 |
#define CHECK_ACCEPT(state) \ |
||
257 |
do{ \ |
||
258 |
nfaccnum = accptnum[state]; \ |
||
259 |
if ( nfaccnum != NIL ) \ |
||
260 |
accset[++nacc] = nfaccnum; \ |
||
261 |
}while(0) |
||
262 |
|||
263 |
#define DO_REALLOCATION() \ |
||
264 |
do { \ |
||
265 |
current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \ |
||
266 |
++num_reallocs; \ |
||
267 |
t = reallocate_integer_array( t, current_max_dfa_size ); \ |
||
268 |
stk = reallocate_integer_array( stk, current_max_dfa_size ); \ |
||
269 |
}while(0) \ |
||
270 |
|||
271 |
#define PUT_ON_STACK(state) \ |
||
272 |
do { \ |
||
273 |
if ( ++stkend >= current_max_dfa_size ) \ |
||
274 |
DO_REALLOCATION(); \ |
||
275 |
stk[stkend] = state; \ |
||
276 |
MARK_STATE(state); \ |
||
277 |
}while(0) |
||
278 |
|||
279 |
#define ADD_STATE(state) \ |
||
280 |
do { \ |
||
281 |
if ( ++numstates >= current_max_dfa_size ) \ |
||
282 |
DO_REALLOCATION(); \ |
||
283 |
t[numstates] = state; \ |
||
284 |
hashval += state; \ |
||
285 |
}while(0) |
||
286 |
|||
287 |
#define STACK_STATE(state) \ |
||
288 |
do { \ |
||
289 |
PUT_ON_STACK(state); \ |
||
290 |
CHECK_ACCEPT(state); \ |
||
291 |
if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \ |
||
292 |
ADD_STATE(state); \ |
||
293 |
}while(0) |
||
294 |
|||
295 |
|||
296 |
✓✓ | 3520 |
if (!did_stk_init) { |
297 |
5 |
stk = allocate_integer_array (current_max_dfa_size); |
|
298 |
5 |
did_stk_init = true; |
|
299 |
} |
||
300 |
|||
301 |
3520 |
nacc = stkend = hashval = 0; |
|
302 |
|||
303 |
✓✓ | 9808 |
for (nstate = 1; nstate <= numstates; ++nstate) { |
304 |
6288 |
ns = t[nstate]; |
|
305 |
|||
306 |
/* The state could be marked if we've already pushed it onto |
||
307 |
* the stack. |
||
308 |
*/ |
||
309 |
✓✓ | 6288 |
if (!IS_MARKED (ns)) { |
310 |
✗✓ | 6276 |
PUT_ON_STACK (ns); |
311 |
✓✓ | 6276 |
CHECK_ACCEPT (ns); |
312 |
6276 |
hashval += ns; |
|
313 |
} |
||
314 |
} |
||
315 |
|||
316 |
✓✓ | 25929 |
for (stkpos = 1; stkpos <= stkend; ++stkpos) { |
317 |
22409 |
ns = stk[stkpos]; |
|
318 |
22409 |
transsym = transchar[ns]; |
|
319 |
|||
320 |
✓✓ | 22409 |
if (transsym == SYM_EPSILON) { |
321 |
12320 |
tsp = trans1[ns] + MARKER_DIFFERENCE; |
|
322 |
|||
323 |
✓✓ | 12320 |
if (tsp != NO_TRANSITION) { |
324 |
✓✓ | 9110 |
if (!IS_MARKED (tsp)) |
325 |
✗✓✗✓ ✓✗✓✓ ✗✓ |
9106 |
STACK_STATE (tsp); |
326 |
|||
327 |
9110 |
tsp = trans2[ns]; |
|
328 |
|||
329 |
✓✓✓✓ |
9110 |
if (tsp != NO_TRANSITION |
330 |
&& !IS_MARKED (tsp)) |
||
331 |
✗✓✓✓ ✓✓✓✓ ✗✓ |
7027 |
STACK_STATE (tsp); |
332 |
} |
||
333 |
} |
||
334 |
} |
||
335 |
|||
336 |
/* Clear out "visit" markers. */ |
||
337 |
|||
338 |
✓✓ | 25929 |
for (stkpos = 1; stkpos <= stkend; ++stkpos) { |
339 |
✓✗ | 22409 |
if (IS_MARKED (stk[stkpos])) |
340 |
22409 |
UNMARK_STATE (stk[stkpos]); |
|
341 |
else |
||
342 |
flexfatal (_ |
||
343 |
("consistency check failed in epsclosure()")); |
||
344 |
} |
||
345 |
|||
346 |
3520 |
*ns_addr = numstates; |
|
347 |
3520 |
*hv_addr = hashval; |
|
348 |
3520 |
*nacc_addr = nacc; |
|
349 |
|||
350 |
3520 |
return t; |
|
351 |
} |
||
352 |
|||
353 |
|||
354 |
/* increase_max_dfas - increase the maximum number of DFAs */ |
||
355 |
|||
356 |
void increase_max_dfas () |
||
357 |
{ |
||
358 |
current_max_dfas += MAX_DFAS_INCREMENT; |
||
359 |
|||
360 |
++num_reallocs; |
||
361 |
|||
362 |
base = reallocate_integer_array (base, current_max_dfas); |
||
363 |
def = reallocate_integer_array (def, current_max_dfas); |
||
364 |
dfasiz = reallocate_integer_array (dfasiz, current_max_dfas); |
