1 |
|
|
/* $OpenBSD: hash_page.c,v 1.23 2016/12/18 17:07:58 krw Exp $ */ |
2 |
|
|
|
3 |
|
|
/*- |
4 |
|
|
* Copyright (c) 1990, 1993, 1994 |
5 |
|
|
* The Regents of the University of California. All rights reserved. |
6 |
|
|
* |
7 |
|
|
* This code is derived from software contributed to Berkeley by |
8 |
|
|
* Margo Seltzer. |
9 |
|
|
* |
10 |
|
|
* Redistribution and use in source and binary forms, with or without |
11 |
|
|
* modification, are permitted provided that the following conditions |
12 |
|
|
* are met: |
13 |
|
|
* 1. Redistributions of source code must retain the above copyright |
14 |
|
|
* notice, this list of conditions and the following disclaimer. |
15 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
16 |
|
|
* notice, this list of conditions and the following disclaimer in the |
17 |
|
|
* documentation and/or other materials provided with the distribution. |
18 |
|
|
* 3. Neither the name of the University nor the names of its contributors |
19 |
|
|
* may be used to endorse or promote products derived from this software |
20 |
|
|
* without specific prior written permission. |
21 |
|
|
* |
22 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
23 |
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
24 |
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
25 |
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
26 |
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
27 |
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
28 |
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
29 |
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
30 |
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
31 |
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
32 |
|
|
* SUCH DAMAGE. |
33 |
|
|
*/ |
34 |
|
|
|
35 |
|
|
/* |
36 |
|
|
* PACKAGE: hashing |
37 |
|
|
* |
38 |
|
|
* DESCRIPTION: |
39 |
|
|
* Page manipulation for hashing package. |
40 |
|
|
* |
41 |
|
|
* ROUTINES: |
42 |
|
|
* |
43 |
|
|
* External |
44 |
|
|
* __get_page |
45 |
|
|
* __add_ovflpage |
46 |
|
|
* Internal |
47 |
|
|
* overflow_page |
48 |
|
|
* open_temp |
49 |
|
|
*/ |
50 |
|
|
|
51 |
|
|
#include <errno.h> |
52 |
|
|
#include <fcntl.h> |
53 |
|
|
#include <limits.h> |
54 |
|
|
#include <signal.h> |
55 |
|
|
#include <stdio.h> |
56 |
|
|
#include <stdlib.h> |
57 |
|
|
#include <string.h> |
58 |
|
|
#include <unistd.h> |
59 |
|
|
#ifdef DEBUG |
60 |
|
|
#include <assert.h> |
61 |
|
|
#endif |
62 |
|
|
|
63 |
|
|
#include <db.h> |
64 |
|
|
#include "hash.h" |
65 |
|
|
#include "page.h" |
66 |
|
|
#include "extern.h" |
67 |
|
|
|
68 |
|
|
static u_int32_t *fetch_bitmap(HTAB *, int); |
69 |
|
|
static u_int32_t first_free(u_int32_t); |
70 |
|
|
static int open_temp(HTAB *); |
71 |
|
|
static u_int16_t overflow_page(HTAB *); |
72 |
|
|
static void putpair(char *, const DBT *, const DBT *); |
73 |
|
|
static void squeeze_key(u_int16_t *, const DBT *, const DBT *); |
74 |
|
|
static int ugly_split(HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int); |
75 |
|
|
|
76 |
|
|
#define PAGE_INIT(P) { \ |
77 |
|
|
((u_int16_t *)(P))[0] = 0; \ |
78 |
|
|
((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \ |
79 |
|
|
((u_int16_t *)(P))[2] = hashp->BSIZE; \ |
80 |
|
|
} |
81 |
|
|
|
82 |
|
|
/* |
83 |
|
|
* This is called AFTER we have verified that there is room on the page for |
84 |
|
|
* the pair (PAIRFITS has returned true) so we go right ahead and start moving |
85 |
|
|
* stuff on. |
86 |
|
|
*/ |
87 |
|
|
static void |
88 |
|
|
putpair(char *p, const DBT *key, const DBT *val) |
89 |
|
|
{ |
90 |
|
|
u_int16_t *bp, n, off; |
91 |
|
|
|
92 |
|
|
bp = (u_int16_t *)p; |
93 |
|
|
|
94 |
|
|
/* Enter the key first. */ |
95 |
|
|
n = bp[0]; |
96 |
|
|
|
97 |
|
|
off = OFFSET(bp) - key->size; |
98 |
|
|
memmove(p + off, key->data, key->size); |
99 |
|
|
bp[++n] = off; |
100 |
|
|
|
101 |
|
|
/* Now the data. */ |
102 |
|
|
off -= val->size; |
103 |
|
|
memmove(p + off, val->data, val->size); |
104 |
|
|
bp[++n] = off; |
105 |
|
|
|
106 |
|
|
/* Adjust page info. */ |
