GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: usr.bin/systat/pftop.c Lines: 0 740 0.0 %
Date: 2016-12-06 Branches: 0 661 0.0 %

Line Branch Exec Source
1
/* $OpenBSD: pftop.c,v 1.34 2016/04/13 05:25:45 jasper Exp $	 */
2
/*
3
 * Copyright (c) 2001, 2007 Can Erkin Acar
4
 * Copyright (c) 2001 Daniel Hartmeier
5
 * All rights reserved.
6
 *
7
 * Redistribution and use in source and binary forms, with or without
8
 * modification, are permitted provided that the following conditions
9
 * are met:
10
 *
11
 *    - Redistributions of source code must retain the above copyright
12
 *      notice, this list of conditions and the following disclaimer.
13
 *    - Redistributions in binary form must reproduce the above
14
 *      copyright notice, this list of conditions and the following
15
 *      disclaimer in the documentation and/or other materials provided
16
 *      with the distribution.
17
 *
18
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22
 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
26
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29
 * POSSIBILITY OF SUCH DAMAGE.
30
 *
31
 */
32
33
#include <sys/types.h>
34
#include <sys/ioctl.h>
35
#include <sys/socket.h>
36
37
#include <net/if.h>
38
#include <netinet/in.h>
39
#include <netinet/tcp.h>
40
#include <netinet/tcp_fsm.h>
41
#include <net/pfvar.h>
42
#include <arpa/inet.h>
43
44
#include <net/hfsc.h>
45
46
#include <ctype.h>
47
#include <curses.h>
48
#include <err.h>
49
#include <errno.h>
50
#include <fcntl.h>
51
#include <netdb.h>
52
#include <signal.h>
53
#include <stdio.h>
54
#include <stdlib.h>
55
#include <string.h>
56
#include <unistd.h>
57
#include <limits.h>
58
#include <stdarg.h>
59
60
#include "systat.h"
61
#include "engine.h"
62
#include "cache.h"
63
64
extern const char *tcpstates[];
65
66
#define MIN_NUM_STATES 1024
67
#define NUM_STATE_INC  1024
68
69
#define DEFAULT_CACHE_SIZE 10000
70
71
/* XXX must also check type before use */
72
#define PT_ADDR(x) (&(x)->addr.v.a.addr)
73
74
/* XXX must also check type before use */
75
#define PT_MASK(x) (&(x)->addr.v.a.mask)
76
77
#define PT_NOROUTE(x) ((x)->addr.type == PF_ADDR_NOROUTE)
78
79
/* view management */
80
int select_states(void);
81
int read_states(void);
82
void sort_states(void);
83
void print_states(void);
84
85
int select_rules(void);
86
int read_rules(void);
87
void print_rules(void);
88
89
int select_queues(void);
90
int read_queues(void);
91
void print_queues(void);
92
93
void update_cache(void);
94
95
/* qsort callbacks */
96
int sort_size_callback(const void *s1, const void *s2);
97
int sort_exp_callback(const void *s1, const void *s2);
98
int sort_pkt_callback(const void *s1, const void *s2);
99
int sort_age_callback(const void *s1, const void *s2);
100
int sort_sa_callback(const void *s1, const void *s2);
101
int sort_sp_callback(const void *s1, const void *s2);
102
int sort_da_callback(const void *s1, const void *s2);
103
int sort_dp_callback(const void *s1, const void *s2);
104
int sort_rate_callback(const void *s1, const void *s2);
105
int sort_peak_callback(const void *s1, const void *s2);
106
int pf_dev = -1;
107
108
struct sc_ent **state_cache = NULL;
109
struct pfsync_state *state_buf = NULL;
110
int state_buf_len = 0;
111
u_int32_t *state_ord = NULL;
112
u_int32_t num_states = 0;
113
u_int32_t num_states_all = 0;
114
u_int32_t num_rules = 0;
115
u_int32_t num_queues = 0;
116
int cachestates = 0;
117
118
char *filter_string = NULL;
119
120
#define MIN_LABEL_SIZE 5
121
#define ANCHOR_FLD_SIZE 12
122
123
/* Define fields */
124
field_def fields[] = {
125
	{"SRC", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
126
	{"DEST", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
127
	{"GW", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
128
	{"STATE", 5, 23, 18, FLD_ALIGN_COLUMN, -1, 0, 0, 0},
129
	{"AGE", 5, 9, 4, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
130
	{"EXP", 5, 9, 4, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
131
	{"PR ", 4, 9, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
132
	{"DIR", 1, 3, 2, FLD_ALIGN_CENTER, -1, 0, 0, 0},
133
	{"PKTS", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
134
	{"BYTES", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
135
	{"RULE", 2, 4, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
136
	{"LABEL", MIN_LABEL_SIZE, MIN_LABEL_SIZE, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
137
	{"STATES", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
138
	{"EVAL", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
139
	{"ACTION", 1, 8, 4, FLD_ALIGN_LEFT, -1, 0, 0, 0},
140
	{"LOG", 1, 3, 2, FLD_ALIGN_LEFT, -1, 0, 0, 0},
141
	{"QUICK", 1, 1, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
142
	{"KS", 1, 1, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
143
	{"IF", 4, 6, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
144
	{"INFO", 40, 80, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
145
	{"MAX", 3, 5, 2, FLD_ALIGN_RIGHT, -1, 0, 0},
146
	{"RATE", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
147
	{"AVG", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
148
	{"PEAK", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
149
	{"ANCHOR", 6, 16, 1, FLD_ALIGN_LEFT, -1, 0, 0},
150
	{"QUEUE", 15, 30, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
151
	{"BW", 4, 5, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
152
	{"SCH", 3, 4, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
153
	{"PRIO", 1, 4, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
154
	{"DROP_P", 6, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
155
	{"DROP_B", 6, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
156
	{"QLEN", 4, 4, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
157
	{"BORROW", 4, 6, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
158
	{"SUSPENDS", 4, 6, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
159
	{"P/S", 3, 7, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
160
	{"B/S", 4, 7, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0}
161
};
162
163
164
/* for states */
165
#define FLD_SRC     FIELD_ADDR(fields,0)
166
#define FLD_DEST    FIELD_ADDR(fields,1)
167
#define FLD_GW      FIELD_ADDR(fields,2)
168
#define FLD_STATE   FIELD_ADDR(fields,3)
169
#define FLD_AGE     FIELD_ADDR(fields,4)
170
#define FLD_EXP     FIELD_ADDR(fields,5)
171
/* common */
172
#define FLD_PROTO   FIELD_ADDR(fields,6)
173
#define FLD_DIR     FIELD_ADDR(fields,7)
