1  | 
     | 
     | 
    /****************************************************************  | 
    
    
    2  | 
     | 
     | 
     | 
    
    
    3  | 
     | 
     | 
    The author of this software is David M. Gay.  | 
    
    
    4  | 
     | 
     | 
     | 
    
    
    5  | 
     | 
     | 
    Copyright (C) 1998, 1999 by Lucent Technologies  | 
    
    
    6  | 
     | 
     | 
    All Rights Reserved  | 
    
    
    7  | 
     | 
     | 
     | 
    
    
    8  | 
     | 
     | 
    Permission to use, copy, modify, and distribute this software and  | 
    
    
    9  | 
     | 
     | 
    its documentation for any purpose and without fee is hereby  | 
    
    
    10  | 
     | 
     | 
    granted, provided that the above copyright notice appear in all  | 
    
    
    11  | 
     | 
     | 
    copies and that both that the copyright notice and this  | 
    
    
    12  | 
     | 
     | 
    permission notice and warranty disclaimer appear in supporting  | 
    
    
    13  | 
     | 
     | 
    documentation, and that the name of Lucent or any of its entities  | 
    
    
    14  | 
     | 
     | 
    not be used in advertising or publicity pertaining to  | 
    
    
    15  | 
     | 
     | 
    distribution of the software without specific, written prior  | 
    
    
    16  | 
     | 
     | 
    permission.  | 
    
    
    17  | 
     | 
     | 
     | 
    
    
    18  | 
     | 
     | 
    LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,  | 
    
    
    19  | 
     | 
     | 
    INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.  | 
    
    
    20  | 
     | 
     | 
    IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY  | 
    
    
    21  | 
     | 
     | 
    SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES  | 
    
    
    22  | 
     | 
     | 
    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER  | 
    
    
    23  | 
     | 
     | 
    IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,  | 
    
    
    24  | 
     | 
     | 
    ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF  | 
    
    
    25  | 
     | 
     | 
    THIS SOFTWARE.  | 
    
    
    26  | 
     | 
     | 
     | 
    
    
    27  | 
     | 
     | 
    ****************************************************************/  | 
    
    
    28  | 
     | 
     | 
     | 
    
    
    29  | 
     | 
     | 
    /* Please send bug reports to David M. Gay (dmg at acm dot org,  | 
    
    
    30  | 
     | 
     | 
     * with " at " changed at "@" and " dot " changed to ".").	*/  | 
    
    
    31  | 
     | 
     | 
     | 
    
    
    32  | 
     | 
     | 
    #include "gdtoaimp.h"  | 
    
    
    33  | 
     | 
     | 
     | 
    
    
    34  | 
     | 
     | 
     static Bigint *  | 
    
    
    35  | 
     | 
     | 
    #ifdef KR_headers  | 
    
    
    36  | 
     | 
     | 
    bitstob(bits, nbits, bbits) ULong *bits; int nbits; int *bbits;  | 
    
