1 |
|
|
/* $OpenBSD: hash_bigkey.c,v 1.19 2015/12/28 22:08:18 mmcc Exp $ */ |
2 |
|
|
|
3 |
|
|
/*- |
4 |
|
|
* Copyright (c) 1990, 1993, 1994 |
5 |
|
|
* The Regents of the University of California. All rights reserved. |
6 |
|
|
* |
7 |
|
|
* This code is derived from software contributed to Berkeley by |
8 |
|
|
* Margo Seltzer. |
9 |
|
|
* |
10 |
|
|
* Redistribution and use in source and binary forms, with or without |
11 |
|
|
* modification, are permitted provided that the following conditions |
12 |
|
|
* are met: |
13 |
|
|
* 1. Redistributions of source code must retain the above copyright |
14 |
|
|
* notice, this list of conditions and the following disclaimer. |
15 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
16 |
|
|
* notice, this list of conditions and the following disclaimer in the |
17 |
|
|
* documentation and/or other materials provided with the distribution. |
18 |
|
|
* 3. Neither the name of the University nor the names of its contributors |
19 |
|
|
* may be used to endorse or promote products derived from this software |
20 |
|
|
* without specific prior written permission. |
21 |
|
|
* |
22 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
23 |
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
24 |
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
25 |
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
26 |
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
27 |
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
28 |
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
29 |
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
30 |
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
31 |
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
32 |
|
|
* SUCH DAMAGE. |
33 |
|
|
*/ |
34 |
|
|
|
35 |
|
|
/* |
36 |
|
|
* PACKAGE: hash |
37 |
|
|
* DESCRIPTION: |
38 |
|
|
* Big key/data handling for the hashing package. |
39 |
|
|
* |
40 |
|
|
* ROUTINES: |
41 |
|
|
* External |
42 |
|
|
* __big_keydata |
43 |
|
|
* __big_split |
44 |
|
|
* __big_insert |
45 |
|
|
* __big_return |
46 |
|
|
* __big_delete |
47 |
|
|
* __find_last_page |
48 |
|
|
* Internal |
49 |
|
|
* collect_key |
50 |
|
|
* collect_data |
51 |
|
|
*/ |
52 |
|
|
|
53 |
|
|
#include <errno.h> |
54 |
|
|
#include <stdio.h> |
55 |
|
|
#include <stdlib.h> |
56 |
|
|
#include <string.h> |
57 |
|
|
|
58 |
|
|
#ifdef DEBUG |
59 |
|
|
#include <assert.h> |
60 |
|
|
#endif |
61 |
|
|
|
62 |
|
|
#include <db.h> |
63 |
|
|
#include "hash.h" |
64 |
|
|
#include "page.h" |
65 |
|
|
#include "extern.h" |
66 |
|
|
|
67 |
|
|
#define MINIMUM(a, b) (((a) < (b)) ? (a) : (b)) |
68 |
|
|
|
69 |
|
|
static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int); |
70 |
|
|
static int collect_data(HTAB *, BUFHEAD *, int, int); |