174
#define FLD_PKTS    FIELD_ADDR(fields,8)
175
#define FLD_BYTES   FIELD_ADDR(fields,9)
176
#define FLD_RULE    FIELD_ADDR(fields,10)
177
/* for rules */
178
#define FLD_LABEL   FIELD_ADDR(fields,11)
179
#define FLD_STATS   FIELD_ADDR(fields,12)
180
#define FLD_EVAL    FIELD_ADDR(fields,13)
181
#define FLD_ACTION  FIELD_ADDR(fields,14)
182
#define FLD_LOG     FIELD_ADDR(fields,15)
183
#define FLD_QUICK   FIELD_ADDR(fields,16)
184
#define FLD_KST     FIELD_ADDR(fields,17)
185
#define FLD_IF      FIELD_ADDR(fields,18)
186
#define FLD_RINFO   FIELD_ADDR(fields,19)
187
#define FLD_STMAX   FIELD_ADDR(fields,20)
188
/* other */
189
#define FLD_SI      FIELD_ADDR(fields,21)    /* instantaneous speed */
190
#define FLD_SA      FIELD_ADDR(fields,22)    /* average speed */
191
#define FLD_SP      FIELD_ADDR(fields,23)    /* peak speed */
192
#define FLD_ANCHOR  FIELD_ADDR(fields,24)
193
/* for queues */
194
#define FLD_QUEUE   FIELD_ADDR(fields,25)
195
#define FLD_BANDW   FIELD_ADDR(fields,26)
196
#define FLD_SCHED   FIELD_ADDR(fields,27)
197
#define FLD_PRIO    FIELD_ADDR(fields,28)
198
#define FLD_DROPP   FIELD_ADDR(fields,29)
199
#define FLD_DROPB   FIELD_ADDR(fields,30)
200
#define FLD_QLEN    FIELD_ADDR(fields,31)
201
#define FLD_BORR    FIELD_ADDR(fields,32)
202
#define FLD_SUSP    FIELD_ADDR(fields,33)
203
#define FLD_PKTSPS  FIELD_ADDR(fields,34)
204
#define FLD_BYTESPS FIELD_ADDR(fields,35)
205
206
/* Define views */
207
field_def *view0[] = {
208
	FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_STATE,
209
	FLD_AGE, FLD_EXP, FLD_PKTS, FLD_BYTES, NULL
210
};
211
212
field_def *view1[] = {
213
	FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_GW, FLD_STATE, FLD_AGE,
214
	FLD_EXP, FLD_PKTS, FLD_BYTES, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, NULL
215
};
216
217
field_def *view2[] = {
218
	FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_STATE, FLD_AGE, FLD_EXP,
219
	FLD_PKTS, FLD_BYTES, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, FLD_GW, NULL
220
};
221
222
field_def *view3[] = {
223
	FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_AGE, FLD_EXP, FLD_PKTS,
224
	FLD_BYTES, FLD_STATE, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, FLD_GW, NULL
225
};
226
227
field_def *view4[] = {
228
	FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_PKTS, FLD_BYTES, FLD_STATE,
229
	FLD_AGE, FLD_EXP, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, FLD_GW, NULL
230
};
231
232
field_def *view5[] = {
233
	FLD_RULE, FLD_ANCHOR, FLD_ACTION, FLD_DIR, FLD_LOG, FLD_QUICK, FLD_IF,
234
	FLD_PROTO, FLD_KST, FLD_PKTS, FLD_BYTES, FLD_STATS, FLD_STMAX,
235
	FLD_RINFO, NULL
236
};
237
238
field_def *view6[] = {
239
	FLD_RULE, FLD_LABEL, FLD_PKTS, FLD_BYTES, FLD_STATS, FLD_STMAX,
240
	FLD_ACTION, FLD_DIR, FLD_LOG, FLD_QUICK, FLD_IF, FLD_PROTO,
241
	FLD_ANCHOR, FLD_KST, NULL
242
};
243
244
field_def *view7[] = {
245
	FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST,  FLD_SI, FLD_SP, FLD_SA,
246
	FLD_BYTES, FLD_STATE, FLD_PKTS, FLD_AGE, FLD_EXP, FLD_RULE, FLD_GW, NULL
247
};
248
249
field_def *view8[] = {
250
	FLD_QUEUE, FLD_BANDW, FLD_SCHED, FLD_PRIO, FLD_PKTS, FLD_BYTES,
251
	FLD_DROPP, FLD_DROPB, FLD_QLEN, FLD_BORR, FLD_SUSP, FLD_PKTSPS,
252
	FLD_BYTESPS, NULL
253
};
254
255
/* Define orderings */
256
order_type order_list[] = {
257
	{"none", "none", 'N', NULL},
258
	{"bytes", "bytes", 'B', sort_size_callback},
259
	{"expiry", "exp", 'E', sort_exp_callback},
260
	{"packets", "pkt", 'P', sort_pkt_callback},
261
	{"age", "age", 'A', sort_age_callback},
262
	{"source addr", "src", 'F', sort_sa_callback},
263
	{"dest. addr", "dest", 'T', sort_da_callback},
264
	{"source port", "sport", 'S', sort_sp_callback},
265
	{"dest. port", "dport", 'D', sort_dp_callback},
266
	{"rate", "rate", 'R', sort_rate_callback},
267
	{"peak", "peak", 'K', sort_peak_callback},
268
	{NULL, NULL, 0, NULL}
269
};
270
271
/* Define view managers */
272
struct view_manager state_mgr = {
273
	"States", select_states, read_states, sort_states, print_header,
274
	print_states, keyboard_callback, order_list, NULL
275
};
276
277
struct view_manager rule_mgr = {
278
	"Rules", select_rules, read_rules, NULL, print_header,
279
	print_rules, keyboard_callback, NULL, NULL
280
};
281
282
struct view_manager queue_mgr = {
283
	"Queues", select_queues, read_queues, NULL, print_header,
284
	print_queues, keyboard_callback, NULL, NULL
285
};
286
287
field_view views[] = {
288
	{view2, "states", '8', &state_mgr},
289
	{view5, "rules", '9', &rule_mgr},
290
	{view8, "queues", 'Q', &queue_mgr},
291
	{NULL, NULL, 0, NULL}
292
};
293
294
/* queue structures from pfctl */
295
296
struct queue_stats {
297
	struct hfsc_class_stats	 data;
298
	int			 valid;
299
	struct timeval		 timestamp;
300
};
301
302
struct pfctl_queue_node {
303
	TAILQ_ENTRY(pfctl_queue_node)	entries;
304
	struct pf_queuespec		qs;
305
	struct queue_stats		qstats;
306
	struct queue_stats		qstats_last;
307
	int				depth;
308
};
309
TAILQ_HEAD(qnodes, pfctl_queue_node) qnodes = TAILQ_HEAD_INITIALIZER(qnodes);
310
311
/* ordering functions */
312
313
int
314
sort_size_callback(const void *s1, const void *s2)
315
{
316
	u_int64_t b1 = COUNTER(state_buf[* (u_int32_t *) s1].bytes[0]) +
317
		COUNTER(state_buf[* (u_int32_t *) s1].bytes[1]);
318
	u_int64_t b2 = COUNTER(state_buf[* (u_int32_t *) s2].bytes[0]) +
319
		COUNTER(state_buf[* (u_int32_t *) s2].bytes[1]);
320
	if (b2 > b1)
321
		return sortdir;
322
	if (b2 < b1)
323
		return -sortdir;
324
	return 0;
325
}
326
327
int
328
sort_pkt_callback(const void *s1, const void *s2)
329
{
330
	u_int64_t p1 = COUNTER(state_buf[* (u_int32_t *) s1].packets[0]) +
331
		COUNTER(state_buf[* (u_int32_t *) s1].packets[1]);
332
	u_int64_t p2 = COUNTER(state_buf[* (u_int32_t *) s2].packets[0]) +
333
		COUNTER(state_buf[* (u_int32_t *) s2].packets[1]);
334
	if (p2 > p1)
335
		return sortdir;
336
	if (p2 < p1)
337
		return -sortdir;
338
	return 0;
339
}
340
341
int
342
sort_age_callback(const void *s1, const void *s2)
343
{
344
	if (ntohl(state_buf[* (u_int32_t *) s2].creation) >
345
	    ntohl(state_buf[* (u_int32_t *) s1].creation))
346
		return sortdir;
347
	if (ntohl(state_buf[* (u_int32_t *) s2].creation) <
348
	    ntohl(state_buf[* (u_int32_t *) s1].creation))
349
		return -sortdir;
350
	return 0;
351
}
352
353
int
354
sort_exp_callback(const void *s1, const void *s2)
355
{
356
	if (ntohl(state_buf[* (u_int32_t *) s2].expire) >
357
	    ntohl(state_buf[* (u_int32_t *) s1].expire))