107 |
|
|
bp[0] = n; |
108 |
|
|
bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t)); |
109 |
|
|
bp[n + 2] = off; |
110 |
|
|
} |
111 |
|
|
|
112 |
|
|
/* |
113 |
|
|
* Returns: |
114 |
|
|
* 0 OK |
115 |
|
|
* -1 error |
116 |
|
|
*/ |
117 |
|
|
int |
118 |
|
|
__delpair(HTAB *hashp, BUFHEAD *bufp, int ndx) |
119 |
|
|
{ |
120 |
|
|
u_int16_t *bp, newoff, pairlen; |
121 |
|
|
int n; |
122 |
|
|
|
123 |
|
|
bp = (u_int16_t *)bufp->page; |
124 |
|
|
n = bp[0]; |
125 |
|
|
|
126 |
|
|
if (bp[ndx + 1] < REAL_KEY) |
127 |
|
|
return (__big_delete(hashp, bufp)); |
128 |
|
|
if (ndx != 1) |
129 |
|
|
newoff = bp[ndx - 1]; |
130 |
|
|
else |
131 |
|
|
newoff = hashp->BSIZE; |
132 |
|
|
pairlen = newoff - bp[ndx + 1]; |
133 |
|
|
|
134 |
|
|
if (ndx != (n - 1)) { |
135 |
|
|
/* Hard Case -- need to shuffle keys */ |
136 |
|
|
int i; |
137 |
|
|
char *src = bufp->page + (int)OFFSET(bp); |
138 |
|
|
char *dst = src + (int)pairlen; |
139 |
|
|
memmove(dst, src, bp[ndx + 1] - OFFSET(bp)); |
140 |
|
|
|
141 |
|
|
/* Now adjust the pointers */ |
142 |
|
|
for (i = ndx + 2; i <= n; i += 2) { |
143 |
|
|
if (bp[i + 1] == OVFLPAGE) { |
144 |
|
|
bp[i - 2] = bp[i]; |
145 |
|
|
bp[i - 1] = bp[i + 1]; |
146 |
|
|
} else { |
147 |
|
|
bp[i - 2] = bp[i] + pairlen; |
148 |
|
|
bp[i - 1] = bp[i + 1] + pairlen; |
149 |
|
|
} |
150 |
|
|
} |
151 |
|
|
if (ndx == hashp->cndx) { |
152 |
|
|
/* |
153 |
|
|
* We just removed pair we were "pointing" to. |
154 |
|
|
* By moving back the cndx we ensure subsequent |
155 |
|
|
* hash_seq() calls won't skip over any entries. |
156 |
|
|
*/ |
157 |
|
|
hashp->cndx -= 2; |
158 |
|
|
} |
159 |
|
|
} |
160 |
|
|
/* Finally adjust the page data */ |
161 |
|
|
bp[n] = OFFSET(bp) + pairlen; |
162 |
|
|
bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t); |
163 |
|
|
bp[0] = n - 2; |
164 |
|
|
hashp->NKEYS--; |
165 |
|
|
|
166 |
|
|
bufp->flags |= BUF_MOD; |
167 |
|
|
return (0); |
168 |
|
|
} |
169 |
|
|
/* |
170 |
|
|
* Returns: |
171 |
|
|
* 0 ==> OK |
172 |
|
|
* -1 ==> Error |
173 |
|
|
*/ |
174 |
|
|
int |
175 |
|
|
__split_page(HTAB *hashp, u_int32_t obucket, u_int32_t nbucket) |
176 |
|
|
{ |
177 |
|
|
BUFHEAD *new_bufp, *old_bufp; |
178 |
|
|
u_int16_t *ino; |
179 |
|
|
char *np; |
180 |
|
|
DBT key, val; |
181 |
|
|
int n, ndx, retval; |
182 |
|
|
u_int16_t copyto, diff, off, moved; |
183 |
|
|
char *op; |
184 |
|
|
|
185 |
|
|
copyto = (u_int16_t)hashp->BSIZE; |
186 |
|
|
off = (u_int16_t)hashp->BSIZE; |
187 |
|
|
old_bufp = __get_buf(hashp, obucket, NULL, 0); |
188 |
|
|
if (old_bufp == NULL) |
189 |
|
|
return (-1); |
190 |
|
|
new_bufp = __get_buf(hashp, nbucket, NULL, 0); |
191 |
|
|
if (new_bufp == NULL) |
192 |
|
|
return (-1); |
193 |
|
|
|
194 |
|
|
old_bufp->flags |= (BUF_MOD | BUF_PIN); |
195 |
|
|
new_bufp->flags |= (BUF_MOD | BUF_PIN); |
196 |
|
|
|
197 |
|
|
ino = (u_int16_t *)(op = old_bufp->page); |
198 |
|
|
np = new_bufp->page; |
199 |
|
|
|
200 |
|
|
moved = 0; |
201 |
|
|
|
202 |
|
|
for (n = 1, ndx = 1; n < ino[0]; n += 2) { |
203 |
|
|
if (ino[n + 1] < REAL_KEY) { |
204 |
|
|
retval = ugly_split(hashp, obucket, old_bufp, new_bufp, |
205 |
|
|
(int)copyto, (int)moved); |
206 |
|
|
old_bufp->flags &= ~BUF_PIN; |
207 |
|
|
new_bufp->flags &= ~BUF_PIN; |
208 |
|
|
return (retval); |
209 |
|
|
|
210 |
|
|
} |
211 |
|
|
key.data = (u_char *)op + ino[n]; |
212 |
|
|
key.size = off - ino[n]; |
213 |
|
|
|
214 |
|
|
if (__call_hash(hashp, key.data, key.size) == obucket) { |
215 |
|
|
/* Don't switch page */ |
216 |
|
|
diff = copyto - off; |
217 |
|
|
if (diff) { |
218 |
|
|
copyto = ino[n + 1] + diff; |
219 |
|
|
memmove(op + copyto, op + ino[n + 1], |
220 |
|
|
off - ino[n + 1]); |
221 |
|
|
ino[ndx] = copyto + ino[n] - ino[n + 1]; |
222 |
|
|
ino[ndx + 1] = copyto; |
223 |
|
|
} else |
224 |
|
|
copyto = ino[n + 1]; |
225 |
|
|
ndx += 2; |
226 |
|
|
} else { |
227 |
|
|
/* Switch page */ |
228 |
|
|
val.data = (u_char *)op + ino[n + 1]; |
229 |
|
|
val.size = ino[n] - ino[n + 1]; |
230 |
|
|
putpair(np, &key, &val); |
231 |
|
|
moved += 2; |
