1 |
|
|
/* $OpenBSD: bcrypt.c,v 1.57 2016/08/26 08:25:02 guenther Exp $ */ |
2 |
|
|
|
3 |
|
|
/* |
4 |
|
|
* Copyright (c) 2014 Ted Unangst <tedu@openbsd.org> |
5 |
|
|
* Copyright (c) 1997 Niels Provos <provos@umich.edu> |
6 |
|
|
* |
7 |
|
|
* Permission to use, copy, modify, and distribute this software for any |
8 |
|
|
* purpose with or without fee is hereby granted, provided that the above |
9 |
|
|
* copyright notice and this permission notice appear in all copies. |
10 |
|
|
* |
11 |
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
12 |
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
13 |
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
14 |
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
15 |
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
16 |
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
17 |
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
18 |
|
|
*/ |
19 |
|
|
/* This password hashing algorithm was designed by David Mazieres |
20 |
|
|
* <dm@lcs.mit.edu> and works as follows: |
21 |
|
|
* |
22 |
|
|
* 1. state := InitState () |
23 |
|
|
* 2. state := ExpandKey (state, salt, password) |
24 |
|
|
* 3. REPEAT rounds: |
25 |
|
|
* state := ExpandKey (state, 0, password) |
26 |
|
|
* state := ExpandKey (state, 0, salt) |
27 |
|
|
* 4. ctext := "OrpheanBeholderScryDoubt" |
28 |
|
|
* 5. REPEAT 64: |
29 |
|
|
* ctext := Encrypt_ECB (state, ctext); |
30 |
|
|
* 6. RETURN Concatenate (salt, ctext); |
31 |
|
|
* |
32 |
|
|
*/ |
33 |
|
|
|
34 |
|
|
#include <sys/types.h> |
35 |
|
|
#include <blf.h> |
36 |
|
|
#include <ctype.h> |
37 |
|
|
#include <errno.h> |
38 |
|
|
#include <pwd.h> |
39 |
|
|
#include <stdio.h> |
40 |
|
|
#include <stdlib.h> |
41 |
|
|
#include <string.h> |
42 |
|
|
#include <time.h> |
43 |
|
|
|
44 |
|
|
/* This implementation is adaptable to current computing power. |
45 |
|
|
* You can have up to 2^31 rounds which should be enough for some |
46 |
|
|
* time to come. |
47 |
|
|
*/ |
48 |
|
|
|
49 |
|
|
#define BCRYPT_VERSION '2' |
50 |
|
|
#define BCRYPT_MAXSALT 16 /* Precomputation is just so nice */ |
51 |
|
|
#define BCRYPT_WORDS 6 /* Ciphertext words */ |
52 |
|
|
#define BCRYPT_MINLOGROUNDS 4 /* we have log2(rounds) in salt */ |
53 |
|
|
|
54 |
|
|
#define BCRYPT_SALTSPACE (7 + (BCRYPT_MAXSALT * 4 + 2) / 3 + 1) |
55 |
|
|
#define BCRYPT_HASHSPACE 61 |
56 |
|
|
|
57 |
|
|
char *bcrypt_gensalt(u_int8_t); |
58 |
|
|
|
59 |
|
|
static int encode_base64(char *, const u_int8_t *, size_t); |
60 |
|
|
static int decode_base64(u_int8_t *, size_t, const char *); |
61 |
|
|
|
62 |
|
|
/* |
63 |
|
|
* Generates a salt for this version of crypt. |
64 |
|
|
*/ |
65 |
|
|
static int |
66 |
|
|
bcrypt_initsalt(int log_rounds, uint8_t *salt, size_t saltbuflen) |
67 |
|