358
		return sortdir;
359
	if (ntohl(state_buf[* (u_int32_t *) s2].expire) <
360
	    ntohl(state_buf[* (u_int32_t *) s1].expire))
361
		return -sortdir;
362
	return 0;
363
}
364
365
int
366
sort_rate_callback(const void *s1, const void *s2)
367
{
368
	struct sc_ent *e1 = state_cache[* (u_int32_t *) s1];
369
	struct sc_ent *e2 = state_cache[* (u_int32_t *) s2];
370
371
	if (e1 == NULL)
372
		return sortdir;
373
	if (e2 == NULL)
374
		return -sortdir;
375
376
	if (e2->rate > e1 -> rate)
377
		return sortdir;
378
	if (e2->rate < e1 -> rate)
379
		return -sortdir;
380
	return 0;
381
}
382
383
int
384
sort_peak_callback(const void *s1, const void *s2)
385
{
386
	struct sc_ent *e1 = state_cache[* (u_int32_t *) s1];
387
	struct sc_ent *e2 = state_cache[* (u_int32_t *) s2];
388
389
	if (e2 == NULL)
390
		return -sortdir;
391
	if (e1 == NULL || e2 == NULL)
392
		return 0;
393
394
	if (e2->peak > e1 -> peak)
395
		return sortdir;
396
	if (e2->peak < e1 -> peak)
397
		return -sortdir;
398
	return 0;
399
}
400
401
int
402
compare_addr(int af, const struct pf_addr *a, const struct pf_addr *b)
403
{
404
	switch (af) {
405
	case AF_INET:
406
		if (ntohl(a->addr32[0]) > ntohl(b->addr32[0]))
407
			return 1;
408
		if (a->addr32[0] != b->addr32[0])
409
			return -1;
410
		break;
411
	case AF_INET6:
412
		if (ntohl(a->addr32[0]) > ntohl(b->addr32[0]))
413
			return 1;
414
		if (a->addr32[0] != b->addr32[0])
415
			return -1;
416
		if (ntohl(a->addr32[1]) > ntohl(b->addr32[1]))
417
			return 1;
418
		if (a->addr32[1] != b->addr32[1])
419
			return -1;
420
		if (ntohl(a->addr32[2]) > ntohl(b->addr32[2]))
421
			return 1;
422
		if (a->addr32[2] != b->addr32[2])
423
			return -1;
424
		if (ntohl(a->addr32[3]) > ntohl(b->addr32[3]))
425
			return 1;
426
		if (a->addr32[3] != b->addr32[3])
427
			return -1;
428
		break;
429
	}
430
431
	return 0;
432
}
433
434
static __inline int
435
sort_addr_callback(const struct pfsync_state *s1,
436
		   const struct pfsync_state *s2, int dir)
437
{
438
	const struct pf_addr *aa, *ab;
439
	u_int16_t pa, pb;
440
	int af, side, ret, ii, io;
441
442
	side = s1->direction == PF_IN ? PF_SK_STACK : PF_SK_WIRE;
443
444
	if (s1->key[side].af > s2->key[side].af)
445
		return sortdir;
446
	if (s1->key[side].af < s2->key[side].af)
447
		return -sortdir;
448
449
	ii = io = 0;
450
451
	if (dir == PF_OUT)	/* looking for source addr */
452
		io = 1;
453
	else			/* looking for dest addr */
454
		ii = 1;
455
456
	if (s1->key[PF_SK_STACK].af != s1->key[PF_SK_WIRE].af) {
457
		dir = PF_OUT;
458
		side = PF_SK_STACK;
459
	} else {
460
		dir = s1->direction;
461
		side = PF_SK_WIRE;
462
	}
463
464
	if (dir == PF_IN) {
465
		aa = &s1->key[PF_SK_STACK].addr[ii];
466
		pa =  s1->key[PF_SK_STACK].port[ii];
467
		af = s1->key[PF_SK_STACK].af;
468
	} else {
469
		aa = &s1->key[side].addr[io];
470
		pa =  s1->key[side].port[io];
471
		af = s1->key[side].af;
472
	}
473
474
	if (s2->key[PF_SK_STACK].af != s2->key[PF_SK_WIRE].af) {
475
		dir = PF_OUT;
476
		side = PF_SK_STACK;
477
	} else {
478
		dir = s2->direction;
479
		side = PF_SK_WIRE;
480
	}
481
482
	if (dir == PF_IN) {
483
		ab = &s2->key[PF_SK_STACK].addr[ii];
484
		pb =  s2->key[PF_SK_STACK].port[ii];
485
		af = s1->key[PF_SK_STACK].af;
486
	} else {
487
		ab = &s2->key[side].addr[io];
488
		pb =  s2->key[side].port[io];
489
		af = s1->key[side].af;
490
	}
491
492
	ret = compare_addr(af, aa, ab);
493
	if (ret)
494
		return ret * sortdir;
495
496
	if (ntohs(pa) > ntohs(pb))
497
		return sortdir;
498
	return -sortdir;
499
}
500
501
static __inline int
502
sort_port_callback(const struct pfsync_state *s1,
503
		   const struct pfsync_state *s2, int dir)
504
{
505
	const struct pf_addr *aa, *ab;
506
	u_int16_t pa, pb;
507
	int af, side, ret, ii, io;
508
509
	side = s1->direction == PF_IN ? PF_SK_STACK : PF_SK_WIRE;
510
511
	if (s1->key[side].af > s2->key[side].af)
512
		return sortdir;
513
	if (s1->key[side].af < s2->key[side].af)
514
		return -sortdir;
515
516
	ii = io = 0;
517
518
	if (dir == PF_OUT)	/* looking for source addr */
519
		io = 1;
520
	else			/* looking for dest addr */
521
		ii = 1;
522
523
	if (s1->key[PF_SK_STACK].af != s1->key[PF_SK_WIRE].af) {
524
		dir = PF_OUT;
525
		side = PF_SK_STACK;
526
	} else {
527
		dir = s1->direction;
528
		side = PF_SK_WIRE;
529
	}
530
531
	if (dir == PF_IN) {
532
		aa = &s1->key[PF_SK_STACK].addr[ii];
533
		pa =  s1->key[PF_SK_STACK].port[ii];
534
		af = s1->key[PF_SK_STACK].af;
535
	} else {
536
		aa = &s1->key[side].addr[io];
537
		pa =  s1->key[side].port[io];
538
		af = s1->key[side].af;
539
	}
540
541
	if (s2->key[PF_SK_STACK].af != s2->key[PF_SK_WIRE].af) {
542
		dir = PF_OUT;
543
		side = PF_SK_STACK;
544
	} else {
545
		dir = s2->direction;
546
		side = PF_SK_WIRE;
547
	}
548
549
	if (dir == PF_IN) {
550
		ab = &s2->key[PF_SK_STACK].addr[ii];
551
		pb =  s2->key[PF_SK_STACK].port[ii];
552
		af = s1->key[PF_SK_STACK].af;
553
	} else {
554
		ab = &s2->key[side].addr[io];
555
		pb =  s2->key[side].port[io];
556
		af = s1->key[side].af;
557
	}
558
559
560
	if (ntohs(pa) > ntohs(pb))
561
		return sortdir;
562
	if (ntohs(pa) < ntohs(pb))
563
		return - sortdir;
564
565
	ret = compare_addr(af, aa, ab);
566
	if (ret)
567
		return ret * sortdir;
568
	return -sortdir;
569
}
570
571
int
572
sort_sa_callback(const void *p1, const void *p2)
573
{
574
	struct pfsync_state *s1 = state_buf + (* (u_int32_t *) p1);
575
	struct pfsync_state *s2 = state_buf + (* (u_int32_t *) p2);
576
	return sort_addr_callback(s1, s2, PF_OUT);
577
}
578
579
int
580
sort_da_callback(const void *p1, const void *p2)
581
{
582
	struct pfsync_state *s1 = state_buf + (* (u_int32_t *) p1);
583
	struct pfsync_state *s2 = state_buf + (* (u_int32_t *) p2);
584
	return sort_addr_callback(s1, s2, PF_IN);
585
}
586
587
int
588
sort_sp_callback(const void *p1, const void *p2)
589
{
590
	struct pfsync_state *s1 = state_buf + (* (u_int32_t *) p1);
591
	struct pfsync_state *s2 = state_buf + (* (u_int32_t *) p2);
592
	return sort_port_callback(s1, s2, PF_OUT);
593
}
594
595
int
596
sort_dp_callback(const void *p1, const void *p2)
597
{
598
	struct pfsync_state *s1 = state_buf + (* (u_int32_t *) p1);
599
	struct pfsync_state *s2 = state_buf + (* (u_int32_t *) p2);
600
	return sort_port_callback(s1, s2, PF_IN);
601
}
602
603
void
604
sort_states(void)
605
{
606
	order_type *ordering;
607
608
	if (curr_mgr == NULL)
609
		return;
610
611
	ordering = curr_mgr->order_curr;
612
613
	if (ordering == NULL)