    
    37  | 
     | 
     | 
    #else  | 
    
    
    38  | 
     | 
     | 
    bitstob(ULong *bits, int nbits, int *bbits)  | 
    
    
    39  | 
     | 
     | 
    #endif  | 
    
    
    40  | 
     | 
     | 
    { | 
    
    
    41  | 
     | 
     | 
    	int i, k;  | 
    
    
    42  | 
     | 
     | 
    	Bigint *b;  | 
    
    
    43  | 
     | 
     | 
    	ULong *be, *x, *x0;  | 
    
    
    44  | 
     | 
     | 
     | 
    
    
    45  | 
     | 
     | 
    	i = ULbits;  | 
    
    
    46  | 
     | 
     | 
    	k = 0;  | 
    
    
    47  | 
     | 
     | 
    	while(i < nbits) { | 
    
    
    48  | 
     | 
     | 
    		i <<= 1;  | 
    
    
    49  | 
     | 
     | 
    		k++;  | 
    
    
    50  | 
     | 
     | 
    		}  | 
    
    
    51  | 
     | 
     | 
    #ifndef Pack_32  | 
    
    
    52  | 
     | 
     | 
    	if (!k)  | 
    
    
    53  | 
     | 
     | 
    		k = 1;  | 
    
    
    54  | 
     | 
     | 
    #endif  | 
    
    
    55  | 
     | 
     | 
    	b = Balloc(k);  | 
    
    
    56  | 
     | 
     | 
    	if (b == NULL)  | 
    
    
    57  | 
     | 
     | 
    		return (NULL);  | 
    
    
    58  | 
     | 
     | 
    	be = bits + ((nbits - 1) >> kshift);  | 
    
    
    59  | 
     | 
     | 
    	x = x0 = b->x;  | 
    
    
    60  | 
     | 
     | 
    	do { | 
    
    
    61  | 
     | 
     | 
    		*x++ = *bits & ALL_ON;  | 
    
    
    62  | 
     | 
     | 
    #ifdef Pack_16  | 
    
    
    63  | 
     | 
     | 
    		*x++ = (*bits >> 16) & ALL_ON;  | 
    
    
    64  | 
     | 
     | 
    #endif  | 
    
    
    65  | 
     | 
     | 
    		} while(++bits <= be);  | 
    
    
    66  | 
     | 
     | 
    	i = x - x0;  | 
    
    
    67  | 
     | 
     | 
    	while(!x0[--i])  | 
    
    
    68  | 
     | 
     | 
    		if (!i) { | 
    
    
    69  | 
     | 
     | 
    			b->wds = 0;  | 
    
    
    70  | 
     | 
     | 
    			*bbits = 0;  | 
    
    
    71  | 
     | 
     | 
    			goto ret;  | 
    
    
    72  | 
     | 
     | 
    			}  | 
    
    
    73  | 
     | 
     | 
    	b->wds = i + 1;  | 
    
    
    74  | 
     | 
     | 
    	*bbits = i*ULbits + 32 - hi0bits(b->x[i]);  | 
    
    
    75  | 
     | 
     | 
     ret:  | 
    
    
    76  | 
     | 
     | 
    	return b;  | 
    
    
    77  | 
     | 
     | 
    	}  | 
    
    
    78  | 
     | 
     | 
     | 
    
    
    79  | 
     | 
     | 
    /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.  | 
    
    
    80  | 
     | 
     | 
     *  | 
    
    
    81  | 
     | 
     | 
     * Inspired by "How to Print Floating-Point Numbers Accurately" by  | 
    
    
    82  | 
     | 
     | 
     * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].  | 
    
    
    83  | 
     | 
     | 
     *  | 
    
    
    84  | 
     | 
     | 
     * Modifications:  | 
    
    
    85  | 
     | 
     | 
     *	1. Rather than iterating, we use a simple numeric overestimate  | 
    
    
    86  | 
     | 
     | 
     *	   to determine k = floor(log10(d)).  We scale relevant  | 
    
    
    87  | 
     | 
     | 
     *	   quantities using O(log2(k)) rather than O(k) multiplications.  | 
    
    
    88  | 
     | 
     | 
     *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't  | 
    
    
    89  | 
     | 
     | 
     *	   try to generate digits strictly left to right.  Instead, we  | 
    
    
    90  | 
     | 
     | 
     *	   compute with fewer bits and propagate the carry if necessary  | 
    
    
    91  | 
     | 
     | 
     *	   when rounding the final digit up.  This is often faster.  | 
    
    
    92  | 
     | 
     | 
     *	3. Under the assumption that input will be rounded nearest,  | 
    
    
    93  | 
     | 
     | 
     *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.  | 
    
    
    94  | 
     | 
     | 
     *	   That is, we allow equality in stopping tests when the  | 
    
    
    95  | 
     | 
     | 
     *	   round-nearest rule will give the same floating-point value  | 
    
    
    96  | 
     | 
     | 
     *	   as would satisfaction of the stopping test with strict  | 
    
    
    97  | 
     | 
     | 
     *	   inequality.  | 
    
    
    98  | 
     | 
     | 
     *	4. We remove common factors of powers of 2 from relevant  | 
    