|
{ |
68 |
|
|
uint8_t csalt[BCRYPT_MAXSALT]; |
69 |
|
|
|
70 |
|
|
if (saltbuflen < BCRYPT_SALTSPACE) { |
71 |
|
|
errno = EINVAL; |
72 |
|
|
return -1; |
73 |
|
|
} |
74 |
|
|
|
75 |
|
|
arc4random_buf(csalt, sizeof(csalt)); |
76 |
|
|
|
77 |
|
|
if (log_rounds < 4) |
78 |
|
|
log_rounds = 4; |
79 |
|
|
else if (log_rounds > 31) |
80 |
|
|
log_rounds = 31; |
81 |
|
|
|
82 |
|
|
snprintf(salt, saltbuflen, "$2b$%2.2u$", log_rounds); |
83 |
|
|
encode_base64(salt + 7, csalt, sizeof(csalt)); |
84 |
|
|
|
85 |
|
|
return 0; |
86 |
|
|
} |
87 |
|
|
|
88 |
|
|
/* |
89 |
|
|
* the core bcrypt function |
90 |
|
|
*/ |
91 |
|
|
static int |
92 |
|
|
bcrypt_hashpass(const char *key, const char *salt, char *encrypted, |
93 |
|
|
size_t encryptedlen) |
94 |
|
|
{ |
95 |
|
|
blf_ctx state; |
96 |
|
|
u_int32_t rounds, i, k; |
97 |
|
|
u_int16_t j; |
98 |
|
|
size_t key_len; |
99 |
|
|
u_int8_t salt_len, logr, minor; |
100 |
|
|
u_int8_t ciphertext[4 * BCRYPT_WORDS] = "OrpheanBeholderScryDoubt"; |
101 |
|
|
u_int8_t csalt[BCRYPT_MAXSALT]; |
102 |
|
|
u_int32_t cdata[BCRYPT_WORDS]; |
103 |
|
|
|
104 |
|
|
if (encryptedlen < BCRYPT_HASHSPACE) |
105 |
|
|
goto inval; |
106 |
|
|
|
107 |
|
|
/* Check and discard "$" identifier */ |
108 |
|
|
if (salt[0] != '$') |
109 |
|
|
goto inval; |
110 |
|
|
salt += 1; |
111 |
|
|
|
112 |
|
|
if (salt[0] != BCRYPT_VERSION) |
113 |
|
|
goto inval; |
114 |
|
|
|
115 |
|
|
/* Check for minor versions */ |
116 |
|
|
switch ((minor = salt[1])) { |
117 |
|
|
case 'a': |
118 |
|
|
key_len = (u_int8_t)(strlen(key) + 1); |
119 |
|
|
break; |
120 |
|
|
case 'b': |
121 |
|
|
/* strlen() returns a size_t, but the function calls |
122 |
|
|
* below result in implicit casts to a narrower integer |
123 |
|
|
* type, so cap key_len at the actual maximum supported |
124 |
|
|
* length here to avoid integer wraparound */ |
125 |
|
|
key_len = strlen(key); |
126 |
|
|
if (key_len > 72) |
127 |
|
|
key_len = 72; |
128 |
|
|
key_len++; /* include the NUL */ |
129 |
|
|
break; |
130 |
|
|
default: |
131 |
|
|
goto inval; |
132 |
|
|
} |
133 |
|
|
if (salt[2] != '$') |
134 |
|
|
goto inval; |
135 |
|
|
/* Discard version + "$" identifier */ |
136 |
|
|
salt += 3; |
137 |
|
|
|
138 |
|
|
/* Check and parse num rounds */ |
139 |
|
|
if (!isdigit((unsigned char)salt[0]) || |
140 |
|
|
!isdigit((unsigned char)salt[1]) || salt[2] != '$') |
141 |
|
|
goto inval; |
142 |
|
|
logr = (salt[1] - '0') + ((salt[0] - '0') * 10); |
143 |
|
|
if (logr < BCRYPT_MINLOGROUNDS || logr > 31) |
144 |
|
|
goto inval; |
145 |
|
|
/* Computer power doesn't increase linearly, 2^x should be fine */ |
146 |
|
|
rounds = 1U << logr; |
147 |
|
|
|
148 |
|
|
/* Discard num rounds + "$" identifier */ |
149 |
|
|
salt += 3; |
150 |
|
|
|
151 |
|
|