232 |
|
|
} |
233 |
|
|
|
234 |
|
|
off = ino[n + 1]; |
235 |
|
|
} |
236 |
|
|
|
237 |
|
|
/* Now clean up the page */ |
238 |
|
|
ino[0] -= moved; |
239 |
|
|
FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3); |
240 |
|
|
OFFSET(ino) = copyto; |
241 |
|
|
|
242 |
|
|
#ifdef DEBUG3 |
243 |
|
|
(void)fprintf(stderr, "split %d/%d\n", |
244 |
|
|
((u_int16_t *)np)[0] / 2, |
245 |
|
|
((u_int16_t *)op)[0] / 2); |
246 |
|
|
#endif |
247 |
|
|
/* unpin both pages */ |
248 |
|
|
old_bufp->flags &= ~BUF_PIN; |
249 |
|
|
new_bufp->flags &= ~BUF_PIN; |
250 |
|
|
return (0); |
251 |
|
|
} |
252 |
|
|
|
253 |
|
|
/* |
254 |
|
|
* Called when we encounter an overflow or big key/data page during split |
255 |
|
|
* handling. This is special cased since we have to begin checking whether |
256 |
|
|
* the key/data pairs fit on their respective pages and because we may need |
257 |
|
|
* overflow pages for both the old and new pages. |
258 |
|
|
* |
259 |
|
|
* The first page might be a page with regular key/data pairs in which case |
260 |
|
|
* we have a regular overflow condition and just need to go on to the next |
261 |
|
|
* page or it might be a big key/data pair in which case we need to fix the |
262 |
|
|
* big key/data pair. |
263 |
|
|
* |
264 |
|
|
* Returns: |
265 |
|
|
* 0 ==> success |
266 |
|
|
* -1 ==> failure |
267 |
|
|
*/ |
268 |
|
|
static int |
269 |
|
|
ugly_split(HTAB *hashp, |
270 |
|
|
u_int32_t obucket, /* Same as __split_page. */ |
271 |
|
|
BUFHEAD *old_bufp, |
272 |
|
|
BUFHEAD *new_bufp, |
273 |
|
|
int copyto, /* First byte on page which contains key/data values. */ |
274 |
|
|
int moved) /* Number of pairs moved to new page. */ |
275 |
|
|
{ |
276 |
|
|
BUFHEAD *bufp; /* Buffer header for ino */ |
277 |
|
|
u_int16_t *ino; /* Page keys come off of */ |
278 |
|
|
u_int16_t *np; /* New page */ |
279 |
|
|
u_int16_t *op; /* Page keys go on to if they aren't moving */ |
280 |
|
|
|
281 |
|
|
BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */ |
282 |
|
|
DBT key, val; |
283 |
|
|
SPLIT_RETURN ret; |
284 |
|
|
u_int16_t n, off, ov_addr, scopyto; |
285 |
|
|
char *cino; /* Character value of ino */ |
286 |
|
|
|
287 |
|
|
bufp = old_bufp; |
288 |
|
|
ino = (u_int16_t *)old_bufp->page; |
289 |
|
|
np = (u_int16_t *)new_bufp->page; |
290 |
|
|
op = (u_int16_t *)old_bufp->page; |
291 |
|
|
last_bfp = NULL; |
292 |
|
|
scopyto = (u_int16_t)copyto; /* ANSI */ |
293 |
|
|
|
294 |
|
|
n = ino[0] - 1; |
295 |
|
|
while (n < ino[0]) { |
296 |
|
|
if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) { |
297 |
|
|
if (__big_split(hashp, old_bufp, |
298 |
|
|
new_bufp, bufp, bufp->addr, obucket, &ret)) |
299 |
|
|
return (-1); |
300 |
|
|
old_bufp = ret.oldp; |
301 |
|
|
if (!old_bufp) |
302 |
|
|
return (-1); |
303 |
|
|
op = (u_int16_t *)old_bufp->page; |
304 |
|
|
new_bufp = ret.newp; |
305 |
|
|
if (!new_bufp) |
306 |
|
|
return (-1); |
307 |
|
|
np = (u_int16_t *)new_bufp->page; |
308 |
|
|
bufp = ret.nextp; |
309 |
|
|
if (!bufp) |
310 |
|
|
return (0); |
311 |
|
|
cino = (char *)bufp->page; |
312 |
|
|
ino = (u_int16_t *)cino; |
313 |
|
|
last_bfp = ret.nextp; |
314 |
|
|
} else if (ino[n + 1] == OVFLPAGE) { |
315 |
|
|
ov_addr = ino[n]; |
316 |
|
|
/* |
317 |
|
|
* Fix up the old page -- the extra 2 are the fields |
318 |
|
|
* which contained the overflow information. |
319 |
|
|
*/ |
320 |
|
|
ino[0] -= (moved + 2); |
321 |
|
|
FREESPACE(ino) = |
322 |
|
|
scopyto - sizeof(u_int16_t) * (ino[0] + 3); |
323 |
|
|
OFFSET(ino) = scopyto; |
324 |
|
|
|
325 |
|
|
bufp = __get_buf(hashp, ov_addr, bufp, 0); |
326 |
|
|
if (!bufp) |
327 |
|
|
return (-1); |
328 |
|
|
|
329 |
|
|
ino = (u_int16_t *)bufp->page; |
330 |
|
|
n = 1; |
331 |
|
|
scopyto = hashp->BSIZE; |
332 |
|
|
moved = 0; |
333 |
|
|
|
334 |
|
|
if (last_bfp) |
335 |
|
|
__free_ovflpage(hashp, last_bfp); |
336 |
|
|
last_bfp = bufp; |
337 |
|
|
} |
338 |
|
|
/* Move regular sized pairs of there are any */ |
339 |
|
|
off = hashp->BSIZE; |
340 |
|
|
for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) { |