614
		return;
615
	if (ordering->func == NULL)
616
		return;
617
	if (state_buf == NULL)
618
		return;
619
	if (num_states <= 0)
620
		return;
621
622
	mergesort(state_ord, num_states, sizeof(u_int32_t), ordering->func);
623
}
624
625
/* state management functions */
626
627
void
628
alloc_buf(int ns)
629
{
630
	int len;
631
632
	if (ns < MIN_NUM_STATES)
633
		ns = MIN_NUM_STATES;
634
635
	len = ns;
636
637
	if (len >= state_buf_len) {
638
		len += NUM_STATE_INC;
639
		state_buf = reallocarray(state_buf, len,
640
		    sizeof(struct pfsync_state));
641
		state_ord = reallocarray(state_ord, len, sizeof(u_int32_t));
642
		state_cache = reallocarray(state_cache, len,
643
		    sizeof(struct sc_ent *));
644
		if (state_buf == NULL || state_ord == NULL ||
645
		    state_cache == NULL)
646
			err(1, "realloc");
647
		state_buf_len = len;
648
	}
649
}
650
651
int
652
select_states(void)
653
{
654
	num_disp = num_states;
655
	return (0);
656
}
657
658
int
659
read_states(void)
660
{
661
	struct pfioc_states ps;
662
	int n;
663
664
	if (pf_dev == -1)
665
		return -1;
666
667
	for (;;) {
668
		int sbytes = state_buf_len * sizeof(struct pfsync_state);
669
670
		ps.ps_len = sbytes;
671
		ps.ps_buf = (char *) state_buf;
672
673
		if (ioctl(pf_dev, DIOCGETSTATES, &ps) < 0) {
674
			error("DIOCGETSTATES");
675
		}
676
		num_states_all = ps.ps_len / sizeof(struct pfsync_state);
677
678
		if (ps.ps_len < sbytes)
679
			break;
680
681
		alloc_buf(num_states_all);
682
	}
683
684
	num_states =  num_states_all;
685
	for (n = 0; n<num_states_all; n++)
686
		state_ord[n] = n;
687
688
	if (cachestates) {
689
		for (n = 0; n < num_states; n++)
690
			state_cache[n] = cache_state(state_buf + n);
691
		cache_endupdate();
692
	}
693
694
	num_disp = num_states;
695
	return 0;
696
}
697
698
int
699
unmask(struct pf_addr * m, u_int8_t af)
700
{
701
	int i = 31, j = 0, b = 0, msize;
702
	u_int32_t tmp;
703
704
	if (af == AF_INET)
705
		msize = 1;
706
	else
707
		msize = 4;
708
	while (j < msize && m->addr32[j] == 0xffffffff) {
709
		b += 32;
710
		j++;
711
	}
712
	if (j < msize) {
713
		tmp = ntohl(m->addr32[j]);
714
		for (i = 31; tmp & (1 << i); --i)
715
			b++;
716
	}
717
	return (b);
718
}
719
720
/* display functions */
721
722
void
723
tb_print_addr(struct pf_addr * addr, struct pf_addr * mask, int af)
724
{
725
		switch (af) {
726
		case AF_INET: {
727
			tbprintf("%s", inetname(addr->v4));
728
			break;
729
		}
730
		case AF_INET6: {
731
			tbprintf("%s", inet6name(&addr->v6));
732
			break;
733
		}
734
	}
735
736
	if (mask != NULL) {
737
		if (!PF_AZERO(mask, af))
738
			tbprintf("/%u", unmask(mask, af));
739
	}
740
}
741
742
void
743
print_fld_host2(field_def *fld, struct pfsync_state_key *ks,
744
		struct pfsync_state_key *kn, int idx)
745
{
746
	struct pf_addr *as = &ks->addr[idx];
747
	struct pf_addr *an = &kn->addr[idx];
748
749
	u_int16_t ps = ntohs(ks->port[idx]);
750
	u_int16_t pn = ntohs(kn->port[idx]);
751
752
	int asf = ks->af;
753
	int anf = kn->af;
754
755
	if (fld == NULL)
756
		return;
757
758
	if (fld->width < 3) {
759
		print_fld_str(fld, "*");
760
		return;
761
	}
762
763
	tb_start();
764
	tb_print_addr(as, NULL, asf);
765
766
	if (asf == AF_INET)
767
		tbprintf(":%u", ps);
768
	else
769
		tbprintf("[%u]", ps);
770
771
	print_fld_tb(fld);
772
773
	if (asf != anf || PF_ANEQ(as, an, asf) || ps != pn) {
774
		tb_start();
775
		tb_print_addr(an, NULL, anf);
776
777
		if (anf == AF_INET)
778
			tbprintf(":%u", pn);
779
		else
780
			tbprintf("[%u]", pn);
781
		print_fld_tb(FLD_GW);
782
	}
783
784
}
785
786
void
787
print_fld_state(field_def *fld, unsigned int proto,
788
		unsigned int s1, unsigned int s2)
789
{
790
	int len;
791
792
	if (fld == NULL)
793
		return;
794
795
	len = fld->width;
796
	if (len < 1)
797
		return;
798
799
	tb_start();
800
801
	if (proto == IPPROTO_TCP) {
802
		if (s1 <= TCPS_TIME_WAIT && s2 <= TCPS_TIME_WAIT)
803
			tbprintf("%s:%s", tcpstates[s1], tcpstates[s2]);
804
#ifdef PF_TCPS_PROXY_SRC
805
		else if (s1 == PF_TCPS_PROXY_SRC ||
806
			   s2 == PF_TCPS_PROXY_SRC)
807
			tbprintf("PROXY:SRC\n");
808
		else if (s1 == PF_TCPS_PROXY_DST ||
809
			 s2 == PF_TCPS_PROXY_DST)
810
			tbprintf("PROXY:DST\n");
811
#endif
812
		else
813
			tbprintf("<BAD STATE LEVELS>");
814
	} else if (proto == IPPROTO_UDP && s1 < PFUDPS_NSTATES &&
815
		   s2 < PFUDPS_NSTATES) {
816
		const char *states[] = PFUDPS_NAMES;
817
		tbprintf("%s:%s", states[s1], states[s2]);
818
	} else if (proto != IPPROTO_ICMP && s1 < PFOTHERS_NSTATES &&
819
		   s2 < PFOTHERS_NSTATES) {
820
		/* XXX ICMP doesn't really have state levels */
821
		const char *states[] = PFOTHERS_NAMES;
822
		tbprintf("%s:%s", states[s1], states[s2]);
823
	} else {
824
		tbprintf("%u:%u", s1, s2);
825
	}
826
827
	if (strlen(tmp_buf) > len) {
828
		tb_start();
829
		tbprintf("%u:%u", s1, s2);
830
	}
831
832
	print_fld_tb(fld);
833
}
834
835
int
836
print_state(struct pfsync_state * s, struct sc_ent * ent)
837
{
838
	struct pfsync_state_peer *src, *dst;
839
	struct protoent *p;
840
	u_int64_t sz;
841
	int afto, dir;
842
843
	afto = s->key[PF_SK_STACK].af == s->key[PF_SK_WIRE].af ? 0 : 1;
844
	dir = afto ? PF_OUT : s->direction;
845
846
	if (dir == PF_OUT) {
847
		src = &s->src;
848
		dst = &s->dst;
849
	} else {
850
		src = &s->dst;
851
		dst = &s->src;
852
	}
853
854
	p = getprotobynumber(s->proto);
855
856
	if (p != NULL)
857
		print_fld_str(FLD_PROTO, p->p_name);
858
	else
859
		print_fld_uint(FLD_PROTO, s->proto);
860
861
	if (dir == PF_OUT) {
862
		print_fld_host2(FLD_SRC,
863
		    &s->key[afto ? PF_SK_STACK : PF_SK_WIRE],
864
		    &s->key[PF_SK_STACK], 1);
865
		print_fld_host2(FLD_DEST,
866
		    &s->key[afto ? PF_SK_STACK : PF_SK_WIRE],
867
		    &s->key[afto ? PF_SK_WIRE : PF_SK_STACK], 0);
868
	} else {
869
		print_fld_host2(FLD_SRC, &s->key[PF_SK_STACK],
870
		    &s->key[PF_SK_WIRE], 0);
871
		print_fld_host2(FLD_DEST, &s->key[PF_SK_STACK],
872
		    &s->key[PF_SK_WIRE], 1);
873
	}
874
875
	if (dir == PF_OUT)
876
		print_fld_str(FLD_DIR, "Out");
877
	else
878
		print_fld_str(FLD_DIR, "In");
879
880
	print_fld_state(FLD_STATE, s->proto, src->state, dst->state);
881
	print_fld_age(FLD_AGE, ntohl(s->creation));
882
	print_fld_age(FLD_EXP, ntohl(s->expire));
883
884
	sz = COUNTER(s->bytes[0]) + COUNTER(s->bytes[1]);
885
886
	print_fld_size(FLD_PKTS, COUNTER(s->packets[0]) +
887
		       COUNTER(s->packets[1]));
888
	print_fld_size(FLD_BYTES, sz);
889
	print_fld_rate(FLD_SA, (s->creation) ?