if (strlen(salt) * 3 / 4 < BCRYPT_MAXSALT) |
152 |
|
|
goto inval; |
153 |
|
|
|
154 |
|
|
/* We dont want the base64 salt but the raw data */ |
155 |
|
|
if (decode_base64(csalt, BCRYPT_MAXSALT, salt)) |
156 |
|
|
goto inval; |
157 |
|
|
salt_len = BCRYPT_MAXSALT; |
158 |
|
|
|
159 |
|
|
/* Setting up S-Boxes and Subkeys */ |
160 |
|
|
Blowfish_initstate(&state); |
161 |
|
|
Blowfish_expandstate(&state, csalt, salt_len, |
162 |
|
|
(u_int8_t *) key, key_len); |
163 |
|
|
for (k = 0; k < rounds; k++) { |
164 |
|
|
Blowfish_expand0state(&state, (u_int8_t *) key, key_len); |
165 |
|
|
Blowfish_expand0state(&state, csalt, salt_len); |
166 |
|
|
} |
167 |
|
|
|
168 |
|
|
/* This can be precomputed later */ |
169 |
|
|
j = 0; |
170 |
|
|
for (i = 0; i < BCRYPT_WORDS; i++) |
171 |
|
|
cdata[i] = Blowfish_stream2word(ciphertext, 4 * BCRYPT_WORDS, &j); |
172 |
|
|
|
173 |
|
|
/* Now do the encryption */ |
174 |
|
|
for (k = 0; k < 64; k++) |
175 |
|
|
blf_enc(&state, cdata, BCRYPT_WORDS / 2); |
176 |
|
|
|
177 |
|
|
for (i = 0; i < BCRYPT_WORDS; i++) { |
178 |
|
|
ciphertext[4 * i + 3] = cdata[i] & 0xff; |
179 |
|
|
cdata[i] = cdata[i] >> 8; |
180 |
|
|
ciphertext[4 * i + 2] = cdata[i] & 0xff; |
181 |
|
|
cdata[i] = cdata[i] >> 8; |
182 |
|
|
ciphertext[4 * i + 1] = cdata[i] & 0xff; |
183 |
|
|
cdata[i] = cdata[i] >> 8; |
184 |
|
|
ciphertext[4 * i + 0] = cdata[i] & 0xff; |
185 |
|
|
} |
186 |
|
|
|
187 |
|
|
|
188 |
|
|
snprintf(encrypted, 8, "$2%c$%2.2u$", minor, logr); |
189 |
|
|
encode_base64(encrypted + 7, csalt, BCRYPT_MAXSALT); |
190 |
|
|
encode_base64(encrypted + 7 + 22, ciphertext, 4 * BCRYPT_WORDS - 1); |
191 |
|
|
explicit_bzero(&state, sizeof(state)); |
192 |
|
|
explicit_bzero(ciphertext, sizeof(ciphertext)); |
193 |
|
|
explicit_bzero(csalt, sizeof(csalt)); |
194 |
|
|
explicit_bzero(cdata, sizeof(cdata)); |
195 |
|
|
return 0; |
196 |
|
|
|
197 |
|
|
inval: |
198 |
|
|
errno = EINVAL; |
199 |
|
|
return -1; |
200 |
|
|
} |
201 |
|
|
|
202 |
|
|
/* |
203 |
|
|
* user friendly functions |
204 |
|
|
*/ |
205 |
|
|
int |
206 |
|
|
bcrypt_newhash(const char *pass, int log_rounds, char *hash, size_t hashlen) |
207 |
|
|
{ |
208 |
|
|
char salt[BCRYPT_SALTSPACE]; |
209 |
|
|
|
210 |
|
|
if (bcrypt_initsalt(log_rounds, salt, sizeof(salt)) != 0) |
211 |
|
|
return -1; |
212 |
|
|
|
213 |
|
|
if (bcrypt_hashpass(pass, salt, hash, hashlen) != 0) |
214 |
|
|
return -1; |
215 |
|
|
|
216 |
|
|
explicit_bzero(salt, sizeof(salt)); |
217 |
|
|
return 0; |
218 |
|
|
} |
219 |
|
|
DEF_WEAK(bcrypt_newhash); |
220 |
|
|
|
221 |
|
|
int |
222 |
|
|
bcrypt_checkpass(const char *pass, const char *goodhash) |
223 |
|
|
{ |
224 |
|
|
char hash[BCRYPT_HASHSPACE]; |
225 |
|
|
|
226 |
|
|
if (bcrypt_hashpass(pass, goodhash, hash, sizeof(hash)) != 0) |