341 |
|
|
cino = (char *)ino; |
342 |
|
|
key.data = (u_char *)cino + ino[n]; |
343 |
|
|
key.size = off - ino[n]; |
344 |
|
|
val.data = (u_char *)cino + ino[n + 1]; |
345 |
|
|
val.size = ino[n] - ino[n + 1]; |
346 |
|
|
off = ino[n + 1]; |
347 |
|
|
|
348 |
|
|
if (__call_hash(hashp, key.data, key.size) == obucket) { |
349 |
|
|
/* Keep on old page */ |
350 |
|
|
if (PAIRFITS(op, (&key), (&val))) |
351 |
|
|
putpair((char *)op, &key, &val); |
352 |
|
|
else { |
353 |
|
|
old_bufp = |
354 |
|
|
__add_ovflpage(hashp, old_bufp); |
355 |
|
|
if (!old_bufp) |
356 |
|
|
return (-1); |
357 |
|
|
op = (u_int16_t *)old_bufp->page; |
358 |
|
|
putpair((char *)op, &key, &val); |
359 |
|
|
} |
360 |
|
|
old_bufp->flags |= BUF_MOD; |
361 |
|
|
} else { |
362 |
|
|
/* Move to new page */ |
363 |
|
|
if (PAIRFITS(np, (&key), (&val))) |
364 |
|
|
putpair((char *)np, &key, &val); |
365 |
|
|
else { |
366 |
|
|
new_bufp = |
367 |
|
|
__add_ovflpage(hashp, new_bufp); |
368 |
|
|
if (!new_bufp) |
369 |
|
|
return (-1); |
370 |
|
|
np = (u_int16_t *)new_bufp->page; |
371 |
|
|
putpair((char *)np, &key, &val); |
372 |
|
|
} |
373 |
|
|
new_bufp->flags |= BUF_MOD; |
374 |
|
|
} |
375 |
|
|
} |
376 |
|
|
} |
377 |
|
|
if (last_bfp) |
378 |
|
|
__free_ovflpage(hashp, last_bfp); |
379 |
|
|
return (0); |
380 |
|
|
} |
381 |
|
|
|
382 |
|
|
/* |
383 |
|
|
* Add the given pair to the page |
384 |
|
|
* |
385 |
|
|
* Returns: |
386 |
|
|
* 0 ==> OK |
387 |
|
|
* 1 ==> failure |
388 |
|
|
*/ |
389 |
|
|
int |
390 |
|
|
__addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val) |
391 |
|
|
{ |
392 |
|
|
u_int16_t *bp, *sop; |
393 |
|
|
int do_expand; |
394 |
|
|
|
395 |
|
|
bp = (u_int16_t *)bufp->page; |
396 |
|
|
do_expand = 0; |
397 |
|
|
while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY)) |
398 |
|
|
/* Exception case */ |
399 |
|
|
if (bp[2] == FULL_KEY_DATA && bp[0] == 2) |
400 |
|
|
/* This is the last page of a big key/data pair |
401 |
|
|
and we need to add another page */ |
402 |
|
|
break; |
403 |
|
|
else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) { |
404 |
|
|
bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
405 |
|
|
if (!bufp) |
406 |
|
|
return (-1); |
407 |
|
|
bp = (u_int16_t *)bufp->page; |
408 |
|
|
} else if (bp[bp[0]] != OVFLPAGE) { |
409 |
|
|
/* Short key/data pairs, no more pages */ |
410 |
|
|
break; |
411 |
|
|
} else { |
412 |
|
|
/* Try to squeeze key on this page */ |
413 |
|
|
if (bp[2] >= REAL_KEY && |
414 |
|
|
FREESPACE(bp) >= PAIRSIZE(key, val)) { |
415 |
|
|
squeeze_key(bp, key, val); |
416 |
|
|
goto stats; |
417 |
|
|
} else { |
418 |
|
|
bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
419 |
|
|
if (!bufp) |
420 |
|
|
return (-1); |
421 |
|
|
bp = (u_int16_t *)bufp->page; |
422 |
|
|
} |
423 |
|
|
} |
424 |
|
|
|
425 |
|
|
if (PAIRFITS(bp, key, val)) |
426 |
|
|
putpair(bufp->page, key, val); |
427 |
|
|
else { |
428 |
|
|
do_expand = 1; |
429 |
|
|
bufp = __add_ovflpage(hashp, bufp); |
430 |
|
|
if (!bufp) |
431 |
|
|
return (-1); |
432 |
|
|
sop = (u_int16_t *)bufp->page; |
433 |
|
|
|
434 |
|
|
if (PAIRFITS(sop, key, val)) |
435 |
|
|
putpair((char *)sop, key, val); |
436 |
|
|
else |
437 |
|
|
if (__big_insert(hashp, bufp, key, val)) |
438 |
|
|
return (-1); |
439 |
|
|
} |
440 |
|
|
stats: |
441 |
|
|
bufp->flags |= BUF_MOD; |
442 |
|
|
/* |
443 |
|
|
* If the average number of keys per bucket exceeds the fill factor, |
444 |
|
|
* expand the table. |
445 |
|
|
*/ |
446 |
|
|
hashp->NKEYS++; |
447 |
|
|
if (do_expand || |
448 |
|
|
(hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR)) |
449 |
|
|
return (__expand_table(hashp)); |
450 |
|
|
return (0); |
451 |
|
|
} |
452 |
|
|
|
453 |
|
|
/* |
454 |
|
|
* |
455 |
|
|
* Returns: |
456 |
|
|
* pointer on success |
457 |
|
|
* NULL on error |
458 |
|
|
*/ |
459 |
|
|
BUFHEAD * |
460 |
|
|
__add_ovflpage(HTAB *hashp, BUFHEAD *bufp) |
461 |
|
|
{ |
462 |
|
|
u_int16_t *sp, ndx, ovfl_num; |
463 |
|
|
#ifdef DEBUG1 |
464 |
|
|
int tmp1, tmp2; |
465 |
|
|
#endif |