    
    99  | 
     | 
     | 
     *	   quantities.  | 
    
    
    100  | 
     | 
     | 
     *	5. When converting floating-point integers less than 1e16,  | 
    
    
    101  | 
     | 
     | 
     *	   we use floating-point arithmetic rather than resorting  | 
    
    
    102  | 
     | 
     | 
     *	   to multiple-precision integers.  | 
    
    
    103  | 
     | 
     | 
     *	6. When asked to produce fewer than 15 digits, we first try  | 
    
    
    104  | 
     | 
     | 
     *	   to get by with floating-point arithmetic; we resort to  | 
    
    
    105  | 
     | 
     | 
     *	   multiple-precision integer arithmetic only if we cannot  | 
    
    
    106  | 
     | 
     | 
     *	   guarantee that the floating-point calculation has given  | 
    
    
    107  | 
     | 
     | 
     *	   the correctly rounded result.  For k requested digits and  | 
    
    
    108  | 
     | 
     | 
     *	   "uniformly" distributed input, the probability is  | 
    
    
    109  | 
     | 
     | 
     *	   something like 10^(k-15) that we must resort to the Long  | 
    
    
    110  | 
     | 
     | 
     *	   calculation.  | 
    
    
    111  | 
     | 
     | 
     */  | 
    
    
    112  | 
     | 
     | 
     | 
    
    
    113  | 
     | 
     | 
     char *  | 
    
    
    114  | 
     | 
     | 
    gdtoa  | 
    
    
    115  | 
     | 
     | 
    #ifdef KR_headers  | 
    
    
    116  | 
     | 
     | 
    	(fpi, be, bits, kindp, mode, ndigits, decpt, rve)  | 
    
    
    117  | 
     | 
     | 
    	FPI *fpi; int be; ULong *bits;  | 
    
    
    118  | 
     | 
     | 
    	int *kindp, mode, ndigits, *decpt; char **rve;  | 
    
    
    119  | 
     | 
     | 
    #else  | 
    
    
    120  | 
     | 
     | 
    	(FPI *fpi, int be, ULong *bits, int *kindp, int mode, int ndigits, int *decpt, char **rve)  | 
    
    
    121  | 
     | 
     | 
    #endif  | 
    
    
    122  | 
     | 
     | 
    { | 
    
    
    123  | 
     | 
     | 
     /*	Arguments ndigits and decpt are similar to the second and third  | 
    
    
    124  | 
     | 
     | 
    	arguments of ecvt and fcvt; trailing zeros are suppressed from  | 
    
    
    125  | 
     | 
     | 
    	the returned string.  If not null, *rve is set to point  | 
    
    
    126  | 
     | 
     | 
    	to the end of the return value.  If d is +-Infinity or NaN,  | 
    
    
    127  | 
     | 
     | 
    	then *decpt is set to 9999.  | 
    
    
    128  | 
     | 
     | 
    	be = exponent: value = (integer represented by bits) * (2 to the power of be).  | 
    
    
    129  | 
     | 
     | 
     | 
    
    
    130  | 
     | 
     | 
    	mode:  | 
    
    
    131  | 
     | 
     | 
    		0 ==> shortest string that yields d when read in  | 
    
    
    132  | 
     | 
     | 
    			and rounded to nearest.  | 
    
    
    133  | 
     | 
     | 
    		1 ==> like 0, but with Steele & White stopping rule;  | 
    
    
    134  | 
     | 
     | 
    			e.g. with IEEE P754 arithmetic , mode 0 gives  | 
    
    
    135  | 
     | 
     | 
    			1e23 whereas mode 1 gives 9.999999999999999e22.  | 
    
    
    136  | 
     | 
     | 
    		2 ==> max(1,ndigits) significant digits.  This gives a  | 
    
    
    137  | 
     | 
     | 
    			return value similar to that of ecvt, except  | 
    
    
    138  | 
     | 
     | 
    			that trailing zeros are suppressed.  | 
    
    
    139  | 
     | 
     | 
    		3 ==> through ndigits past the decimal point.  This  | 
    