||
365 |
accsiz = reallocate_integer_array (accsiz, current_max_dfas); |
||
366 |
dhash = reallocate_integer_array (dhash, current_max_dfas); |
||
367 |
dss = reallocate_int_ptr_array (dss, current_max_dfas); |
||
368 |
dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas); |
||
369 |
|||
370 |
if (nultrans) |
||
371 |
nultrans = |
||
372 |
reallocate_integer_array (nultrans, |
||
373 |
current_max_dfas); |
||
374 |
} |
||
375 |
|||
376 |
|||
377 |
/* ntod - convert an ndfa to a dfa |
||
378 |
* |
||
379 |
* Creates the dfa corresponding to the ndfa we've constructed. The |
||
380 |
* dfa starts out in state #1. |
||
381 |
*/ |
||
382 |
|||
383 |
void ntod () |
||
384 |
5 |
{ |
|
385 |
int *accset, ds, nacc, newds; |
||
386 |
int sym, hashval, numstates, dsize; |
||
387 |
5 |
int num_full_table_rows=0; /* used only for -f */ |
|
388 |
int *nset, *dset; |
||
389 |
int targptr, totaltrans, i, comstate, comfreq, targ; |
||
390 |
int symlist[CSIZE + 1]; |
||
391 |
int num_start_states; |
||
392 |
int todo_head, todo_next; |
||
393 |
|||
394 |
5 |
struct yytbl_data *yynxt_tbl = 0; |
|
395 |
5 |
flex_int32_t *yynxt_data = 0, yynxt_curr = 0; |
|
396 |
|||
397 |
/* Note that the following are indexed by *equivalence classes* |
||
398 |
* and not by characters. Since equivalence classes are indexed |
||
399 |
* beginning with 1, even if the scanner accepts NUL's, this |
||
400 |
* means that (since every character is potentially in its own |
||
401 |
* equivalence class) these arrays must have room for indices |
||
402 |
* from 1 to CSIZE, so their size must be CSIZE + 1. |
||
403 |
*/ |
||
404 |
int duplist[CSIZE + 1], state[CSIZE + 1]; |
||
405 |
int targfreq[CSIZE + 1], targstate[CSIZE + 1]; |
||
406 |
|||
407 |
/* accset needs to be large enough to hold all of the rules present |
||
408 |
* in the input, *plus* their YY_TRAILING_HEAD_MASK variants. |
||
409 |
*/ |
||
410 |
5 |
accset = allocate_integer_array ((num_rules + 1) * 2); |
|
411 |
5 |
nset = allocate_integer_array (current_max_dfa_size); |
|
412 |
|||
413 |
/* The "todo" queue is represented by the head, which is the DFA |
||
414 |
* state currently being processed, and the "next", which is the |
||
415 |
* next DFA state number available (not in use). We depend on the |
||
416 |
* fact that snstods() returns DFA's \in increasing order/, and thus |
||
417 |
* need only know the bounds of the dfas to be processed. |
||
418 |
*/ |
||
419 |
5 |
todo_head = todo_next = 0; |
|
420 |
|||
421 |
✓✓ | 1290 |
for (i = 0; i <= csize; ++i) { |
422 |
1285 |
duplist[i] = NIL; |
|
423 |
1285 |
symlist[i] = false; |
|
424 |
} |
||
425 |
|||
426 |
✓✓ | 183 |
for (i = 0; i <= num_rules; ++i) |
427 |
178 |
accset[i] = NIL; |
|
428 |
|||
429 |
✗✓ | 5 |
if (trace) { |
430 |
dumpnfa (scset[1]); |
||
431 |
fputs (_("\n\nDFA Dump:\n\n"), stderr); |
||
432 |
} |
||
433 |
|||
434 |
5 |
inittbl (); |
|
435 |
|||
436 |
/* Check to see whether we should build a separate table for |
||
437 |
* transitions on NUL characters. We don't do this for full-speed |
||
438 |
* (-F) scanners, since for them we don't have a simple state |
||
439 |
* number lying around with which to index the table. We also |
||
440 |
* don't bother doing it for scanners unless (1) NUL is in its own |
||
441 |
* equivalence class (indicated by a positive value of |
||
442 |
* ecgroup[NUL]), (2) NUL's equivalence class is the last |
||
443 |
* equivalence class, and (3) the number of equivalence classes is |
||
444 |