71 |
|
|
|
72 |
|
|
/* |
73 |
|
|
* Big_insert |
74 |
|
|
* |
75 |
|
|
* You need to do an insert and the key/data pair is too big |
76 |
|
|
* |
77 |
|
|
* Returns: |
78 |
|
|
* 0 ==> OK |
79 |
|
|
*-1 ==> ERROR |
80 |
|
|
*/ |
81 |
|
|
int |
82 |
|
|
__big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val) |
83 |
|
|
{ |
84 |
|
|
u_int16_t *p; |
85 |
|
|
int key_size, n, val_size; |
86 |
|
|
u_int16_t space, move_bytes, off; |
87 |
|
|
char *cp, *key_data, *val_data; |
88 |
|
|
|
89 |
|
|
cp = bufp->page; /* Character pointer of p. */ |
90 |
|
|
p = (u_int16_t *)cp; |
91 |
|
|
|
92 |
|
|
key_data = (char *)key->data; |
93 |
|
|
key_size = key->size; |
94 |
|
|
val_data = (char *)val->data; |
95 |
|
|
val_size = val->size; |
96 |
|
|
|
97 |
|
|
/* First move the Key */ |
98 |
|
|
for (space = FREESPACE(p) - BIGOVERHEAD; key_size; |
99 |
|
|
space = FREESPACE(p) - BIGOVERHEAD) { |
100 |
|
|
move_bytes = MINIMUM(space, key_size); |
101 |
|
|
off = OFFSET(p) - move_bytes; |
102 |
|
|
memmove(cp + off, key_data, move_bytes); |
103 |
|
|
key_size -= move_bytes; |
104 |
|
|
key_data += move_bytes; |
105 |
|
|
n = p[0]; |
106 |
|
|
p[++n] = off; |
107 |
|
|
p[0] = ++n; |
108 |
|
|
FREESPACE(p) = off - PAGE_META(n); |
109 |
|
|
OFFSET(p) = off; |
110 |
|
|
p[n] = PARTIAL_KEY; |
111 |
|
|
bufp = __add_ovflpage(hashp, bufp); |
112 |
|
|
if (!bufp) |
113 |
|
|
return (-1); |
114 |
|
|
n = p[0]; |
115 |
|
|
if (!key_size) { |
116 |
|
|
space = FREESPACE(p); |
117 |
|
|
if (space) { |
118 |
|
|
move_bytes = MINIMUM(space, val_size); |
119 |
|
|
/* |
120 |
|
|
* If the data would fit exactly in the |
121 |
|
|
* remaining space, we must overflow it to the |
122 |
|
|
* next page; otherwise the invariant that the |
123 |
|
|
* data must end on a page with FREESPACE |
124 |
|
|
* non-zero would fail. |
125 |
|
|
*/ |
126 |
|
|
if (space == val_size && val_size == val->size) |
127 |
|
|
goto toolarge; |
128 |
|
|
off = OFFSET(p) - move_bytes; |
129 |
|
|
memmove(cp + off, val_data, move_bytes); |
130 |
|
|
val_data += move_bytes; |
131 |
|
|
val_size -= move_bytes; |
132 |
|
|
p[n] = off; |
133 |
|
|
p[n - 2] = FULL_KEY_DATA; |
134 |
|
|
FREESPACE(p) = FREESPACE(p) - move_bytes; |
135 |
|
|
OFFSET(p) = off; |
136 |
|
|
} else { |
137 |
|
|
toolarge: |
138 |
|
|
p[n - 2] = FULL_KEY; |
139 |
|
|
} |
140 |
|
|
} |
141 |
|
|
p = (u_int16_t *)bufp->page; |
142 |
|
|
cp = bufp->page; |
143 |
|
|
bufp->flags |= BUF_MOD; |
144 |
|
|
} |
145 |
|
|
|
146 |
|
|
/* Now move the data */ |
147 |
|
|
for (space = FREESPACE(p) - BIGOVERHEAD; val_size; |
148 |
|
|
space = FREESPACE(p) - BIGOVERHEAD) { |
149 |
|
|
move_bytes = MINIMUM(space, val_size); |
150 |
|
|
/* |
151 |
|
|
* Here's the hack to make sure that if the data ends on the |
152 |