    
    140  | 
     | 
     | 
    			gives a return value similar to that from fcvt,  | 
    
    
    141  | 
     | 
     | 
    			except that trailing zeros are suppressed, and  | 
    
    
    142  | 
     | 
     | 
    			ndigits can be negative.  | 
    
    
    143  | 
     | 
     | 
    		4-9 should give the same return values as 2-3, i.e.,  | 
    
    
    144  | 
     | 
     | 
    			4 <= mode <= 9 ==> same return as mode  | 
    
    
    145  | 
     | 
     | 
    			2 + (mode & 1).  These modes are mainly for  | 
    
    
    146  | 
     | 
     | 
    			debugging; often they run slower but sometimes  | 
    
    
    147  | 
     | 
     | 
    			faster than modes 2-3.  | 
    
    
    148  | 
     | 
     | 
    		4,5,8,9 ==> left-to-right digit generation.  | 
    
    
    149  | 
     | 
     | 
    		6-9 ==> don't try fast floating-point estimate  | 
    
    
    150  | 
     | 
     | 
    			(if applicable).  | 
    
    
    151  | 
     | 
     | 
     | 
    
    
    152  | 
     | 
     | 
    		Values of mode other than 0-9 are treated as mode 0.  | 
    
    
    153  | 
     | 
     | 
     | 
    
    
    154  | 
     | 
     | 
    		Sufficient space is allocated to the return value  | 
    
    
    155  | 
     | 
     | 
    		to hold the suppressed trailing zeros.  | 
    
    
    156  | 
     | 
     | 
    	*/  | 
    
    
    157  | 
     | 
     | 
     | 
    
    
    158  | 
     | 
     | 
    	int bbits, b2, b5, be0, dig, i, ieps, ilim, ilim0, ilim1, inex;  | 
    
    
    159  | 
     | 
     | 
    	int j, j1, k, k0, k_check, kind, leftright, m2, m5, nbits;  | 
    