466 |
|
|
sp = (u_int16_t *)bufp->page; |
467 |
|
|
|
468 |
|
|
/* Check if we are dynamically determining the fill factor */ |
469 |
|
|
if (hashp->FFACTOR == DEF_FFACTOR) { |
470 |
|
|
hashp->FFACTOR = sp[0] >> 1; |
471 |
|
|
if (hashp->FFACTOR < MIN_FFACTOR) |
472 |
|
|
hashp->FFACTOR = MIN_FFACTOR; |
473 |
|
|
} |
474 |
|
|
bufp->flags |= BUF_MOD; |
475 |
|
|
ovfl_num = overflow_page(hashp); |
476 |
|
|
#ifdef DEBUG1 |
477 |
|
|
tmp1 = bufp->addr; |
478 |
|
|
tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0; |
479 |
|
|
#endif |
480 |
|
|
if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1))) |
481 |
|
|
return (NULL); |
482 |
|
|
bufp->ovfl->flags |= BUF_MOD; |
483 |
|
|
#ifdef DEBUG1 |
484 |
|
|
(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n", |
485 |
|
|
tmp1, tmp2, bufp->ovfl->addr); |
486 |
|
|
#endif |
487 |
|
|
ndx = sp[0]; |
488 |
|
|
/* |
489 |
|
|
* Since a pair is allocated on a page only if there's room to add |
490 |
|
|
* an overflow page, we know that the OVFL information will fit on |
491 |
|
|
* the page. |
492 |
|
|
*/ |
493 |
|
|
sp[ndx + 4] = OFFSET(sp); |
494 |
|
|
sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE; |
495 |
|
|
sp[ndx + 1] = ovfl_num; |
496 |
|
|
sp[ndx + 2] = OVFLPAGE; |
497 |
|
|
sp[0] = ndx + 2; |
498 |
|
|
#ifdef HASH_STATISTICS |
499 |
|
|
hash_overflows++; |
500 |
|
|
#endif |
501 |
|
|
return (bufp->ovfl); |
502 |
|
|
} |
503 |
|
|
|
504 |
|
|
/* |
505 |
|
|
* Returns: |
506 |
|
|
* 0 indicates SUCCESS |
507 |
|
|
* -1 indicates FAILURE |
508 |
|
|
*/ |
509 |
|
|
int |
510 |
|
|
__get_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_disk, |
511 |
|
|
int is_bitmap) |
512 |
|
|
{ |
513 |
|
|
int fd, page, size, rsize; |
514 |
|
|
u_int16_t *bp; |
515 |
|
|
|
516 |
|
6666 |
fd = hashp->fp; |
517 |
|
3333 |
size = hashp->BSIZE; |
518 |
|
|
|
519 |
✗✓ |
3333 |
if ((fd == -1) || !is_disk) { |
520 |
|
|
PAGE_INIT(p); |
521 |
|
|
return (0); |
522 |
|
|
} |
523 |
✓✗ |
3333 |
if (is_bucket) |
524 |
✓✓ |
8819 |
page = BUCKET_TO_PAGE(bucket); |
525 |
|
|
else |
526 |
|
|
page = OADDR_TO_PAGE(bucket); |
527 |
✗✓ |
3333 |
if ((rsize = pread(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1) |
528 |
|
|
return (-1); |
529 |
|
3333 |
bp = (u_int16_t *)p; |
530 |
✗✓ |
3333 |
if (!rsize) |
531 |
|
|
bp[0] = 0; /* We hit the EOF, so initialize a new page */ |
532 |
|
|
else |
533 |
✗✓ |
3333 |
if (rsize != size) { |
534 |
|
|
errno = EFTYPE; |
535 |
|
|
return (-1); |
536 |
|
|
} |
537 |
✓✗✗✓
|
6666 |
if (!is_bitmap && !bp[0]) { |
538 |
|
|
PAGE_INIT(p); |
539 |
|
|
} else |
540 |
✗✓ |
3333 |
if (hashp->LORDER != BYTE_ORDER) { |
541 |
|
|
int i, max; |
542 |
|
|
|
543 |
|
|
if (is_bitmap) { |
544 |
|
|
max = hashp->BSIZE >> 2; /* divide by 4 */ |
545 |
|
|
for (i = 0; i < max; i++) |
546 |
|
|
M_32_SWAP(((int *)p)[i]); |
547 |
|
|
} else { |
548 |
|
|
M_16_SWAP(bp[0]); |
549 |
|
|
max = bp[0] + 2; |
550 |
|
|
for (i = 1; i <= max; i++) |
551 |
|
|
M_16_SWAP(bp[i]); |
552 |
|
|
} |
553 |
|
|
} |
554 |
|
3333 |
return (0); |
555 |
|
3333 |
} |
556 |
|
|
|
557 |
|
|
/* |
558 |
|
|
* Write page p to disk |
559 |
|
|
* |
560 |
|
|
* Returns: |
561 |
|
|
* 0 ==> OK |
562 |
|
|
* -1 ==>failure |
563 |
|
|
*/ |
564 |
|
|
int |
565 |
|
|
__put_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_bitmap) |
566 |
|
|
{ |
567 |
|
|
int fd, page, size, wsize; |
568 |
|
|
|
569 |
|
|
size = hashp->BSIZE; |
570 |
|
|
if ((hashp->fp == -1) && open_temp(hashp)) |
571 |
|
|
return (-1); |
572 |
|
|
fd = hashp->fp; |
573 |
|
|
|
574 |
|
|
if (hashp->LORDER != BYTE_ORDER) { |
575 |
|
|
int i, max; |
576 |
|
|
|
577 |
|
|
if (is_bitmap) { |
578 |
|
|
max = hashp->BSIZE >> 2; /* divide by 4 */ |
579 |
|
|
for (i = 0; i < max; i++) |
580 |
|
|
M_32_SWAP(((int *)p)[i]); |
581 |
|
|
} else { |
582 |
|
|
max = ((u_int16_t *)p)[0] + 2; |
583 |
|
|
for (i = 0; i <= max; i++) |
584 |
|
|
M_16_SWAP(((u_int16_t *)p)[i]); |
585 |
|
|
} |
586 |
|
|
} |
587 |
|
|
if (is_bucket) |
588 |
|
|
page = BUCKET_TO_PAGE(bucket); |
589 |
|
|
else |
590 |