|
|
* same page as the key ends, FREESPACE is at least one. |
153 |
|
|
*/ |
154 |
|
|
if (space == val_size && val_size == val->size) |
155 |
|
|
move_bytes--; |
156 |
|
|
off = OFFSET(p) - move_bytes; |
157 |
|
|
memmove(cp + off, val_data, move_bytes); |
158 |
|
|
val_size -= move_bytes; |
159 |
|
|
val_data += move_bytes; |
160 |
|
|
n = p[0]; |
161 |
|
|
p[++n] = off; |
162 |
|
|
p[0] = ++n; |
163 |
|
|
FREESPACE(p) = off - PAGE_META(n); |
164 |
|
|
OFFSET(p) = off; |
165 |
|
|
if (val_size) { |
166 |
|
|
p[n] = FULL_KEY; |
167 |
|
|
bufp = __add_ovflpage(hashp, bufp); |
168 |
|
|
if (!bufp) |
169 |
|
|
return (-1); |
170 |
|
|
cp = bufp->page; |
171 |
|
|
p = (u_int16_t *)cp; |
172 |
|
|
} else |
173 |
|
|
p[n] = FULL_KEY_DATA; |
174 |
|
|
bufp->flags |= BUF_MOD; |
175 |
|
|
} |
176 |
|
|
return (0); |
177 |
|
|
} |
178 |
|
|
|
179 |
|
|
/* |
180 |
|
|
* Called when bufp's page contains a partial key (index should be 1) |
181 |
|
|
* |
182 |
|
|
* All pages in the big key/data pair except bufp are freed. We cannot |
183 |
|
|
* free bufp because the page pointing to it is lost and we can't get rid |
184 |
|
|
* of its pointer. |
185 |
|
|
* |
186 |
|
|
* Returns: |
187 |
|
|
* 0 => OK |
188 |
|
|
*-1 => ERROR |
189 |
|
|
*/ |
190 |
|
|
int |
191 |
|
|
__big_delete(HTAB *hashp, BUFHEAD *bufp) |
192 |
|
|
{ |
193 |
|
|
BUFHEAD *last_bfp, *rbufp; |
194 |
|
|
u_int16_t *bp, pageno; |
195 |
|
|
int key_done, n; |
196 |
|
|
|
197 |
|
|
rbufp = bufp; |
198 |
|
|
last_bfp = NULL; |
199 |
|
|
bp = (u_int16_t *)bufp->page; |
200 |
|
|
pageno = 0; |
201 |
|
|
key_done = 0; |
202 |
|
|
|
203 |
|
|
while (!key_done || (bp[2] != FULL_KEY_DATA)) { |
204 |
|
|
if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) |
205 |
|
|
key_done = 1; |
206 |
|
|
|
207 |
|
|
/* |
208 |
|
|
* If there is freespace left on a FULL_KEY_DATA page, then |
209 |
|
|
* the data is short and fits entirely on this page, and this |
210 |
|
|
* is the last page. |
211 |
|
|
*/ |
212 |
|
|
if (bp[2] == FULL_KEY_DATA && FREESPACE(bp)) |
213 |
|
|
break; |
214 |
|
|
pageno = bp[bp[0] - 1]; |
215 |
|
|
rbufp->flags |= BUF_MOD; |
216 |
|
|
rbufp = __get_buf(hashp, pageno, rbufp, 0); |
217 |
|
|
if (last_bfp) |
218 |
|
|
__free_ovflpage(hashp, last_bfp); |
219 |
|
|
last_bfp = rbufp; |
220 |
|
|
if (!rbufp) |
221 |
|
|
return (-1); /* Error. */ |
222 |
|
|
bp = (u_int16_t *)rbufp->page; |
223 |
|
|
} |
224 |
|
|
|
225 |
|
|
/* |
226 |
|
|
* If we get here then rbufp points to the last page of the big |
227 |
|
|
* key/data pair. Bufp points to the first one -- it should now be |
228 |
|
|
* empty pointing to the next page after this pair. Can't free it |
229 |
|
|
* because we don't have the page pointing to it. |
230 |
|
|
*/ |
231 |
|
|
|
232 |
|
|