227 |
|
|
return -1; |
228 |
|
|
if (strlen(hash) != strlen(goodhash) || |
229 |
|
|
timingsafe_bcmp(hash, goodhash, strlen(goodhash)) != 0) { |
230 |
|
|
errno = EACCES; |
231 |
|
|
return -1; |
232 |
|
|
} |
233 |
|
|
|
234 |
|
|
explicit_bzero(hash, sizeof(hash)); |
235 |
|
|
return 0; |
236 |
|
|
} |
237 |
|
|
DEF_WEAK(bcrypt_checkpass); |
238 |
|
|
|
239 |
|
|
/* |
240 |
|
|
* Measure this system's performance by measuring the time for 8 rounds. |
241 |
|
|
* We are aiming for something that takes around 0.1s, but not too much over. |
242 |
|
|
*/ |
243 |
|
|
int |
244 |
|
|
_bcrypt_autorounds(void) |
245 |
|
|
{ |
246 |
|
|
struct timespec before, after; |
247 |
|
|
int r = 8; |
248 |
|
|
char buf[_PASSWORD_LEN]; |
249 |
|
|
int duration; |
250 |
|
|
|
251 |
|
|
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &before); |
252 |
|
|
bcrypt_newhash("testpassword", r, buf, sizeof(buf)); |
253 |
|
|
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &after); |
254 |
|
|
|
255 |
|
|
duration = after.tv_sec - before.tv_sec; |
256 |
|
|
duration *= 1000000; |
257 |
|
|
duration += (after.tv_nsec - before.tv_nsec) / 1000; |
258 |
|
|
|
259 |
|
|
/* too quick? slow it down. */ |
260 |
|
|
while (r < 16 && duration <= 60000) { |
261 |
|
|
r += 1; |
262 |
|
|
duration *= 2; |
263 |
|
|
} |
264 |
|
|
/* too slow? speed it up. */ |
265 |
|
|
while (r > 6 && duration > 120000) { |
266 |
|
|
r -= 1; |
267 |
|
|
duration /= 2; |
268 |
|
|
} |
269 |
|
|
|
270 |
|
|
return r; |
271 |
|
|
} |
272 |
|
|
|
273 |
|
|
/* |
274 |
|
|
* internal utilities |
275 |
|
|
*/ |
276 |
|
|
static const u_int8_t Base64Code[] = |
277 |
|
|
"./ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"; |
278 |
|
|
|
279 |
|
|
static const u_int8_t index_64[128] = { |
280 |
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
281 |
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
282 |
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
283 |
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
284 |
|
|
255, 255, 255, 255, 255, 255, 0, 1, 54, 55, |
285 |
|
|
56, 57, 58, 59, 60, 61, 62, 63, 255, 255, |
286 |
|
|
255, 255, 255, 255, 255, 2, 3, 4, 5, 6, |
287 |
|
|
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
288 |
|
|
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, |
289 |
|
|
255, 255, 255, 255, 255, 255, 28, 29, 30, |
290 |
|
|
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, |
291 |
|
|
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, |
292 |
|
|
51, 52, 53, 255, 255, 255, 255, 255 |
293 |
|
|
}; |
294 |
|
|
#define CHAR64(c) ( (c) > 127 ? 255 : index_64[(c)]) |
295 |
|
|
|
296 |
|
|
/* |
297 |
|
|
* read buflen (after decoding) bytes of data from b64data |
298 |
|
|
*/ |
299 |
|
|
static int |
300 |
|
|