* the same as the number of characters. This latter case comes |
||
445 |
* about when useecs is false or when it's true but every character |
||
446 |
* still manages to land in its own class (unlikely, but it's |
||
447 |
* cheap to check for). If all these things are true then the |
||
448 |
* character code needed to represent NUL's equivalence class for |
||
449 |
* indexing the tables is going to take one more bit than the |
||
450 |
* number of characters, and therefore we won't be assured of |
||
451 |
* being able to fit it into a YY_CHAR variable. This rules out |
||
452 |
* storing the transitions in a compressed table, since the code |
||
453 |
* for interpreting them uses a YY_CHAR variable (perhaps it |
||
454 |
* should just use an integer, though; this is worth pondering ... |
||
455 |
* ###). |
||
456 |
* |
||
457 |
* Finally, for full tables, we want the number of entries in the |
||
458 |
* table to be a power of two so the array references go fast (it |
||
459 |
* will just take a shift to compute the major index). If |
||
460 |
* encoding NUL's transitions in the table will spoil this, we |
||
461 |
* give it its own table (note that this will be the case if we're |
||
462 |
* not using equivalence classes). |
||
463 |
*/ |
||
464 |
|||
465 |
/* Note that the test for ecgroup[0] == numecs below accomplishes |
||
466 |
* both (1) and (2) above |
||
467 |
*/ |
||
468 |
✓✗✗✓ |
5 |
if (!fullspd && ecgroup[0] == numecs) { |
469 |
/* NUL is alone in its equivalence class, which is the |
||
470 |
* last one. |
||
471 |
*/ |
||
472 |
int use_NUL_table = (numecs == csize); |
||
473 |
|||
474 |
if (fulltbl && !use_NUL_table) { |
||
475 |
/* We still may want to use the table if numecs |
||
476 |
* is a power of 2. |
||
477 |
*/ |
||
478 |
int power_of_two; |
||
479 |
|||
480 |
for (power_of_two = 1; power_of_two <= csize; |
||
481 |
power_of_two *= 2) |
||
482 |
if (numecs == power_of_two) { |
||
483 |
use_NUL_table = true; |
||
484 |
break; |
||
485 |
} |
||
486 |
} |
||
487 |
|||
488 |
if (use_NUL_table) |
||
489 |
nultrans = |
||
490 |
allocate_integer_array (current_max_dfas); |
||
491 |
|||
492 |
/* From now on, nultrans != nil indicates that we're |
||
493 |
* saving null transitions for later, separate encoding. |
||
494 |
*/ |
||
495 |
} |
||
496 |
|||
497 |
|||
498 |
✗✓ | 5 |
if (fullspd) { |
499 |
for (i = 0; i <= numecs; ++i) |
||
500 |
state[i] = 0; |
||
501 |
|||
502 |
place_state (state, 0, 0); |
||
503 |
dfaacc[0].dfaacc_state = 0; |
||
504 |
} |
||
505 |
|||
506 |
✗✓ | 5 |
else if (fulltbl) { |
507 |
if (nultrans) |
||
508 |
/* We won't be including NUL's transitions in the |
||
509 |
* table, so build it for entries from 0 .. numecs - 1. |
||
510 |
*/ |
||
511 |
num_full_table_rows = numecs; |
||
512 |
|||
513 |
else |
||
514 |
/* Take into account the fact that we'll be including |
||
515 |
* the NUL entries in the transition table. Build it |
||
516 |
* from 0 .. numecs. |
||
517 |
*/ |
||
518 |
num_full_table_rows = numecs + 1; |
||
519 |
|||
520 |
/* Begin generating yy_nxt[][] |
||
521 |
* This spans the entire LONG function. |
||
522 |
* This table is tricky because we don't know how big it will be. |
||
523 |
* So we'll have to realloc() on the way... |
||
524 |
* we'll wait until we can calculate yynxt_tbl->td_hilen. |
||
525 |
*/ |
||
526 |
yynxt_tbl = |
||
527 |
(struct yytbl_data *) calloc (1, |
||
528 |
sizeof (struct |
||
529 |
yytbl_data)); |
||
530 |
yytbl_data_init (yynxt_tbl, YYTD_ID_NXT); |
||
531 |
yynxt_tbl->td_hilen = 1; |