/* This is information from the last page of the pair. */ |
233 |
|
|
n = bp[0]; |
234 |
|
|
pageno = bp[n - 1]; |
235 |
|
|
|
236 |
|
|
/* Now, bp is the first page of the pair. */ |
237 |
|
|
bp = (u_int16_t *)bufp->page; |
238 |
|
|
if (n > 2) { |
239 |
|
|
/* There is an overflow page. */ |
240 |
|
|
bp[1] = pageno; |
241 |
|
|
bp[2] = OVFLPAGE; |
242 |
|
|
bufp->ovfl = rbufp->ovfl; |
243 |
|
|
} else |
244 |
|
|
/* This is the last page. */ |
245 |
|
|
bufp->ovfl = NULL; |
246 |
|
|
n -= 2; |
247 |
|
|
bp[0] = n; |
248 |
|
|
FREESPACE(bp) = hashp->BSIZE - PAGE_META(n); |
249 |
|
|
OFFSET(bp) = hashp->BSIZE; |
250 |
|
|
|
251 |
|
|
bufp->flags |= BUF_MOD; |
252 |
|
|
if (rbufp) |
253 |
|
|
__free_ovflpage(hashp, rbufp); |
254 |
|
|
if (last_bfp && last_bfp != rbufp) |
255 |
|
|
__free_ovflpage(hashp, last_bfp); |
256 |
|
|
|
257 |
|
|
hashp->NKEYS--; |
258 |
|
|
return (0); |
259 |
|
|
} |
260 |
|
|
/* |
261 |
|
|
* Returns: |
262 |
|
|
* 0 = key not found |
263 |
|
|
* -1 = get next overflow page |
264 |
|
|
* -2 means key not found and this is big key/data |
265 |
|
|
* -3 error |
266 |
|
|
*/ |
267 |
|
|
int |
268 |
|
|
__find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size) |
269 |
|
|
{ |
270 |
|
|
u_int16_t *bp; |
271 |
|
|
char *p; |
272 |
|
|
int ksize; |
273 |
|
|
u_int16_t bytes; |
274 |
|
|
char *kkey; |
275 |
|
|
|
276 |
|
|
bp = (u_int16_t *)bufp->page; |
277 |
|
|
p = bufp->page; |
278 |
|
|
ksize = size; |
279 |
|
|
kkey = key; |
280 |
|
|
|
281 |
|
|
for (bytes = hashp->BSIZE - bp[ndx]; |
282 |
|
|
bytes <= size && bp[ndx + 1] == PARTIAL_KEY; |
283 |
|
|
bytes = hashp->BSIZE - bp[ndx]) { |
284 |
|
|
if (memcmp(p + bp[ndx], kkey, bytes)) |
285 |
|
|
return (-2); |
286 |
|
|
kkey += bytes; |
287 |
|
|
ksize -= bytes; |
288 |
|
|
bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0); |
289 |
|
|
if (!bufp) |
290 |
|
|
return (-3); |
291 |
|
|
p = bufp->page; |
292 |
|
|
bp = (u_int16_t *)p; |
293 |
|
|
ndx = 1; |
294 |
|
|
} |
295 |
|
|
|
296 |
|
|
if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) { |
297 |
|
|
#ifdef HASH_STATISTICS |
298 |
|
|
++hash_collisions; |
299 |
|
|
#endif |
300 |
|
|
return (-2); |
301 |
|
|
} else |
302 |
|
|
return (ndx); |
303 |
|
|
} |
304 |
|
|
|
305 |
|
|
/* |
306 |
|
|
* Given the buffer pointer of the first overflow page of a big pair, |
307 |
|
|
* find the end of the big pair |
308 |
|
|
* |
309 |
|
|
* This will set bpp to the buffer header of the last page of the big pair. |
310 |
|
|
* It will return the pageno of the overflow page following the last page |
311 |
|
|
* of the pair; 0 if there isn't any (i.e. big pair is the last key in the |
312 |
|
|
* bucket) |
313 |
|
|
*/ |
314 |
|
|
u_int16_t |
315 |
|
|
__find_last_page(HTAB *hashp, BUFHEAD **bpp) |
316 |