890
		       ((double)sz/(double)ntohl(s->creation)) : -1);
891
892
	print_fld_uint(FLD_RULE, ntohl(s->rule));
893
	if (cachestates && ent != NULL) {
894
		print_fld_rate(FLD_SI, ent->rate);
895
		print_fld_rate(FLD_SP, ent->peak);
896
	}
897
898
	end_line();
899
	return 1;
900
}
901
902
void
903
print_states(void)
904
{
905
	int n, count = 0;
906
907
	for (n = dispstart; n < num_disp; n++) {
908
		count += print_state(state_buf + state_ord[n],
909
				     state_cache[state_ord[n]]);
910
		if (maxprint > 0 && count >= maxprint)
911
			break;
912
	}
913
}
914
915
/* rule display */
916
917
struct pf_rule *rules = NULL;
918
u_int32_t alloc_rules = 0;
919
920
int
921
select_rules(void)
922
{
923
	num_disp = num_rules;
924
	return (0);
925
}
926
927
928
void
929
add_rule_alloc(u_int32_t nr)
930
{
931
	if (nr == 0)
932
		return;
933
934
	num_rules += nr;
935
936
	if (rules == NULL) {
937
		rules = reallocarray(NULL, num_rules, sizeof(struct pf_rule));
938
		if (rules == NULL)
939
			err(1, "malloc");
940
		alloc_rules = num_rules;
941
	} else if (num_rules > alloc_rules) {
942
		rules = reallocarray(rules, num_rules, sizeof(struct pf_rule));
943
		if (rules == NULL)
944
			err(1, "realloc");
945
		alloc_rules = num_rules;
946
	}
947
}
948
949
int label_length;
950
951
int
952
read_anchor_rules(char *anchor)
953
{
954
	struct pfioc_rule pr;
955
	u_int32_t nr, num, off;
956
	int len;
957
958
	if (pf_dev < 0)
959
		return (-1);
960
961
	memset(&pr, 0, sizeof(pr));
962
	strlcpy(pr.anchor, anchor, sizeof(pr.anchor));
963
964
	if (ioctl(pf_dev, DIOCGETRULES, &pr)) {
965
		error("anchor %s: %s", anchor, strerror(errno));
966
		return (-1);
967
	}
968
969
	off = num_rules;
970
	num = pr.nr;
971
	add_rule_alloc(num);
972
973
	for (nr = 0; nr < num; ++nr) {
974
		pr.nr = nr;
975
		if (ioctl(pf_dev, DIOCGETRULE, &pr)) {
976
			error("DIOCGETRULE: %s", strerror(errno));
977
			return (-1);
978
		}
979
		/* XXX overload pr.anchor, to store a pointer to
980
		 * anchor name */
981
		pr.rule.anchor = (struct pf_anchor *) anchor;
982
		len = strlen(pr.rule.label);
983
		if (len > label_length)
984
			label_length = len;
985
		rules[off + nr] = pr.rule;
986
	}
987
988
	return (num);
989
}
990
991
struct anchor_name {
992
	char name[PATH_MAX];
993
	struct anchor_name *next;
994
	u_int32_t ref;
995
};
996
997
struct anchor_name *anchor_root = NULL;
998
struct anchor_name *anchor_end = NULL;
999
struct anchor_name *anchor_free = NULL;
1000
1001
struct anchor_name*
1002
alloc_anchor_name(const char *path)
1003
{
1004
	struct anchor_name *a;
1005
1006
	a = anchor_free;
1007
	if (a == NULL) {
1008
		a = malloc(sizeof(struct anchor_name));
1009
		if (a == NULL)
1010
			return (NULL);
1011
	} else
1012
		anchor_free = a->next;
1013
1014
	if (anchor_root == NULL)
1015
		anchor_end = a;
1016
1017
	a->next = anchor_root;
1018
	anchor_root = a;
1019
1020
	a->ref = 0;
1021
	strlcpy(a->name, path, sizeof(a->name));
1022
	return (a);
1023
}
1024
1025
void
1026
reset_anchor_names(void)
1027
{
1028
	if (anchor_end == NULL)
1029
		return;
1030
1031
	anchor_end->next = anchor_free;
1032
	anchor_free = anchor_root;
1033
	anchor_root = anchor_end = NULL;
1034
}
1035
1036
struct pfioc_ruleset ruleset;
1037
char *rs_end = NULL;
1038
1039
int
1040
read_rulesets(const char *path)
1041
{
1042
	char *pre;
1043
	struct anchor_name *a;
1044
	u_int32_t nr, ns;
1045
	int len;
1046
1047
	if (path == NULL)
1048
		ruleset.path[0] = '\0';
1049
	else if (strlcpy(ruleset.path, path, sizeof(ruleset.path)) >=
1050
	    sizeof(ruleset.path))
1051
		 return (-1);
1052
1053
	/* a persistent storage for anchor names */
1054
	a = alloc_anchor_name(ruleset.path);
1055
	if (a == NULL)
1056
		return (-1);
1057
1058
	len = read_anchor_rules(a->name);
1059
	if (len < 0)
1060
		return (-1);
1061
1062
	a->ref += len;
1063
1064
	if (ioctl(pf_dev, DIOCGETRULESETS, &ruleset)) {
1065
		error("DIOCGETRULESETS: %s", strerror(errno));
1066
		return (-1);
1067
	}
1068
1069
	ns = ruleset.nr;
1070
1071
	if (rs_end == NULL)
1072
		rs_end = ruleset.path + sizeof(ruleset.path);
1073
1074
	/* 'pre' tracks the previous level on the anchor */
1075
	pre = strchr(ruleset.path, 0);
1076
	len = rs_end - pre;
1077
	if (len < 1)
1078
		return (-1);
1079
	--len;
1080
1081
	for (nr = 0; nr < ns; ++nr) {
1082
		ruleset.nr = nr;
1083
		if (ioctl(pf_dev, DIOCGETRULESET, &ruleset)) {
1084
			error("DIOCGETRULESET: %s", strerror(errno));
1085
			return (-1);
1086
		}
1087
		*pre = '/';
1088
		if (strlcpy(pre + 1, ruleset.name, len) < len)
1089
			read_rulesets(ruleset.path);
1090
		*pre = '\0';
1091
	}
1092
1093
	return (0);
1094
}
1095
1096
void
1097
compute_anchor_field(void)
1098
{
1099
	struct anchor_name *a;
1100
	int sum, cnt, mx, nx;
1101
	sum = cnt = mx = 0;
1102
1103
	for (a = anchor_root; a != NULL; a = a->next, cnt++) {
1104
		int len;
1105
		if (a->ref == 0)
1106
			continue;
1107
		len = strlen(a->name);
1108
		sum += len;
1109
		if (len > mx)
1110
			mx = len;
1111
	}
1112
1113
	nx = sum/cnt;
1114
	if (nx < ANCHOR_FLD_SIZE)
1115
		nx = (mx < ANCHOR_FLD_SIZE) ? mx : ANCHOR_FLD_SIZE;
1116
1117
	if (FLD_ANCHOR->max_width != mx ||
1118
	    FLD_ANCHOR->norm_width != nx) {
1119
		FLD_ANCHOR->max_width = mx;
1120
		FLD_ANCHOR->norm_width = nx;
1121
		field_setup();
1122
		need_update = 1;
1123
	}
1124
}
1125
1126
int
1127
read_rules(void)
1128
{
1129
	int ret, nw, mw;
1130
	num_rules = 0;
1131
1132
	if (pf_dev == -1)
1133
		return (-1);