||
532 |
yynxt_tbl->td_lolen = num_full_table_rows; |
||
533 |
yynxt_tbl->td_data = yynxt_data = |
||
534 |
(flex_int32_t *) calloc (yynxt_tbl->td_lolen * |
||
535 |
yynxt_tbl->td_hilen, |
||
536 |
sizeof (flex_int32_t)); |
||
537 |
yynxt_curr = 0; |
||
538 |
|||
539 |
buf_prints (&yydmap_buf, |
||
540 |
"\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n", |
||
541 |
long_align ? "flex_int32_t" : "flex_int16_t"); |
||
542 |
|||
543 |
/* Unless -Ca, declare it "short" because it's a real |
||
544 |
* long-shot that that won't be large enough. |
||
545 |
*/ |
||
546 |
if (gentables) |
||
547 |
out_str_dec |
||
548 |
("static yyconst %s yy_nxt[][%d] =\n {\n", |
||
549 |
long_align ? "flex_int32_t" : "flex_int16_t", |
||
550 |
num_full_table_rows); |
||
551 |
else { |
||
552 |
out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows); |
||
553 |
out_str ("static yyconst %s *yy_nxt =0;\n", |
||
554 |
long_align ? "flex_int32_t" : "flex_int16_t"); |
||
555 |
} |
||
556 |
|||
557 |
|||
558 |
if (gentables) |
||
559 |
outn (" {"); |
||
560 |
|||
561 |
/* Generate 0 entries for state #0. */ |
||
562 |
for (i = 0; i < num_full_table_rows; ++i) { |
||
563 |
mk2data (0); |
||
564 |
yynxt_data[yynxt_curr++] = 0; |
||
565 |
} |
||
566 |
|||
567 |
dataflush (); |
||
568 |
if (gentables) |
||
569 |
outn (" },\n"); |
||
570 |
} |
||
571 |
|||
572 |
/* Create the first states. */ |
||
573 |
|||
574 |
5 |
num_start_states = lastsc * 2; |
|
575 |
|||
576 |
✓✓ | 27 |
for (i = 1; i <= num_start_states; ++i) { |
577 |
22 |
numstates = 1; |
|
578 |
|||
579 |
/* For each start condition, make one state for the case when |
||
580 |
* we're at the beginning of the line (the '^' operator) and |
||
581 |
* one for the case when we're not. |
||
582 |
*/ |
||
583 |
✓✓ | 22 |
if (i % 2 == 1) |
584 |
11 |
nset[numstates] = scset[(i / 2) + 1]; |
|
585 |
else |
||
586 |
11 |
nset[numstates] = |
|
587 |
mkbranch (scbol[i / 2], scset[i / 2]); |
||
588 |
|||
589 |
22 |
nset = epsclosure (nset, &numstates, accset, &nacc, |
|
590 |
&hashval); |
||
591 |
|||
592 |
✓✗ | 22 |
if (snstods (nset, numstates, accset, nacc, hashval, &ds)) { |
593 |
22 |
numas += nacc; |
|
594 |
22 |
totnst += numstates; |
|
595 |
22 |
++todo_next; |
|
596 |
|||
597 |
✗✓✗✗ |
22 |
if (variable_trailing_context_rules && nacc > 0) |
598 |
check_trailing_context (nset, numstates, |
||
599 |
accset, nacc); |
||
600 |
} |
||
601 |
} |
||
602 |
|||
603 |
✓✗ | 5 |
if (!fullspd) { |
604 |
✗✓ | 5 |
if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state)) |
605 |
flexfatal (_ |
||
606 |
("could not create unique end-of-buffer state")); |
||
607 |
|||
608 |
5 |
++numas; |
|
609 |
5 |
++num_start_states; |
|
610 |
5 |
++todo_next; |
|
611 |
} |
||
612 |
|||
613 |
|||
614 |
✓✓ | 983 |
while (todo_head < todo_next) { |
615 |
978 |
targptr = 0; |
|
616 |
978 |
totaltrans = 0; |
|
617 |
|||
618 |
✓✓ | 53534 |
for (i = 1; i <= numecs; ++i) |
619 |
52556 |
state[i] = 0; |
|
620 |
|||
621 |
978 |
ds = ++todo_head; |
|
622 |
|||
623 |
978 |
dset = dss[ds]; |
|
624 |
978 |
dsize = dfasiz[ds]; |
|
625 |
|||
626 |
✗✓ | 978 |
if (trace) |
627 |
fprintf (stderr, _("state # %d:\n"), ds); |
||
628 |
|||
629 |
978 |
sympartition (dset, dsize, symlist, duplist); |
|
630 |
|||
631 |
✓✓ | 53534 |
for (sym = 1; sym <= numecs; ++sym) { |
632 |
✓✓ | 52556 |
if (symlist[sym]) { |
633 |
46460 |
symlist[sym] = 0; |
|
634 |
|||
635 |
✓✓ | 46460 |
if (duplist[sym] == NIL) { |
636 |
/* Symbol has unique out-transitions. */ |
||
637 |