|
|
{ |
317 |
|
|
BUFHEAD *bufp; |
318 |
|
|
u_int16_t *bp, pageno; |
319 |
|
|
int n; |
320 |
|
|
|
321 |
|
|
bufp = *bpp; |
322 |
|
|
bp = (u_int16_t *)bufp->page; |
323 |
|
|
for (;;) { |
324 |
|
|
n = bp[0]; |
325 |
|
|
|
326 |
|
|
/* |
327 |
|
|
* This is the last page if: the tag is FULL_KEY_DATA and |
328 |
|
|
* either only 2 entries OVFLPAGE marker is explicit there |
329 |
|
|
* is freespace on the page. |
330 |
|
|
*/ |
331 |
|
|
if (bp[2] == FULL_KEY_DATA && |
332 |
|
|
((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp)))) |
333 |
|
|
break; |
334 |
|
|
|
335 |
|
|
pageno = bp[n - 1]; |
336 |
|
|
bufp = __get_buf(hashp, pageno, bufp, 0); |
337 |
|
|
if (!bufp) |
338 |
|
|
return (0); /* Need to indicate an error! */ |
339 |
|
|
bp = (u_int16_t *)bufp->page; |
340 |
|
|
} |
341 |
|
|
|
342 |
|
|
*bpp = bufp; |
343 |
|
|
if (bp[0] > 2) |
344 |
|
|
return (bp[3]); |
345 |
|
|
else |
346 |
|
|
return (0); |
347 |
|
|
} |
348 |
|
|
|
349 |
|
|
/* |
350 |
|
|
* Return the data for the key/data pair that begins on this page at this |
351 |
|
|
* index (index should always be 1). |
352 |
|
|
*/ |
353 |
|
|
int |
354 |
|
|
__big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current) |
355 |
|
|
{ |
356 |
|
|
BUFHEAD *save_p; |
357 |
|
|
u_int16_t *bp, len, off, save_addr; |
358 |
|
|
char *tp; |
359 |
|
|
|
360 |
|
|
bp = (u_int16_t *)bufp->page; |
361 |
|
|
while (bp[ndx + 1] == PARTIAL_KEY) { |
362 |
|
|
bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
363 |
|
|
if (!bufp) |
364 |
|
|
return (-1); |
365 |
|
|
bp = (u_int16_t *)bufp->page; |
366 |
|
|
ndx = 1; |
367 |
|
|
} |
368 |
|
|
|
369 |
|
|
if (bp[ndx + 1] == FULL_KEY) { |
370 |
|
|
bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
371 |
|
|
if (!bufp) |
372 |
|
|
return (-1); |
373 |
|
|
bp = (u_int16_t *)bufp->page; |
374 |
|
|
save_p = bufp; |
375 |
|
|
save_addr = save_p->addr; |
376 |
|
|
off = bp[1]; |
377 |
|
|
len = 0; |
378 |
|
|
} else |
379 |
|
|
if (!FREESPACE(bp)) { |
380 |
|
|
/* |
381 |
|
|
* This is a hack. We can't distinguish between |
382 |
|
|
* FULL_KEY_DATA that contains complete data or |
383 |
|
|
* incomplete data, so we require that if the data |
384 |
|
|
* is complete, there is at least 1 byte of free |
385 |
|
|
* space left. |
386 |
|
|
*/ |
387 |
|
|
off = bp[bp[0]]; |
388 |
|
|
len = bp[1] - off; |
389 |
|
|
save_p = bufp; |
390 |
|
|
save_addr = bufp->addr; |
391 |
|
|
bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
392 |
|
|
if (!bufp) |
393 |
|
|
return (-1); |
394 |
|
|
bp = (u_int16_t *)bufp->page; |
395 |
|
|
} else { |
396 |
|
|
/* The data is all on one page. */ |
397 |
|
|
tp = (char *)bp; |
398 |
|
|
off = bp[bp[0]]; |
399 |
|
|
val->data = (u_char *)tp + off; |
400 |
|
|