|
|
page = OADDR_TO_PAGE(bucket); |
591 |
|
|
if ((wsize = pwrite(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1) |
592 |
|
|
/* Errno is set */ |
593 |
|
|
return (-1); |
594 |
|
|
if (wsize != size) { |
595 |
|
|
errno = EFTYPE; |
596 |
|
|
return (-1); |
597 |
|
|
} |
598 |
|
|
return (0); |
599 |
|
|
} |
600 |
|
|
|
601 |
|
|
#define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1) |
602 |
|
|
/* |
603 |
|
|
* Initialize a new bitmap page. Bitmap pages are left in memory |
604 |
|
|
* once they are read in. |
605 |
|
|
*/ |
606 |
|
|
int |
607 |
|
|
__ibitmap(HTAB *hashp, int pnum, int nbits, int ndx) |
608 |
|
|
{ |
609 |
|
|
u_int32_t *ip; |
610 |
|
|
int clearbytes, clearints; |
611 |
|
|
|
612 |
|
|
if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL) |
613 |
|
|
return (1); |
614 |
|
|
hashp->nmaps++; |
615 |
|
|
clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1; |
616 |
|
|
clearbytes = clearints << INT_TO_BYTE; |
617 |
|
|
(void)memset((char *)ip, 0, clearbytes); |
618 |
|
|
(void)memset(((char *)ip) + clearbytes, 0xFF, |
619 |
|
|
hashp->BSIZE - clearbytes); |
620 |
|
|
ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK); |
621 |
|
|
SETBIT(ip, 0); |
622 |
|
|
hashp->BITMAPS[ndx] = (u_int16_t)pnum; |
623 |
|
|
hashp->mapp[ndx] = ip; |
624 |
|
|
return (0); |
625 |
|
|
} |
626 |
|
|
|
627 |
|
|
static u_int32_t |
628 |
|
|
first_free(u_int32_t map) |
629 |
|
|
{ |
630 |
|
|
u_int32_t i, mask; |
631 |
|
|
|
632 |
|
|
mask = 0x1; |
633 |
|
|
for (i = 0; i < BITS_PER_MAP; i++) { |
634 |
|
|
if (!(mask & map)) |
635 |
|
|
return (i); |
636 |
|
|
mask = mask << 1; |
637 |
|
|
} |
638 |
|
|
return (i); |
639 |
|
|
} |
640 |
|
|
|
641 |
|
|
static u_int16_t |
642 |
|
|
overflow_page(HTAB *hashp) |
643 |
|
|
{ |
644 |
|
|
u_int32_t *freep; |
645 |
|
|
int max_free, offset, splitnum; |
646 |
|
|
u_int16_t addr; |
647 |
|
|
int bit, first_page, free_bit, free_page, i, in_use_bits, j; |
648 |
|
|
#ifdef DEBUG2 |
649 |
|
|
int tmp1, tmp2; |
650 |
|
|
#endif |
651 |
|
|
splitnum = hashp->OVFL_POINT; |
652 |
|
|
max_free = hashp->SPARES[splitnum]; |
653 |
|
|
|
654 |
|
|
free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT); |
655 |
|
|
free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1); |
656 |
|
|
|
657 |
|
|
/* Look through all the free maps to find the first free block */ |
658 |
|
|
first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT); |
659 |
|
|
for ( i = first_page; i <= free_page; i++ ) { |
660 |
|
|
if (!(freep = (u_int32_t *)hashp->mapp[i]) && |
661 |
|
|
!(freep = fetch_bitmap(hashp, i))) |
662 |
|
|
return (0); |
663 |
|
|
if (i == free_page) |
664 |
|
|
in_use_bits = free_bit; |
665 |
|
|
else |
666 |
|
|
in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1; |
667 |
|
|
|
668 |
|
|
if (i == first_page) { |
669 |
|
|
bit = hashp->LAST_FREED & |
670 |
|
|
((hashp->BSIZE << BYTE_SHIFT) - 1); |
671 |
|
|
j = bit / BITS_PER_MAP; |
672 |
|
|
bit = bit & ~(BITS_PER_MAP - 1); |
673 |
|
|
} else { |
674 |
|
|
bit = 0; |
675 |
|
|
j = 0; |
676 |
|
|
} |
677 |
|
|
for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP) |
678 |
|
|
if (freep[j] != ALL_SET) |
679 |
|
|
goto found; |
680 |
|
|
} |
681 |
|
|
|
682 |
|
|
/* No Free Page Found */ |
683 |
|
|
hashp->LAST_FREED = hashp->SPARES[splitnum]; |
684 |
|
|
hashp->SPARES[splitnum]++; |
685 |
|
|
offset = hashp->SPARES[splitnum] - |
686 |
|
|
(splitnum ? hashp->SPARES[splitnum - 1] : 0); |
687 |
|
|
|
688 |
|
|
#define OVMSG "HASH: Out of overflow pages. Increase page size\n" |
689 |
|
|
if (offset > SPLITMASK) { |
690 |
|
|
if (++splitnum >= NCACHED) { |
691 |
|
|
(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); |
692 |
|
|
errno = EFBIG; |
693 |
|
|
return (0); |
694 |
|
|
} |
695 |
|
|
hashp->OVFL_POINT = splitnum; |
696 |
|
|
hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1]; |
697 |
|
|
hashp->SPARES[splitnum-1]--; |
698 |
|
|
offset = 1; |
699 |
|
|
} |
700 |
|
|
|
701 |
|
|
/* Check if we need to allocate a new bitmap page */ |
702 |
|
|