3498 |
numstates = |
|
638 |
symfollowset (dset, dsize, |
||
639 |
sym, nset); |
||
640 |
3498 |
nset = epsclosure (nset, |
|
641 |
&numstates, |
||
642 |
accset, &nacc, |
||
643 |
&hashval); |
||
644 |
|||
645 |
✓✓ | 3498 |
if (snstods |
646 |
(nset, numstates, accset, nacc, |
||
647 |
hashval, &newds)) { |
||
648 |
951 |
totnst = totnst + |
|
649 |
numstates; |
||
650 |
951 |
++todo_next; |
|
651 |
951 |
numas += nacc; |
|
652 |
|||
653 |
✗✓✗✗ |
951 |
if (variable_trailing_context_rules && nacc > 0) |
654 |
check_trailing_context |
||
655 |
(nset, |
||
656 |
numstates, |
||
657 |
accset, |
||
658 |
nacc); |
||
659 |
} |
||
660 |
|||
661 |
3498 |
state[sym] = newds; |
|
662 |
|||
663 |
✗✓ | 3498 |
if (trace) |
664 |
fprintf (stderr, |
||
665 |
"\t%d\t%d\n", sym, |
||
666 |
newds); |
||
667 |
|||
668 |
3498 |
targfreq[++targptr] = 1; |
|
669 |
3498 |
targstate[targptr] = newds; |
|
670 |
3498 |
++numuniq; |
|
671 |
} |
||
672 |
|||
673 |
else { |
||
674 |
/* sym's equivalence class has the same |
||
675 |
* transitions as duplist(sym)'s |
||
676 |
* equivalence class. |
||
677 |
*/ |
||
678 |
42962 |
targ = state[duplist[sym]]; |
|
679 |
42962 |
state[sym] = targ; |
|
680 |
|||
681 |
✗✓ | 42962 |
if (trace) |
682 |
fprintf (stderr, |
||
683 |
"\t%d\t%d\n", sym, |
||
684 |
targ); |
||
685 |
|||
686 |
/* Update frequency count for |
||
687 |
* destination state. |
||
688 |
*/ |
||
689 |
|||
690 |
42962 |
i = 0; |
|
691 |
✓✓ | 52077 |
while (targstate[++i] != targ) ; |
692 |
|||
693 |
42962 |
++targfreq[i]; |
|
694 |
42962 |
++numdup; |
|
695 |
} |
||
696 |
|||
697 |
46460 |
++totaltrans; |
|
698 |
46460 |
duplist[sym] = NIL; |
|
699 |
} |
||
700 |
} |
||
701 |
|||
702 |
|||
703 |
978 |
numsnpairs += totaltrans; |
|
704 |
|||
705 |
✓✓ | 978 |
if (ds > num_start_states) |
706 |
951 |
check_for_backing_up (ds, state); |
|
707 |
|||
708 |
✗✓ | 978 |
if (nultrans) { |
709 |
nultrans[ds] = state[NUL_ec]; |
||
710 |
state[NUL_ec] = 0; /* remove transition */ |
||
711 |
} |
||
712 |
|||
713 |
✗✓ | 978 |
if (fulltbl) { |
714 |
|||
715 |
/* Each time we hit here, it's another td_hilen, so we realloc. */ |
||
716 |
yynxt_tbl->td_hilen++; |
||
717 |
yynxt_tbl->td_data = yynxt_data = |
||
718 |
(flex_int32_t *) realloc (yynxt_data, |
||
719 |
yynxt_tbl->td_hilen * |
||
720 |
yynxt_tbl->td_lolen * |
||
721 |
sizeof (flex_int32_t)); |
||
722 |
|||
723 |
|||
724 |
if (gentables) |
||
725 |
outn (" {"); |
||
726 |
|||
727 |
/* Supply array's 0-element. */ |
||
728 |
if (ds == end_of_buffer_state) { |
||
729 |
mk2data (-end_of_buffer_state); |
||
730 |
yynxt_data[yynxt_curr++] = |
||
731 |
-end_of_buffer_state; |
||
732 |
} |
||
733 |
else { |
||
734 |
mk2data (end_of_buffer_state); |
||
735 |
yynxt_data[yynxt_curr++] = |
||
736 |
end_of_buffer_state; |
||
737 |
} |
||
738 |
|||
739 |
for (i = 1; i < num_full_table_rows; ++i) { |
||
740 |
/* Jams are marked by negative of state |
||
741 |
* number. |
||
742 |
*/ |
||
743 |
mk2data (state[i] ? state[i] : -ds); |
||
744 |
yynxt_data[yynxt_curr++] = |
||
745 |
state[i] ? state[i] : -ds; |
||
746 |
} |
||
747 |
|||
748 |
dataflush (); |
||
749 |
if (gentables) |
||
750 |
outn (" },\n"); |
||
751 |
} |
||
752 |
|||
753 |
✗✓ | 978 |
else if (fullspd) |
754 |
place_state (state, ds, totaltrans); |
||
755 |
|||
756 |
✓✓ | 978 |
else if (ds == end_of_buffer_state) |
757 |
/* Special case this state to make sure it does what |
||
758 |
* it's supposed to, i.e., jam on end-of-buffer. |
||
759 |
*/ |
||
760 |
5 |
stack1 (ds, 0, 0, JAMSTATE); |