val->size = bp[1] - off; |
401 |
|
|
if (set_current) { |
402 |
|
|
if (bp[0] == 2) { /* No more buckets in |
403 |
|
|
* chain */ |
404 |
|
|
hashp->cpage = NULL; |
405 |
|
|
hashp->cbucket++; |
406 |
|
|
hashp->cndx = 1; |
407 |
|
|
} else { |
408 |
|
|
hashp->cpage = __get_buf(hashp, |
409 |
|
|
bp[bp[0] - 1], bufp, 0); |
410 |
|
|
if (!hashp->cpage) |
411 |
|
|
return (-1); |
412 |
|
|
hashp->cndx = 1; |
413 |
|
|
if (!((u_int16_t *) |
414 |
|
|
hashp->cpage->page)[0]) { |
415 |
|
|
hashp->cbucket++; |
416 |
|
|
hashp->cpage = NULL; |
417 |
|
|
} |
418 |
|
|
} |
419 |
|
|
} |
420 |
|
|
return (0); |
421 |
|
|
} |
422 |
|
|
|
423 |
|
|
val->size = (size_t)collect_data(hashp, bufp, (int)len, set_current); |
424 |
|
|
if (val->size == (size_t)-1) |
425 |
|
|
return (-1); |
426 |
|
|
if (save_p->addr != save_addr) { |
427 |
|
|
/* We are pretty short on buffers. */ |
428 |
|
|
errno = EINVAL; /* OUT OF BUFFERS */ |
429 |
|
|
return (-1); |
430 |
|
|
} |
431 |
|
|
memmove(hashp->tmp_buf, (save_p->page) + off, len); |
432 |
|
|
val->data = (u_char *)hashp->tmp_buf; |
433 |
|
|
return (0); |
434 |
|
|
} |
435 |
|
|
/* |
436 |
|
|
* Count how big the total datasize is by recursing through the pages. Then |
437 |
|
|
* allocate a buffer and copy the data as you recurse up. |
438 |
|
|
*/ |
439 |
|
|
static int |
440 |
|
|
collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set) |
441 |
|
|
{ |
442 |
|
|
u_int16_t *bp; |
443 |
|
|
char *p; |
444 |
|
|
BUFHEAD *xbp; |
445 |
|
|
u_int16_t save_addr; |
446 |
|
|
int mylen, totlen; |
447 |
|
|
|
448 |
|
|
p = bufp->page; |
449 |
|
|
bp = (u_int16_t *)p; |
450 |
|
|
mylen = hashp->BSIZE - bp[1]; |
451 |
|
|
save_addr = bufp->addr; |
452 |
|
|
|
453 |
|
|
if (bp[2] == FULL_KEY_DATA) { /* End of Data */ |
454 |
|
|
totlen = len + mylen; |
455 |
|
|
free(hashp->tmp_buf); |
456 |
|
|
if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL) |
457 |
|
|
return (-1); |
458 |
|
|
if (set) { |
459 |
|
|
hashp->cndx = 1; |
460 |
|
|
if (bp[0] == 2) { /* No more buckets in chain */ |
461 |
|
|
hashp->cpage = NULL; |
462 |
|
|
hashp->cbucket++; |
463 |
|
|
} else { |
464 |
|
|
hashp->cpage = |
465 |
|
|
__get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
466 |
|
|
if (!hashp->cpage) |
467 |
|
|
return (-1); |
468 |
|
|
else if (!((u_int16_t *)hashp->cpage->page)[0]) { |
469 |
|
|
hashp->cbucket++; |
470 |
|
|
hashp->cpage = NULL; |
471 |
|
|
} |
472 |
|
|
} |
473 |
|
|
} |
474 |
|
|
} else { |
475 |
|
|
xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
476 |
|
|
if (!xbp || ((totlen = |
477 |
|
|
collect_data(hashp, xbp, len + mylen, set)) < 1)) |
478 |
|
|
return (-1); |
479 |
|
|
} |
480 |
|
|
if (bufp->addr != save_addr) { |
481 |
|
|
errno = EINVAL; /* Out of buffers. */ |
482 |
|
|