decode_base64(u_int8_t *buffer, size_t len, const char *b64data) |
301 |
|
|
{ |
302 |
|
|
u_int8_t *bp = buffer; |
303 |
|
|
const u_int8_t *p = b64data; |
304 |
|
|
u_int8_t c1, c2, c3, c4; |
305 |
|
|
|
306 |
|
|
while (bp < buffer + len) { |
307 |
|
|
c1 = CHAR64(*p); |
308 |
|
|
/* Invalid data */ |
309 |
|
|
if (c1 == 255) |
310 |
|
|
return -1; |
311 |
|
|
|
312 |
|
|
c2 = CHAR64(*(p + 1)); |
313 |
|
|
if (c2 == 255) |
314 |
|
|
return -1; |
315 |
|
|
|
316 |
|
|
*bp++ = (c1 << 2) | ((c2 & 0x30) >> 4); |
317 |
|
|
if (bp >= buffer + len) |
318 |
|
|
break; |
319 |
|
|
|
320 |
|
|
c3 = CHAR64(*(p + 2)); |
321 |
|
|
if (c3 == 255) |
322 |
|
|
return -1; |
323 |
|
|
|
324 |
|
|
*bp++ = ((c2 & 0x0f) << 4) | ((c3 & 0x3c) >> 2); |
325 |
|
|
if (bp >= buffer + len) |
326 |
|
|
break; |
327 |
|
|
|
328 |
|
|
c4 = CHAR64(*(p + 3)); |
329 |
|
|
if (c4 == 255) |
330 |
|
|
return -1; |
331 |
|
|
*bp++ = ((c3 & 0x03) << 6) | c4; |
332 |
|
|
|
333 |
|
|
p += 4; |
334 |
|
|
} |
335 |
|
|
return 0; |
336 |
|
|
} |
337 |
|
|
|
338 |
|
|
/* |
339 |
|
|
* Turn len bytes of data into base64 encoded data. |
340 |
|
|
* This works without = padding. |
341 |
|
|
*/ |
342 |
|
|
static int |
343 |
|
|
encode_base64(char *b64buffer, const u_int8_t *data, size_t len) |
344 |
|
|
{ |
345 |
|
|
u_int8_t *bp = b64buffer; |
346 |
|
|
const u_int8_t *p = data; |
347 |
|
|
u_int8_t c1, c2; |
348 |
|
|
|
349 |
|
|
while (p < data + len) { |
350 |
|
|
c1 = *p++; |
351 |
|
|
*bp++ = Base64Code[(c1 >> 2)]; |
352 |
|
|
c1 = (c1 & 0x03) << 4; |
353 |
|
|
if (p >= data + len) { |
354 |
|
|
*bp++ = Base64Code[c1]; |
355 |
|
|
break; |
356 |
|
|
} |
357 |
|
|
c2 = *p++; |
358 |
|
|
c1 |= (c2 >> 4) & 0x0f; |
359 |
|
|
*bp++ = Base64Code[c1]; |
360 |
|
|
c1 = (c2 & 0x0f) << 2; |
361 |
|
|
if (p >= data + len) { |
362 |
|
|
*bp++ = Base64Code[c1]; |
363 |
|
|
break; |
364 |
|
|
} |
365 |
|
|
c2 = *p++; |
366 |
|
|
c1 |= (c2 >> 6) & 0x03; |
367 |
|
|
*bp++ = Base64Code[c1]; |
368 |
|
|
*bp++ = Base64Code[c2 & 0x3f]; |
369 |
|
|
} |
370 |
|
|
*bp = '\0'; |
371 |
|
|
return 0; |
372 |
|
|
} |
373 |
|
|
|
374 |
|
|
/* |
375 |
|
|
* classic interface |
376 |
|
|
*/ |
377 |
|
|
char * |
378 |
|
|
bcrypt_gensalt(u_int8_t log_rounds) |
379 |
|
|
{ |
380 |
|
|
static char gsalt[BCRYPT_SALTSPACE]; |
381 |
|
|
|
382 |
|
|
bcrypt_initsalt(log_rounds, gsalt, sizeof(gsalt)); |
383 |
|
|
|
384 |
|
|
return gsalt; |
385 |
|
|
} |
386 |
|
|
|
387 |
|
|
char * |
388 |
|
|
bcrypt(const char *pass, const char *salt) |
389 |
|
|
{ |
390 |
|
|
static char gencrypted[BCRYPT_HASHSPACE]; |
391 |
|
|
|
392 |
|
|
if (bcrypt_hashpass(pass, salt, gencrypted, sizeof(gencrypted)) != 0) |
393 |
|
|
return NULL; |
394 |
|
|
|
395 |
|
|
return gencrypted; |
396 |
|
|
} |
397 |
|
|
DEF_WEAK(bcrypt); |