|
761 |
|||
762 |
else { /* normal, compressed state */ |
||
763 |
|||
764 |
/* Determine which destination state is the most |
||
765 |
* common, and how many transitions to it there are. |
||
766 |
*/ |
||
767 |
|||
768 |
973 |
comfreq = 0; |
|
769 |
973 |
comstate = 0; |
|
770 |
|||
771 |
✓✓ | 4471 |
for (i = 1; i <= targptr; ++i) |
772 |
✓✓ | 3498 |
if (targfreq[i] > comfreq) { |
773 |
1113 |
comfreq = targfreq[i]; |
|
774 |
1113 |
comstate = targstate[i]; |
|
775 |
} |
||
776 |
|||
777 |
973 |
bldtbl (state, ds, totaltrans, comstate, comfreq); |
|
778 |
} |
||
779 |
} |
||
780 |
|||
781 |
✗✓ | 5 |
if (fulltbl) { |
782 |
dataend (); |
||
783 |
if (tablesext) { |
||
784 |
yytbl_data_compress (yynxt_tbl); |
||
785 |
if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0) |
||
786 |
flexerror (_ |
||
787 |
("Could not write yynxt_tbl[][]")); |
||
788 |
} |
||
789 |
if (yynxt_tbl) { |
||
790 |
yytbl_data_destroy (yynxt_tbl); |
||
791 |
yynxt_tbl = 0; |
||
792 |
} |
||
793 |
} |
||
794 |
|||
795 |
✓✗ | 5 |
else if (!fullspd) { |
796 |
5 |
cmptmps (); /* create compressed template entries */ |
|
797 |
|||
798 |
/* Create tables for all the states with only one |
||
799 |
* out-transition. |
||
800 |
*/ |
||
801 |
✓✓ | 143 |
while (onesp > 0) { |
802 |
133 |
mk1tbl (onestate[onesp], onesym[onesp], |
|
803 |
onenext[onesp], onedef[onesp]); |
||
804 |
133 |
--onesp; |
|
805 |
} |
||
806 |
|||
807 |
5 |
mkdeftbl (); |
|
808 |
} |
||
809 |
|||
810 |
5 |
free ((void *) accset); |
|
811 |
5 |
free ((void *) nset); |
|
812 |
5 |
} |
|
813 |
|||
814 |
|||
815 |
/* snstods - converts a set of ndfa states into a dfa state |
||
816 |
* |
||
817 |
* synopsis |
||
818 |
* is_new_state = snstods( int sns[numstates], int numstates, |
||
819 |
* int accset[num_rules+1], int nacc, |
||
820 |
* int hashval, int *newds_addr ); |
||
821 |
* |
||
822 |
* On return, the dfa state number is in newds. |
||
823 |
*/ |
||
824 |
|||
825 |
int snstods (sns, numstates, accset, nacc, hashval, newds_addr) |
||
826 |
int sns[], numstates, accset[], nacc, hashval, *newds_addr; |
||
827 |
3525 |
{ |
|
828 |
3525 |
int didsort = 0; |
|
829 |
int i, j; |
||
830 |
int newds, *oldsns; |
||
831 |
|||
832 |
✓✓ | 535019 |
for (i = 1; i <= lastdfa; ++i) |
833 |
✓✓ | 534041 |
if (hashval == dhash[i]) { |
834 |
✓✓ | 2593 |
if (numstates == dfasiz[i]) { |
835 |
2548 |
oldsns = dss[i]; |
|
836 |
|||
837 |
✓✗ | 2548 |
if (!didsort) { |
838 |
/* We sort the states in sns so we |
||
839 |
* can compare it to oldsns quickly. |
||
840 |
*/ |
||
841 |
2548 |
qsort (&sns [1], numstates, sizeof (sns [1]), intcmp); |
|
842 |
2548 |
didsort = 1; |
|
843 |
} |
||
844 |
|||
845 |
✓✓ | 13408 |
for (j = 1; j <= numstates; ++j) |
846 |
✓✓ | 10861 |
if (sns[j] != oldsns[j]) |
847 |
1 |
break; |
|
848 |
|||
849 |
✓✓ | 2548 |
if (j > numstates) { |
850 |
2547 |
++dfaeql; |
|
851 |
2547 |
*newds_addr = i; |
|
852 |
2547 |
return 0; |
|
853 |
} |
||
854 |
|||
855 |
1 |
++hshcol; |
|
856 |
} |
||
857 |
|||
858 |
else |
||
859 |
45 |
++hshsave; |
|
860 |
} |
||
861 |
|||
862 |
/* Make a new dfa. */ |
||
863 |
|||
864 |
✗✓ | 978 |
if (++lastdfa >= current_max_dfas) |
865 |
increase_max_dfas (); |
||
866 |
|||
867 |
978 |
newds = lastdfa; |
|
868 |
|||
869 |
978 |
dss[newds] = allocate_integer_array (numstates + 1); |
|
870 |
|||
871 |
/* If we haven't already sorted the states in sns, we do so now, |
||
872 |
* so that future comparisons with it can be made quickly. |
||
873 |
*/ |
||
874 |
|||
875 |