return (-1); |
483 |
|
|
} |
484 |
|
|
memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen); |
485 |
|
|
return (totlen); |
486 |
|
|
} |
487 |
|
|
|
488 |
|
|
/* |
489 |
|
|
* Fill in the key and data for this big pair. |
490 |
|
|
*/ |
491 |
|
|
int |
492 |
|
|
__big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set) |
493 |
|
|
{ |
494 |
|
|
key->size = (size_t)collect_key(hashp, bufp, 0, val, set); |
495 |
|
|
if (key->size == (size_t)-1) |
496 |
|
|
return (-1); |
497 |
|
|
key->data = (u_char *)hashp->tmp_key; |
498 |
|
|
return (0); |
499 |
|
|
} |
500 |
|
|
|
501 |
|
|
/* |
502 |
|
|
* Count how big the total key size is by recursing through the pages. Then |
503 |
|
|
* collect the data, allocate a buffer and copy the key as you recurse up. |
504 |
|
|
*/ |
505 |
|
|
static int |
506 |
|
|
collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set) |
507 |
|
|
{ |
508 |
|
|
BUFHEAD *xbp; |
509 |
|
|
char *p; |
510 |
|
|
int mylen, totlen; |
511 |
|
|
u_int16_t *bp, save_addr; |
512 |
|
|
|
513 |
|
|
p = bufp->page; |
514 |
|
|
bp = (u_int16_t *)p; |
515 |
|
|
mylen = hashp->BSIZE - bp[1]; |
516 |
|
|
|
517 |
|
|
save_addr = bufp->addr; |
518 |
|
|
totlen = len + mylen; |
519 |
|
|
if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) { /* End of Key. */ |
520 |
|
|
free(hashp->tmp_key); |
521 |
|
|
if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL) |
522 |
|
|
return (-1); |
523 |
|
|
if (__big_return(hashp, bufp, 1, val, set)) |
524 |
|
|
return (-1); |
525 |
|
|
} else { |
526 |
|
|
xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
527 |
|
|
if (!xbp || ((totlen = |
528 |
|
|
collect_key(hashp, xbp, totlen, val, set)) < 1)) |
529 |
|
|
return (-1); |
530 |
|
|
} |
531 |
|
|
if (bufp->addr != save_addr) { |
532 |
|
|
errno = EINVAL; /* MIS -- OUT OF BUFFERS */ |
533 |
|
|
return (-1); |
534 |
|
|
} |
535 |
|
|
memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen); |
536 |
|
|
return (totlen); |
537 |
|
|
} |
538 |
|
|
|
539 |
|
|
/* |
540 |
|
|
* Returns: |
541 |
|
|
* 0 => OK |
542 |
|
|
* -1 => error |
543 |
|
|
*/ |
544 |
|
|
int |
545 |
|
|
__big_split(HTAB *hashp, |
546 |
|
|
BUFHEAD *op, /* Pointer to where to put keys that go in old bucket */ |
547 |
|
|
BUFHEAD *np, /* Pointer to new bucket page */ |
548 |
|
|
BUFHEAD *big_keyp, /* Pointer to first page containing the big key/data */ |
549 |
|
|
int addr, /* Address of big_keyp */ |
550 |
|
|
u_int32_t obucket, /* Old Bucket */ |
551 |
|
|
SPLIT_RETURN *ret) |
552 |
|
|
{ |
553 |
|
|
BUFHEAD *bp, *tmpp; |
554 |
|
|
DBT key, val; |
555 |
|
|
u_int32_t change; |
556 |
|
|
u_int16_t free_space, n, off, *tp; |
557 |
|
|
|
558 |
|
|
bp = big_keyp; |
559 |
|
|
|
560 |
|
|
/* Now figure out where the big key/data goes */ |
561 |