if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) { |
703 |
|
|
free_page++; |
704 |
|
|
if (free_page >= NCACHED) { |
705 |
|
|
(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); |
706 |
|
|
errno = EFBIG; |
707 |
|
|
return (0); |
708 |
|
|
} |
709 |
|
|
/* |
710 |
|
|
* This is tricky. The 1 indicates that you want the new page |
711 |
|
|
* allocated with 1 clear bit. Actually, you are going to |
712 |
|
|
* allocate 2 pages from this map. The first is going to be |
713 |
|
|
* the map page, the second is the overflow page we were |
714 |
|
|
* looking for. The init_bitmap routine automatically, sets |
715 |
|
|
* the first bit of itself to indicate that the bitmap itself |
716 |
|
|
* is in use. We would explicitly set the second bit, but |
717 |
|
|
* don't have to if we tell init_bitmap not to leave it clear |
718 |
|
|
* in the first place. |
719 |
|
|
*/ |
720 |
|
|
if (__ibitmap(hashp, |
721 |
|
|
(int)OADDR_OF(splitnum, offset), 1, free_page)) |
722 |
|
|
return (0); |
723 |
|
|
hashp->SPARES[splitnum]++; |
724 |
|
|
#ifdef DEBUG2 |
725 |
|
|
free_bit = 2; |
726 |
|
|
#endif |
727 |
|
|
offset++; |
728 |
|
|
if (offset > SPLITMASK) { |
729 |
|
|
if (++splitnum >= NCACHED) { |
730 |
|
|
(void)write(STDERR_FILENO, OVMSG, |
731 |
|
|
sizeof(OVMSG) - 1); |
732 |
|
|
errno = EFBIG; |
733 |
|
|
return (0); |
734 |
|
|
} |
735 |
|
|
hashp->OVFL_POINT = splitnum; |
736 |
|
|
hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1]; |
737 |
|
|
hashp->SPARES[splitnum-1]--; |
738 |
|
|
offset = 0; |
739 |
|
|
} |
740 |
|
|
} else { |
741 |
|
|
/* |
742 |
|
|
* Free_bit addresses the last used bit. Bump it to address |
743 |
|
|
* the first available bit. |
744 |
|
|
*/ |
745 |
|
|
free_bit++; |
746 |
|
|
SETBIT(freep, free_bit); |
747 |
|
|
} |
748 |
|
|
|
749 |
|
|
/* Calculate address of the new overflow page */ |
750 |
|
|
addr = OADDR_OF(splitnum, offset); |
751 |
|
|
#ifdef DEBUG2 |
752 |
|
|
(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n", |
753 |
|
|
addr, free_bit, free_page); |
754 |
|
|
#endif |
755 |
|
|
return (addr); |
756 |
|
|
|
757 |
|
|
found: |
758 |
|
|
bit = bit + first_free(freep[j]); |
759 |
|
|
SETBIT(freep, bit); |
760 |
|
|
#ifdef DEBUG2 |
761 |
|
|
tmp1 = bit; |
762 |
|
|
tmp2 = i; |
763 |
|
|
#endif |
764 |
|
|
/* |
765 |
|
|
* Bits are addressed starting with 0, but overflow pages are addressed |
766 |
|
|
* beginning at 1. Bit is a bit addressnumber, so we need to increment |
767 |
|
|
* it to convert it to a page number. |
768 |
|
|
*/ |
769 |
|
|
bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT)); |
770 |
|
|
if (bit >= hashp->LAST_FREED) |
771 |
|
|
hashp->LAST_FREED = bit - 1; |
772 |
|
|
|
773 |
|
|
/* Calculate the split number for this page */ |
774 |
|
|
for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++); |
775 |
|
|
offset = (i ? bit - hashp->SPARES[i - 1] : bit); |
776 |
|
|
if (offset >= SPLITMASK) { |
777 |
|
|
(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); |
778 |
|
|
errno = EFBIG; |
779 |
|
|
return (0); /* Out of overflow pages */ |
780 |
|
|
} |
781 |
|
|
addr = OADDR_OF(i, offset); |
782 |
|
|
#ifdef DEBUG2 |
783 |
|
|
(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n", |
784 |
|
|
addr, tmp1, tmp2); |
785 |
|
|
#endif |
786 |
|
|
|
787 |
|
|
/* Allocate and return the overflow page */ |
788 |
|
|
return (addr); |
789 |
|
|
} |
790 |
|
|
|
791 |
|
|
/* |
792 |
|
|
* Mark this overflow page as free. |
793 |
|
|
*/ |
794 |
|
|
void |
795 |
|
|
__free_ovflpage(HTAB *hashp, BUFHEAD *obufp) |
796 |
|
|
{ |
797 |
|
|
u_int16_t addr; |
798 |
|
|
u_int32_t *freep; |
799 |
|
|
int bit_address, free_page, free_bit; |
800 |
|
|
u_int16_t ndx; |
801 |
|
|
|
802 |
|
|
addr = obufp->addr; |
803 |
|
|
#ifdef DEBUG1 |
804 |
|
|
(void)fprintf(stderr, "Freeing %d\n", addr); |
805 |
|
|
#endif |
806 |
|
|
ndx = (((u_int16_t)addr) >> SPLITSHIFT); |
807 |
|
|
bit_address = |
808 |
|
|
(ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1; |
809 |
|
|
if (bit_address < hashp->LAST_FREED) |
810 |
|
|