✓✓ | 978 |
if (!didsort) |
876 |
977 |
qsort (&sns [1], numstates, sizeof (sns [1]), intcmp); |
|
877 |
|||
878 |
✓✓ | 8237 |
for (i = 1; i <= numstates; ++i) |
879 |
7259 |
dss[newds][i] = sns[i]; |
|
880 |
|||
881 |
978 |
dfasiz[newds] = numstates; |
|
882 |
978 |
dhash[newds] = hashval; |
|
883 |
|||
884 |
✓✓ | 978 |
if (nacc == 0) { |
885 |
✓✓ | 22 |
if (reject) |
886 |
3 |
dfaacc[newds].dfaacc_set = (int *) 0; |
|
887 |
else |
||
888 |
19 |
dfaacc[newds].dfaacc_state = 0; |
|
889 |
|||
890 |
22 |
accsiz[newds] = 0; |
|
891 |
} |
||
892 |
|||
893 |
✓✓ | 956 |
else if (reject) { |
894 |
/* We sort the accepting set in increasing order so the |
||
895 |
* disambiguating rule that the first rule listed is considered |
||
896 |
* match in the event of ties will work. |
||
897 |
*/ |
||
898 |
|||
899 |
8 |
qsort (&accset [1], nacc, sizeof (accset [1]), intcmp); |
|
900 |
|||
901 |
8 |
dfaacc[newds].dfaacc_set = |
|
902 |
allocate_integer_array (nacc + 1); |
||
903 |
|||
904 |
/* Save the accepting set for later */ |
||
905 |
✓✓ | 29 |
for (i = 1; i <= nacc; ++i) { |
906 |
21 |
dfaacc[newds].dfaacc_set[i] = accset[i]; |
|
907 |
|||
908 |
✓✗ | 21 |
if (accset[i] <= num_rules) |
909 |
/* Who knows, perhaps a REJECT can yield |
||
910 |
* this rule. |
||
911 |
*/ |
||
912 |
21 |
rule_useful[accset[i]] = true; |
|
913 |
} |
||
914 |
|||
915 |
8 |
accsiz[newds] = nacc; |
|
916 |
} |
||
917 |
|||
918 |
else { |
||
919 |
/* Find lowest numbered rule so the disambiguating rule |
||
920 |
* will work. |
||
921 |
*/ |
||
922 |
948 |
j = num_rules + 1; |
|
923 |
|||
924 |
✓✓ | 2125 |
for (i = 1; i <= nacc; ++i) |
925 |
✓✓ | 1177 |
if (accset[i] < j) |
926 |
1001 |
j = accset[i]; |
|
927 |
|||
928 |
948 |
dfaacc[newds].dfaacc_state = j; |
|
929 |
|||
930 |
✓✗ | 948 |
if (j <= num_rules) |
931 |
948 |
rule_useful[j] = true; |
|
932 |
} |
||
933 |
|||
934 |
978 |
*newds_addr = newds; |
|
935 |
|||
936 |
978 |
return 1; |
|
937 |
} |
||
938 |
|||
939 |
|||
940 |
/* symfollowset - follow the symbol transitions one step |
||
941 |
* |
||
942 |
* synopsis |
||
943 |
* numstates = symfollowset( int ds[current_max_dfa_size], int dsize, |
||
944 |
* int transsym, int nset[current_max_dfa_size] ); |
||
945 |
*/ |
||
946 |
|||
947 |
int symfollowset (ds, dsize, transsym, nset) |
||
948 |
int ds[], dsize, transsym, nset[]; |
||
949 |
3498 |
{ |
|
950 |
int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist; |
||
951 |
|||
952 |
3498 |
numstates = 0; |
|
953 |
|||
954 |
✓✓ | 45617 |
for (i = 1; i <= dsize; ++i) { /* for each nfa state ns in the state set of ds */ |
955 |
42119 |
ns = ds[i]; |
|
956 |
42119 |
sym = transchar[ns]; |
|
957 |
42119 |
tsp = trans1[ns]; |
|
958 |
|||
959 |
✓✓ | 42119 |
if (sym < 0) { /* it's a character class */ |
960 |
5624 |
sym = -sym; |
|
961 |
5624 |
ccllist = cclmap[sym]; |
|
962 |
5624 |
lenccl = ccllen[sym]; |
|
963 |
|||
964 |
✓✓ | 5624 |
if (cclng[sym]) { |
965 |
✓✓ | 11408 |
for (j = 0; j < lenccl; ++j) { |
966 |
/* Loop through negated character |
||
967 |
* class. |
||
968 |
*/ |
||
969 |
10544 |
ch = ccltbl[ccllist + j]; |
|
970 |
|||
971 |
✗✓ | 10544 |
if (ch == 0) |
972 |
ch = NUL_ec; |
||
973 |
|||
974 |
✓✓ | 10544 |
if (ch > transsym) |
975 |
/* Transsym isn't in negated |
||
976 |
* ccl. |
||
977 |
*/ |
||
978 |
1417 |
break; |
|
979 |
|||
980 |
✓✓ | 9127 |
else if (ch == transsym) |
981 |
/* next 2 */ |
||
982 |
744 |
goto bottom; |
|
983 |
} |
||
984 |
|||
985 |
/* Didn't find transsym in ccl. */ |
||
986 |
2281 |