|
|
if (__big_keydata(hashp, big_keyp, &key, &val, 0)) |
562 |
|
|
return (-1); |
563 |
|
|
change = (__call_hash(hashp, key.data, key.size) != obucket); |
564 |
|
|
|
565 |
|
|
if ((ret->next_addr = __find_last_page(hashp, &big_keyp))) { |
566 |
|
|
if (!(ret->nextp = |
567 |
|
|
__get_buf(hashp, ret->next_addr, big_keyp, 0))) |
568 |
|
|
return (-1); |
569 |
|
|
} else |
570 |
|
|
ret->nextp = NULL; |
571 |
|
|
|
572 |
|
|
/* Now make one of np/op point to the big key/data pair */ |
573 |
|
|
#ifdef DEBUG |
574 |
|
|
assert(np->ovfl == NULL); |
575 |
|
|
#endif |
576 |
|
|
if (change) |
577 |
|
|
tmpp = np; |
578 |
|
|
else |
579 |
|
|
tmpp = op; |
580 |
|
|
|
581 |
|
|
tmpp->flags |= BUF_MOD; |
582 |
|
|
#ifdef DEBUG1 |
583 |
|
|
(void)fprintf(stderr, |
584 |
|
|
"BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr, |
585 |
|
|
(tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0)); |
586 |
|
|
#endif |
587 |
|
|
tmpp->ovfl = bp; /* one of op/np point to big_keyp */ |
588 |
|
|
tp = (u_int16_t *)tmpp->page; |
589 |
|
|
#ifdef DEBUG |
590 |
|
|
assert(FREESPACE(tp) >= OVFLSIZE); |
591 |
|
|
#endif |
592 |
|
|
n = tp[0]; |
593 |
|
|
off = OFFSET(tp); |
594 |
|
|
free_space = FREESPACE(tp); |
595 |
|
|
tp[++n] = (u_int16_t)addr; |
596 |
|
|
tp[++n] = OVFLPAGE; |
597 |
|
|
tp[0] = n; |
598 |
|
|
OFFSET(tp) = off; |
599 |
|
|
FREESPACE(tp) = free_space - OVFLSIZE; |
600 |
|
|
|
601 |
|
|
/* |
602 |
|
|
* Finally, set the new and old return values. BIG_KEYP contains a |
603 |
|
|
* pointer to the last page of the big key_data pair. Make sure that |
604 |
|
|
* big_keyp has no following page (2 elements) or create an empty |
605 |
|
|
* following page. |
606 |
|
|
*/ |
607 |
|
|
|
608 |
|
|
ret->newp = np; |
609 |
|
|
ret->oldp = op; |
610 |
|
|
|
611 |
|
|
tp = (u_int16_t *)big_keyp->page; |
612 |
|
|
big_keyp->flags |= BUF_MOD; |
613 |
|
|
if (tp[0] > 2) { |
614 |
|
|
/* |
615 |
|
|
* There may be either one or two offsets on this page. If |
616 |
|
|
* there is one, then the overflow page is linked on normally |
617 |
|
|
* and tp[4] is OVFLPAGE. If there are two, tp[4] contains |
618 |
|
|
* the second offset and needs to get stuffed in after the |
619 |
|
|
* next overflow page is added. |
620 |
|
|
*/ |
621 |
|
|
n = tp[4]; |
622 |
|
|
free_space = FREESPACE(tp); |
623 |
|
|
off = OFFSET(tp); |
624 |
|
|
tp[0] -= 2; |
625 |
|
|
FREESPACE(tp) = free_space + OVFLSIZE; |
626 |
|
|
OFFSET(tp) = off; |
627 |
|
|
tmpp = __add_ovflpage(hashp, big_keyp); |
628 |
|
|
if (!tmpp) |
629 |
|
|
return (-1); |
630 |
|
|
tp[4] = n; |
631 |
|
|
} else |
632 |
|
|
tmpp = big_keyp; |
633 |
|
|
|
634 |
|
|
if (change) |
635 |
|
|
ret->newp = tmpp; |
636 |
|
|
else |
637 |
|
|
ret->oldp = tmpp; |
638 |
|
|
return (0); |
639 |
|
|
} |