1134
1135
	label_length = MIN_LABEL_SIZE;
1136
1137
	reset_anchor_names();
1138
	ret = read_rulesets(NULL);
1139
	compute_anchor_field();
1140
1141
	nw = mw = label_length;
1142
	if (nw > 16)
1143
		nw = 16;
1144
1145
	if (FLD_LABEL->norm_width != nw ||
1146
	    FLD_LABEL->max_width != mw) {
1147
		FLD_LABEL->norm_width = nw;
1148
		FLD_LABEL->max_width = mw;
1149
		field_setup();
1150
		need_update = 1;
1151
	}
1152
1153
	num_disp = num_rules;
1154
	return (ret);
1155
}
1156
1157
void
1158
tb_print_addrw(struct pf_addr_wrap *addr, struct pf_addr *mask, u_int8_t af)
1159
{
1160
	switch (addr->type) {
1161
	case PF_ADDR_ADDRMASK:
1162
		tb_print_addr(&addr->v.a.addr, mask, af);
1163
		break;
1164
	case  PF_ADDR_NOROUTE:
1165
		tbprintf("noroute");
1166
		break;
1167
	case PF_ADDR_DYNIFTL:
1168
		tbprintf("(%s)", addr->v.ifname);
1169
		break;
1170
	case PF_ADDR_TABLE:
1171
		tbprintf("<%s>", addr->v.tblname);
1172
		break;
1173
	default:
1174
		tbprintf("UNKNOWN");
1175
		break;
1176
	}
1177
}
1178
1179
void
1180
tb_print_op(u_int8_t op, const char *a1, const char *a2)
1181
{
1182
	if (op == PF_OP_IRG)
1183
		tbprintf("%s >< %s ", a1, a2);
1184
	else if (op == PF_OP_XRG)
1185
		tbprintf("%s <> %s ", a1, a2);
1186
	else if (op == PF_OP_RRG)
1187
		tbprintf("%s:%s ", a1, a2);
1188
	else if (op == PF_OP_EQ)
1189
		tbprintf("= %s ", a1);
1190
	else if (op == PF_OP_NE)
1191
		tbprintf("!= %s ", a1);
1192
	else if (op == PF_OP_LT)
1193
		tbprintf("< %s ", a1);
1194
	else if (op == PF_OP_LE)
1195
		tbprintf("<= %s ", a1);
1196
	else if (op == PF_OP_GT)
1197
		tbprintf("> %s ", a1);
1198
	else if (op == PF_OP_GE)
1199
		tbprintf(">= %s ", a1);
1200
}
1201
1202
void
1203
tb_print_port(u_int8_t op, u_int16_t p1, u_int16_t p2, char *proto)
1204
{
1205
	char a1[6], a2[6];
1206
	struct servent *s = getservbyport(p1, proto);
1207
1208
	p1 = ntohs(p1);
1209
	p2 = ntohs(p2);
1210
	snprintf(a1, sizeof(a1), "%u", p1);
1211
	snprintf(a2, sizeof(a2), "%u", p2);
1212
	tbprintf("port ");
1213
	if (s != NULL && (op == PF_OP_EQ || op == PF_OP_NE))
1214
		tb_print_op(op, s->s_name, a2);
1215
	else
1216
		tb_print_op(op, a1, a2);
1217
}
1218
1219
void
1220
tb_print_fromto(struct pf_rule_addr *src, struct pf_rule_addr *dst,
1221
		u_int8_t af, u_int8_t proto)
1222
{
1223
	if (
1224
	    PF_AZERO(PT_ADDR(src), AF_INET6) &&
1225
	    PF_AZERO(PT_ADDR(dst), AF_INET6) &&
1226
	    ! PT_NOROUTE(src) && ! PT_NOROUTE(dst) &&
1227
	    PF_AZERO(PT_MASK(src), AF_INET6) &&
1228
	    PF_AZERO(PT_MASK(dst), AF_INET6) &&
1229
	    !src->port_op && !dst->port_op)
1230
		tbprintf("all ");
1231
	else {
1232
		tbprintf("from ");
1233
		if (PT_NOROUTE(src))
1234
			tbprintf("no-route ");
1235
		else if (PF_AZERO(PT_ADDR(src), AF_INET6) &&
1236
			 PF_AZERO(PT_MASK(src), AF_INET6))
1237
			tbprintf("any ");
1238
		else {
1239
			if (src->neg)
1240
				tbprintf("! ");
1241
			tb_print_addrw(&src->addr, PT_MASK(src), af);
1242
			tbprintf(" ");
1243
		}
1244
		if (src->port_op)
1245
			tb_print_port(src->port_op, src->port[0],
1246
				      src->port[1],
1247
				      proto == IPPROTO_TCP ? "tcp" : "udp");
1248
1249
		tbprintf("to ");
1250
		if (PT_NOROUTE(dst))
1251
			tbprintf("no-route ");
1252
		else if (PF_AZERO(PT_ADDR(dst), AF_INET6) &&
1253
			 PF_AZERO(PT_MASK(dst), AF_INET6))
1254
			tbprintf("any ");
1255
		else {
1256
			if (dst->neg)
1257
				tbprintf("! ");
1258
			tb_print_addrw(&dst->addr, PT_MASK(dst), af);
1259
			tbprintf(" ");
1260
		}
1261
		if (dst->port_op)
1262
			tb_print_port(dst->port_op, dst->port[0],
1263
				      dst->port[1],
1264
				      proto == IPPROTO_TCP ? "tcp" : "udp");
1265
	}
1266
}
1267
1268
void
1269
tb_print_ugid(u_int8_t op, unsigned u1, unsigned u2,
1270
	      const char *t, unsigned umax)
1271
{
1272
	char	a1[11], a2[11];
1273
1274
	snprintf(a1, sizeof(a1), "%u", u1);
1275
	snprintf(a2, sizeof(a2), "%u", u2);
1276
1277
	tbprintf("%s ", t);
1278
	if (u1 == umax && (op == PF_OP_EQ || op == PF_OP_NE))
1279
		tb_print_op(op, "unknown", a2);
1280
	else
1281
		tb_print_op(op, a1, a2);
1282
}
1283
1284
void
1285
tb_print_flags(u_int8_t f)
1286
{
1287
	const char *tcpflags = "FSRPAUEW";
1288
	int i;
1289
1290
	for (i = 0; tcpflags[i]; ++i)
1291
		if (f & (1 << i))
1292
			tbprintf("%c", tcpflags[i]);
1293
}
1294
1295
void
1296
print_rule(struct pf_rule *pr)
1297
{
1298
	static const char *actiontypes[] = { "Pass", "Block", "Scrub",
1299
	    "no Scrub", "Nat", "no Nat", "Binat", "no Binat", "Rdr",
1300
	    "no Rdr", "SynProxy Block", "Defer", "Match" };
1301
	int numact = sizeof(actiontypes) / sizeof(char *);
1302
1303
	static const char *routetypes[] = { "", "fastroute", "route-to",
1304
	    "dup-to", "reply-to" };
1305
1306
	int numroute = sizeof(routetypes) / sizeof(char *);
1307
1308
	if (pr == NULL) return;
1309
1310
	print_fld_str(FLD_LABEL, pr->label);
1311
	print_fld_size(FLD_STATS, pr->states_tot);
1312
1313
	print_fld_size(FLD_PKTS, pr->packets[0] + pr->packets[1]);
1314
	print_fld_size(FLD_BYTES, pr->bytes[0] + pr->bytes[1]);
1315
1316
	print_fld_uint(FLD_RULE, pr->nr);
1317
	if (pr->direction == PF_OUT)
1318
		print_fld_str(FLD_DIR, "Out");
1319
	else if (pr->direction == PF_IN)
1320
		print_fld_str(FLD_DIR, "In");
1321
	else
1322
		print_fld_str(FLD_DIR, "Any");
1323
1324
	if (pr->quick)
1325
		print_fld_str(FLD_QUICK, "Quick");
1326
1327
	if (pr->keep_state == PF_STATE_NORMAL)
1328
		print_fld_str(FLD_KST, "Keep");
1329