nset[++numstates] = tsp; |
|
987 |
} |
||
988 |
|||
989 |
else |
||
990 |
✓✓ | 10156 |
for (j = 0; j < lenccl; ++j) { |
991 |
9427 |
ch = ccltbl[ccllist + j]; |
|
992 |
|||
993 |
✗✓ | 9427 |
if (ch == 0) |
994 |
ch = NUL_ec; |
||
995 |
|||
996 |
✓✓ | 9427 |
if (ch > transsym) |
997 |
728 |
break; |
|
998 |
✓✓ | 8699 |
else if (ch == transsym) { |
999 |
1142 |
nset[++numstates] = tsp; |
|
1000 |
1142 |
break; |
|
1001 |
} |
||
1002 |
} |
||
1003 |
} |
||
1004 |
|||
1005 |
✓✓ | 36495 |
else if (sym == SYM_EPSILON) { /* do nothing */ |
1006 |
} |
||
1007 |
|||
1008 |
✓✓ | 24782 |
else if (ABS (ecgroup[sym]) == transsym) |
1009 |
2843 |
nset[++numstates] = tsp; |
|
1010 |
|||
1011 |
42119 |
bottom:; |
|
1012 |
} |
||
1013 |
|||
1014 |
3498 |
return numstates; |
|
1015 |
} |
||
1016 |
|||
1017 |
|||
1018 |
/* sympartition - partition characters with same out-transitions |
||
1019 |
* |
||
1020 |
* synopsis |
||
1021 |
* sympartition( int ds[current_max_dfa_size], int numstates, |
||
1022 |
* int symlist[numecs], int duplist[numecs] ); |
||
1023 |
*/ |
||
1024 |
|||
1025 |
void sympartition (ds, numstates, symlist, duplist) |
||
1026 |
int ds[], numstates; |
||
1027 |
int symlist[], duplist[]; |
||
1028 |
978 |
{ |
|
1029 |
int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich; |
||
1030 |
|||
1031 |
/* Partitioning is done by creating equivalence classes for those |
||
1032 |
* characters which have out-transitions from the given state. Thus |
||
1033 |
* we are really creating equivalence classes of equivalence classes. |
||
1034 |
*/ |
||
1035 |
|||
1036 |
✓✓ | 53534 |
for (i = 1; i <= numecs; ++i) { /* initialize equivalence class list */ |
1037 |
52556 |
duplist[i] = i - 1; |
|
1038 |
52556 |
dupfwd[i] = i + 1; |
|
1039 |
} |
||
1040 |
|||
1041 |
978 |
duplist[1] = NIL; |
|
1042 |
978 |
dupfwd[numecs] = NIL; |
|
1043 |
|||
1044 |
✓✓ | 8237 |
for (i = 1; i <= numstates; ++i) { |
1045 |
7259 |
ns = ds[i]; |
|
1046 |
7259 |
tch = transchar[ns]; |
|
1047 |
|||
1048 |
✓✓ | 7259 |
if (tch != SYM_EPSILON) { |
1049 |
✓✗✗✓ |
4177 |
if (tch < -lastccl || tch >= csize) { |
1050 |
flexfatal (_ |
||
1051 |
("bad transition character detected in sympartition()")); |
||
1052 |
} |
||
1053 |
|||
1054 |
✓✓ | 4177 |
if (tch >= 0) { /* character transition */ |
1055 |
2843 |
int ec = ecgroup[tch]; |
|
1056 |
|||
1057 |
2843 |
mkechar (ec, dupfwd, duplist); |
|
1058 |
2843 |
symlist[ec] = 1; |
|
1059 |
} |
||
1060 |
|||
1061 |
else { /* character class */ |
||
1062 |
1334 |
tch = -tch; |
|
1063 |
|||
1064 |
1334 |
lenccl = ccllen[tch]; |
|
1065 |
1334 |
cclp = cclmap[tch]; |
|
1066 |
1334 |
mkeccl (ccltbl + cclp, lenccl, dupfwd, |
|
1067 |
duplist, numecs, NUL_ec); |
||
1068 |
|||
1069 |
✓✓ | 1334 |
if (cclng[tch]) { |
1070 |
754 |
j = 0; |
|
1071 |
|||
1072 |
✓✓ | 4245 |
for (k = 0; k < lenccl; ++k) { |
1073 |
3491 |
ich = ccltbl[cclp + k]; |
|
1074 |
|||
1075 |
✗✓ | 3491 |
if (ich == 0) |
1076 |
ich = NUL_ec; |
||
1077 |
|||
1078 |
✓✓ | 24538 |
for (++j; j < ich; ++j) |
1079 |
21047 |
symlist[j] = 1; |
|
1080 |
} |
||
1081 |
|||
1082 |
✓✓ | 20475 |
for (++j; j <= numecs; ++j) |
1083 |
19721 |
symlist[j] = 1; |
|
1084 |
} |
||
1085 |
|||
1086 |
else |
||
1087 |
✓✓ | 11659 |
for (k = 0; k < lenccl; ++k) { |
1088 |
11079 |
ich = ccltbl[cclp + k]; |
|
1089 |
|||
1090 |
✗✓ | 11079 |
if (ich == 0) |
1091 |
ich = NUL_ec; |
||
1092 |
|||
1093 |
11079 |
symlist[ich] = 1; |
|
1094 |
} |
||
1095 |
} |
||
1096 |
} |
||
1097 |
} |
||
1098 |
978 |
} |
Generated by: GCOVR (Version 3.3) |