hashp->LAST_FREED = bit_address; |
811 |
|
|
free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT)); |
812 |
|
|
free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1); |
813 |
|
|
|
814 |
|
|
if (!(freep = hashp->mapp[free_page])) |
815 |
|
|
freep = fetch_bitmap(hashp, free_page); |
816 |
|
|
#ifdef DEBUG |
817 |
|
|
/* |
818 |
|
|
* This had better never happen. It means we tried to read a bitmap |
819 |
|
|
* that has already had overflow pages allocated off it, and we |
820 |
|
|
* failed to read it from the file. |
821 |
|
|
*/ |
822 |
|
|
if (!freep) |
823 |
|
|
assert(0); |
824 |
|
|
#endif |
825 |
|
|
CLRBIT(freep, free_bit); |
826 |
|
|
#ifdef DEBUG2 |
827 |
|
|
(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n", |
828 |
|
|
obufp->addr, free_bit, free_page); |
829 |
|
|
#endif |
830 |
|
|
__reclaim_buf(hashp, obufp); |
831 |
|
|
} |
832 |
|
|
|
833 |
|
|
/* |
834 |
|
|
* Returns: |
835 |
|
|
* 0 success |
836 |
|
|
* -1 failure |
837 |
|
|
*/ |
838 |
|
|
static int |
839 |
|
|
open_temp(HTAB *hashp) |
840 |
|
|
{ |
841 |
|
|
sigset_t set, oset; |
842 |
|
|
int len; |
843 |
|
|
char *envtmp = NULL; |
844 |
|
|
char path[PATH_MAX]; |
845 |
|
|
|
846 |
|
|
if (issetugid() == 0) |
847 |
|
|
envtmp = getenv("TMPDIR"); |
848 |
|
|
len = snprintf(path, |
849 |
|
|
sizeof(path), "%s/_hash.XXXXXX", envtmp ? envtmp : "/tmp"); |
850 |
|
|
if (len < 0 || len >= sizeof(path)) { |
851 |
|
|
errno = ENAMETOOLONG; |
852 |
|
|
return (-1); |
853 |
|
|
} |
854 |
|
|
|
855 |
|
|
/* Block signals; make sure file goes away at process exit. */ |
856 |
|
|
(void)sigfillset(&set); |
857 |
|
|
(void)sigprocmask(SIG_BLOCK, &set, &oset); |
858 |
|
|
if ((hashp->fp = mkostemp(path, O_CLOEXEC)) != -1) { |
859 |
|
|
(void)unlink(path); |
860 |
|
|
} |
861 |
|
|
(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL); |
862 |
|
|
return (hashp->fp != -1 ? 0 : -1); |
863 |
|
|
} |
864 |
|
|
|
865 |
|
|
/* |
866 |
|
|
* We have to know that the key will fit, but the last entry on the page is |
867 |
|
|
* an overflow pair, so we need to shift things. |
868 |
|
|
*/ |
869 |
|
|
static void |
870 |
|
|
squeeze_key(u_int16_t *sp, const DBT *key, const DBT *val) |
871 |
|
|
{ |
872 |
|
|
char *p; |
873 |
|
|
u_int16_t free_space, n, off, pageno; |
874 |
|
|
|
875 |
|
|
p = (char *)sp; |
876 |
|
|
n = sp[0]; |
877 |
|
|
free_space = FREESPACE(sp); |
878 |
|
|
off = OFFSET(sp); |
879 |
|
|
|
880 |
|
|
pageno = sp[n - 1]; |
881 |
|
|
off -= key->size; |
882 |
|
|
sp[n - 1] = off; |
883 |
|
|
memmove(p + off, key->data, key->size); |
884 |
|
|
off -= val->size; |
885 |
|
|
sp[n] = off; |
886 |
|
|
memmove(p + off, val->data, val->size); |
887 |
|
|
sp[0] = n + 2; |
888 |
|
|
sp[n + 1] = pageno; |
889 |
|
|
sp[n + 2] = OVFLPAGE; |
890 |
|
|
FREESPACE(sp) = free_space - PAIRSIZE(key, val); |
891 |
|
|
OFFSET(sp) = off; |
892 |
|
|
} |
893 |
|
|
|
894 |
|
|
static u_int32_t * |
895 |
|
|
fetch_bitmap(HTAB *hashp, int ndx) |
896 |
|
|
{ |
897 |
|
|
if (ndx >= hashp->nmaps) |
898 |
|
|
return (NULL); |
899 |
|
|
if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL) |
900 |
|
|
return (NULL); |
901 |
|
|
if (__get_page(hashp, |
902 |
|
|
(char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) { |
903 |
|
|
free(hashp->mapp[ndx]); |
904 |
|
|
return (NULL); |
905 |
|
|
} |
906 |
|
|
return (hashp->mapp[ndx]); |
907 |
|
|
} |
908 |
|
|
|
909 |
|
|
#ifdef DEBUG4 |
910 |
|
|
int |
911 |
|
|
print_chain(int addr) |
912 |
|
|
{ |
913 |
|
|
BUFHEAD *bufp; |
914 |
|
|
short *bp, oaddr; |
915 |
|
|
|
916 |
|
|
(void)fprintf(stderr, "%d ", addr); |
917 |
|
|
bufp = __get_buf(hashp, addr, NULL, 0); |
918 |
|
|
bp = (short *)bufp->page; |
919 |
|
|
while (bp[0] && ((bp[bp[0]] == OVFLPAGE) || |
920 |
|
|
((bp[0] > 2) && bp[2] < REAL_KEY))) { |
921 |
|
|
oaddr = bp[bp[0] - 1]; |
922 |
|
|
(void)fprintf(stderr, "%d ", (int)oaddr); |
923 |
|
|
bufp = __get_buf(hashp, (int)oaddr, bufp, 0); |
924 |
|
|
bp = (short *)bufp->page; |
925 |
|
|
} |
926 |
|
|
(void)fprintf(stderr, "\n"); |
927 |
|
|
} |
928 |
|
|
#endif |