	else if (pr->keep_state == PF_STATE_MODULATE)
1330
		print_fld_str(FLD_KST, "Mod");
1331
	else if (pr->keep_state == PF_STATE_SYNPROXY)
1332
		print_fld_str(FLD_KST, "Syn");
1333
	if (pr->log == 1)
1334
		print_fld_str(FLD_LOG, "Log");
1335
	else if (pr->log == 2)
1336
		print_fld_str(FLD_LOG, "All");
1337
1338
	if (pr->action >= numact)
1339
		print_fld_uint(FLD_ACTION, pr->action);
1340
	else print_fld_str(FLD_ACTION, actiontypes[pr->action]);
1341
1342
	if (pr->proto) {
1343
		struct protoent *p = getprotobynumber(pr->proto);
1344
1345
		if (p != NULL)
1346
			print_fld_str(FLD_PROTO, p->p_name);
1347
		else
1348
			print_fld_uint(FLD_PROTO, pr->proto);
1349
	}
1350
1351
	if (pr->ifname[0]) {
1352
		tb_start();
1353
		if (pr->ifnot)
1354
			tbprintf("!");
1355
		tbprintf("%s", pr->ifname);
1356
		print_fld_tb(FLD_IF);
1357
	}
1358
	if (pr->max_states)
1359
		print_fld_uint(FLD_STMAX, pr->max_states);
1360
1361
	/* print info field */
1362
1363
	tb_start();
1364
1365
	if (pr->action == PF_DROP) {
1366
		if (pr->rule_flag & PFRULE_RETURNRST)
1367
			tbprintf("return-rst ");
1368
#ifdef PFRULE_RETURN
1369
		else if (pr->rule_flag & PFRULE_RETURN)
1370
			tbprintf("return ");
1371
#endif
1372
#ifdef PFRULE_RETURNICMP
1373
		else if (pr->rule_flag & PFRULE_RETURNICMP)
1374
			tbprintf("return-icmp ");
1375
#endif
1376
		else
1377
			tbprintf("drop ");
1378
	}
1379
1380
	if (pr->rt > 0 && pr->rt < numroute) {
1381
		tbprintf("%s ", routetypes[pr->rt]);
1382
	}
1383
1384
	if (pr->af) {
1385
		if (pr->af == AF_INET)
1386
			tbprintf("inet ");
1387
		else
1388
			tbprintf("inet6 ");
1389
	}
1390
1391
	tb_print_fromto(&pr->src, &pr->dst, pr->af, pr->proto);
1392
1393
	if (pr->uid.op)
1394
		tb_print_ugid(pr->uid.op, pr->uid.uid[0], pr->uid.uid[1],
1395
		        "user", UID_MAX);
1396
	if (pr->gid.op)
1397
		tb_print_ugid(pr->gid.op, pr->gid.gid[0], pr->gid.gid[1],
1398
		        "group", GID_MAX);
1399
1400
	if (pr->action == PF_PASS &&
1401
	    (pr->proto == 0 || pr->proto == IPPROTO_TCP) &&
1402
	    (pr->flags != TH_SYN || pr->flagset != (TH_SYN | TH_ACK) )) {
1403
		tbprintf("flags ");
1404
		if (pr->flags || pr->flagset) {
1405
			tb_print_flags(pr->flags);
1406
			tbprintf("/");
1407
			tb_print_flags(pr->flagset);
1408
		} else
1409
			tbprintf("any ");
1410
	}
1411
1412
	tbprintf(" ");
1413
1414
	if (pr->tos)
1415
		tbprintf("tos 0x%2.2x ", pr->tos);
1416
#ifdef PFRULE_FRAGMENT
1417
	if (pr->rule_flag & PFRULE_FRAGMENT)
1418
		tbprintf("fragment ");
1419
#endif
1420
#ifdef PFRULE_NODF
1421
	if (pr->rule_flag & PFRULE_NODF)
1422
		tbprintf("no-df ");
1423
#endif
1424
#ifdef PFRULE_RANDOMID
1425
	if (pr->rule_flag & PFRULE_RANDOMID)
1426
		tbprintf("random-id ");
1427
#endif
1428
	if (pr->min_ttl)
1429
		tbprintf("min-ttl %d ", pr->min_ttl);
1430
	if (pr->max_mss)
1431
		tbprintf("max-mss %d ", pr->max_mss);
1432
	if (pr->allow_opts)
1433
		tbprintf("allow-opts ");
1434
1435
	/* XXX more missing */
1436
1437
	if (pr->qname[0] && pr->pqname[0])
1438
		tbprintf("queue(%s, %s) ", pr->qname, pr->pqname);
1439
	else if (pr->qname[0])
1440
		tbprintf("queue %s ", pr->qname);
1441
1442
	if (pr->tagname[0])
1443
		tbprintf("tag %s ", pr->tagname);
1444
	if (pr->match_tagname[0]) {
1445
		if (pr->match_tag_not)
1446
			tbprintf("! ");
1447
		tbprintf("tagged %s ", pr->match_tagname);
1448
	}
1449
1450
	print_fld_tb(FLD_RINFO);
1451
1452
	/* XXX anchor field overloaded with anchor name */
1453
	print_fld_str(FLD_ANCHOR, (char *)pr->anchor);
1454
	tb_end();
1455
1456
	end_line();
1457
}
1458
1459
void
1460
print_rules(void)
1461
{
1462
	u_int32_t n, count = 0;
1463
1464
	for (n = dispstart; n < num_rules; n++) {
1465
		print_rule(rules + n);
1466
		count ++;
1467
		if (maxprint > 0 && count >= maxprint)
1468
			break;
1469
	}
1470
}
1471
1472
/* queue display */
1473
struct pfctl_queue_node *
1474
pfctl_find_queue_node(const char *qname, const char *ifname)
1475
{
1476
	struct pfctl_queue_node	*node;
1477
1478
	TAILQ_FOREACH(node, &qnodes, entries)
1479
		if (!strcmp(node->qs.qname, qname)
1480
		    && !(strcmp(node->qs.ifname, ifname)))
1481
			return (node);
1482
	return (NULL);
1483
}
1484
1485
void
1486
pfctl_insert_queue_node(const struct pf_queuespec qs,
1487
    const struct queue_stats qstats)
1488
{
1489
	struct pfctl_queue_node	*node, *parent;
1490
1491
	node = calloc(1, sizeof(struct pfctl_queue_node));
1492
	if (node == NULL)
1493
		err(1, "pfctl_insert_queue_node: calloc");
1494
	memcpy(&node->qs, &qs, sizeof(qs));
1495
	memcpy(&node->qstats, &qstats, sizeof(qstats));
1496
1497
	if (node->qs.parent[0]) {
1498
		parent = pfctl_find_queue_node(node->qs.parent,
1499
		    node->qs.ifname);
1500
		if (parent)
1501
			node->depth = parent->depth + 1;
1502
	}
1503
1504
	TAILQ_INSERT_TAIL(&qnodes, node, entries);
1505
}
1506
1507
int
1508
pfctl_update_qstats(void)
1509
{
1510
	struct pfctl_queue_node	*node;
1511
	struct pfioc_queue	 pq;
1512
	struct pfioc_qstats	 pqs;
1513
	u_int32_t		 mnr, nr;
1514
	struct queue_stats	 qstats;
1515
	static u_int32_t	 last_ticket;
1516
1517
	memset(&pq, 0, sizeof(pq));
1518
	memset(&pqs, 0, sizeof(pqs));
1519
	memset(&qstats, 0, sizeof(qstats));
1520
1521
	if (pf_dev < 0)
1522
		return (-1);
1523
1524
	if (ioctl(pf_dev, DIOCGETQUEUES, &pq)) {
1525
		error("DIOCGETQUEUES: %s", strerror(errno));
1526
		return (-1);
1527
	}
1528
1529
	/* if a new set is found, start over */
1530
	if (pq.ticket != last_ticket)
1531
		while ((node = TAILQ_FIRST(&qnodes)) != NULL) {
1532
			TAILQ_REMOVE(&qnodes, node, entries);
1533
			free(node);
1534
		}
1535
	last_ticket = pq.ticket;
1536
1537
	num_queues = mnr = pq.nr;
1538
	for (nr = 0; nr < mnr; ++nr) {
1539
		pqs.nr = nr;
1540
		pqs.ticket = pq.ticket;
1541
		pqs.buf = &qstats.data;
1542
		pqs.nbytes = sizeof(qstats.data);
1543
		if (ioctl(pf_dev, DIOCGETQSTATS, &pqs)) {
1544
			error("DIOCGETQSTATS: %s", strerror(errno));
1545
			return (-1);
1546
		}
1547
		if (pqs.queue.qname[0] != '_') {
1548
			if (pqs.queue.parent[0] && pqs.queue.parent[0] == '_')
1549
				pqs.queue.parent[0] = '\0';
1550
			qstats.valid = 1;
1551
			gettimeofday(&qstats.timestamp, NULL);
1552
			if ((node = pfctl_find_queue_node(pqs.queue.qname,
1553
			    pqs.queue.ifname)) != NULL) {
1554
				memcpy(&node->qstats_last, &node->qstats,
1555
				    sizeof(struct queue_stats));
1556
				memcpy(&node->qstats, &qstats,
1557
				    sizeof(struct queue_stats));
1558
			} else {
1559
				pfctl_insert_queue_node(pqs.queue, qstats);
1560
			}
1561
		} else
1562
			num_queues--;
1563
	}
1564
	return (0);
1565
}
1566
1567
int
1568
select_queues(void)
1569
{
1570
	num_disp = num_queues;
1571
	return (0);
1572
}
1573
1574
int
1575
read_queues(void)
1576
{
1577
	num_disp = num_queues = 0;
1578
1579
	if (pfctl_update_qstats() < 0)
1580
		return (-1);
1581
	num_disp = num_queues;
1582
1583
	return(0);
1584
}
1585
1586
double
1587
calc_interval(struct timeval *cur_time, struct timeval *last_time)
1588
{
1589
	double	sec;
1590
1591
	sec = (double)(cur_time->tv_sec - last_time->tv_sec) +
1592
	    (double)(cur_time->tv_usec - last_time->tv_usec) / 1000000;
1593
1594
	return (sec);
1595
}
1596
1597
double
1598
calc_rate(u_int64_t new_bytes, u_int64_t last_bytes, double interval)
1599
{
1600
	double	rate;
1601
1602
	rate = (double)(new_bytes - last_bytes) / interval;
1603
	return (rate);
1604
}
1605
1606
double
1607
calc_pps(u_int64_t new_pkts, u_int64_t last_pkts, double interval)
1608
{
1609
	double	pps;
1610
1611
	pps = (double)(new_pkts - last_pkts) / interval;
1612
	return (pps);
1613
}
1614
1615
void
1616
print_queue_node(struct pfctl_queue_node *node)
1617
{
1618
	u_int	rate;
1619
	int 	i;
1620
	double	interval, pps, bps;
1621
	static const char unit[] = " KMG";
1622
1623
	tb_start();
1624
	for (i = 0; i < node->depth; i++)
1625
		tbprintf(" ");
1626
	tbprintf("%s", node->qs.qname);
1627
	if (i == 0 && node->qs.ifname[0])
1628
		tbprintf(" on %s ", node->qs.ifname);
1629
	print_fld_tb(FLD_QUEUE);
1630
1631
	// XXX: missing min, max, burst
1632
	tb_start();
1633
	rate = node->qs.linkshare.m2.absolute;
1634
	for (i = 0; rate >= 1000 && i <= 3; i++)
1635
		rate /= 1000;
1636
	tbprintf("%u%c", rate, unit[i]);
1637
	print_fld_tb(FLD_BANDW);
1638
1639
	if (node->qstats.valid && node->qstats_last.valid)
1640
		interval = calc_interval(&node->qstats.timestamp,
1641
		    &node->qstats_last.timestamp);
1642
	else
1643
		interval = 0;
1644
1645
	print_fld_size(FLD_PKTS, node->qstats.data.xmit_cnt.packets);
1646
	print_fld_size(FLD_BYTES, node->qstats.data.xmit_cnt.bytes);
1647
	print_fld_size(FLD_DROPP, node->qstats.data.drop_cnt.packets);
1648
	print_fld_size(FLD_DROPB, node->qstats.data.drop_cnt.bytes);
1649
	print_fld_size(FLD_QLEN, node->qstats.data.qlength);
1650
1651
	if (interval > 0) {
1652
		pps = calc_pps(node->qstats.data.xmit_cnt.packets,
1653
		    node->qstats_last.data.xmit_cnt.packets, interval);
1654
		bps = calc_rate(node->qstats.data.xmit_cnt.bytes,
1655
		    node->qstats_last.data.xmit_cnt.bytes, interval);
1656
1657
		tb_start();
1658
		if (pps > 0 && pps < 1)
1659
			tbprintf("%-3.1lf", pps);
1660
		else
1661
			tbprintf("%u", (unsigned int)pps);
1662
1663
		print_fld_tb(FLD_PKTSPS);
1664
		print_fld_bw(FLD_BYTESPS, bps);
1665
	}
1666
}
1667
1668
void
1669
print_queues(void)
1670
{
1671
	uint32_t n, count, start;
1672
	struct pfctl_queue_node *node;
1673
1674
	n = count = 0;
1675
	start = dispstart;
1676
1677
	TAILQ_FOREACH(node, &qnodes, entries) {
1678
		if (n < start) {
1679
			n++;
1680
			continue;
1681
		}
1682
		print_queue_node(node);
1683
		end_line();
1684
		count++;
1685
		if (maxprint > 0 && count >= maxprint)
1686
			return;
1687
	}
1688
}
1689
1690
/* main program functions */
1691
1692
void
1693
update_cache(void)
1694
{
1695
	static int pstate = -1;
1696
	if (pstate == cachestates)
1697
		return;
1698
1699
	pstate = cachestates;
1700
	if (cachestates) {
1701
		show_field(FLD_SI);
1702
		show_field(FLD_SP);
1703
		gotsig_alarm = 1;
1704
	} else {
1705
		hide_field(FLD_SI);
1706
		hide_field(FLD_SP);
1707
		need_update = 1;
1708
	}
1709
	field_setup();
1710
}
1711
1712
int
1713
initpftop(void)
1714
{
1715
	struct pf_status status;
1716
	field_view *v;
1717
	int cachesize = DEFAULT_CACHE_SIZE;
1718
1719
	v = views;
1720
	while(v->name != NULL)
1721
		add_view(v++);
1722
1723
	pf_dev = open("/dev/pf", O_RDONLY);
1724
	if (pf_dev == -1) {
1725
		alloc_buf(0);
1726
	} else if (ioctl(pf_dev, DIOCGETSTATUS, &status)) {
1727
		warn("DIOCGETSTATUS");
1728
		alloc_buf(0);
1729
	} else
1730
		alloc_buf(status.states);
1731
1732
	/* initialize cache with given size */
1733
	if (cache_init(cachesize))
1734
		warnx("Failed to initialize cache.");
1735
	else if (interactive && cachesize > 0)
1736
		cachestates = 1;
1737
1738
	update_cache();
1739
1740
	show_field(FLD_STMAX);
1741
	show_field(FLD_ANCHOR);
1742
1743
	return (1);
1744
}