    
    160  | 
     | 
     | 
    	int rdir, s2, s5, spec_case, try_quick;  | 
    
    
    161  | 
     | 
     | 
    	Long L;  | 
    
    
    162  | 
     | 
     | 
    	Bigint *b, *b1, *delta, *mlo, *mhi, *mhi1, *S;  | 
    
    
    163  | 
     | 
     | 
    	double d2, ds;  | 
    
    
    164  | 
     | 
     | 
    	char *s, *s0;  | 
    
    
    165  | 
     | 
     | 
    	U d, eps;  | 
    
    
    166  | 
     | 
     | 
     | 
    
    
    167  | 
     | 
     | 
    #ifndef MULTIPLE_THREADS  | 
    
    
    168  | 
     | 
     | 
    	if (dtoa_result) { | 
    
    
    169  | 
     | 
     | 
    		freedtoa(dtoa_result);  | 
    
    
    170  | 
     | 
     | 
    		dtoa_result = 0;  | 
    
    
    171  | 
     | 
     | 
    		}  | 
    
    
    172  | 
     | 
     | 
    #endif  | 
    
    
    173  | 
     | 
     | 
    	inex = 0;  | 
    
    
    174  | 
     | 
     | 
    	kind = *kindp &= ~STRTOG_Inexact;  | 
    
    
    175  | 
     | 
     | 
    	switch(kind & STRTOG_Retmask) { | 
    
    
    176  | 
     | 
     | 
    	  case STRTOG_Zero:  | 
    
    
    177  | 
     | 
     | 
    		goto ret_zero;  | 
    
    
    178  | 
     | 
     | 
    	  case STRTOG_Normal:  | 
    
    
    179  | 
     | 
     | 
    	  case STRTOG_Denormal:  | 
    
    
    180  | 
     | 
     | 
    		break;  | 
    
    
    181  | 
     | 
     | 
    	  case STRTOG_Infinite:  | 
    
    
    182  | 
     | 
     | 
    		*decpt = -32768;  | 
    
    
    183  | 
     | 
     | 
    		return nrv_alloc("Infinity", rve, 8); | 
    
    
    184  | 
     | 
     | 
    	  case STRTOG_NaN:  | 
    
    
    185  | 
     | 
     | 
    		*decpt = -32768;  | 
    
    
    186  | 
     | 
     | 
    		return nrv_alloc("NaN", rve, 3); | 
    
    
    187  | 
     | 
     | 
    	  default:  | 
    
    
    188  | 
     | 
     | 
    		return 0;  | 
    
    
    189  | 
     | 
     | 
    	  }  | 
    
    
    190  | 
     | 
     | 
    	b = bitstob(bits, nbits = fpi->nbits, &bbits);  | 
    
    
    191  | 
     | 
     | 
    	if (b == NULL)  | 
    
    
    192  | 
     | 
     | 
    		return (NULL);  | 
    
    
    193  | 
     | 
     | 
    	be0 = be;  | 
    
    
    194  | 
     | 
     | 
    	if ( (i = trailz(b)) !=0) { | 
    
    
    195  | 
     | 
     | 
    		rshift(b, i);  | 
    
    
    196  | 
     | 
     | 
    		be += i;  | 
    
    
    197  | 
     | 
     | 
    		bbits -= i;  | 
    
    
    198  | 
     | 
     | 
    		}  | 
    
    
    199  | 
     | 
     | 
    	if (!b->wds) { | 
    
    
    200  | 
     | 
     | 
    		Bfree(b);  | 
    
    
    201  | 
     | 
     | 
     ret_zero:  | 
    
    
    202  | 
     | 
     | 
    		*decpt = 1;  | 
    
    
    203  | 
     | 
     | 
    		return nrv_alloc("0", rve, 1); | 
    
    
    204  | 
     | 
     | 
    		}  | 
    
    
    205  | 
     | 
     | 
     | 
    
    
    206  | 
     | 
     | 
    	dval(&d) = b2d(b, &i);  | 
    
    
    207  | 
     | 
     | 
    	i = be + bbits - 1;  | 
    
    
    208  | 
     | 
     | 
    	word0(&d) &= Frac_mask1;  | 
    
    
    209  | 
     | 
     | 
    	word0(&d) |= Exp_11;  | 
    
    
    210  | 
     | 
     | 
    #ifdef IBM  | 
    
    
    211  | 
     | 
     | 
    	if ( (j = 11 - hi0bits(word0(&d) & Frac_mask)) !=0)  | 
    
    
    212  | 
     | 
     | 
    		dval(&d) /= 1 << j;  | 
    
    
    213  | 
     | 
     | 
    #endif  | 
    
    
    214  | 
     | 
     | 
     | 
    
    
    215  | 
     | 
     | 
    	/* log(x)	~=~ log(1.5) + (x-1.5)/1.5  | 
    
    
    216  | 
     | 
     | 
    	 * log10(x)	 =  log(x) / log(10)  | 
    
    
    217  | 
     | 
     | 
    	 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))  | 
    
    
    218  | 
     | 
     | 
    	 * log10(&d) = (i-Bias)*log(2)/log(10) + log10(d2)  | 
    
    
    219  | 
     | 
     | 
    	 *  | 
    
    
    220  | 
     | 
     | 
    	 * This suggests computing an approximation k to log10(&d) by  | 
    
    
    221  | 
     | 
     | 
    	 *  | 
    
    
    222  | 
     | 
     | 
    	 * k = (i - Bias)*0.301029995663981  | 
    
    
    223  | 
     | 
     | 
    	 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );  | 
    
    
    224  | 
     | 
     | 
    	 *  | 
    
    
    225  | 
     | 
     | 
    	 * We want k to be too large rather than too small.  | 
    
    
    226  | 
     | 
     | 
    	 * The error in the first-order Taylor series approximation  | 
    
    
    227  | 
     | 
     | 
    	 * is in our favor, so we just round up the constant enough  | 
    
    
    228  | 
     | 
     | 
    	 * to compensate for any error in the multiplication of  | 
    
    
    229  | 
     | 
     | 
    	 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,  | 
    
    
    230  | 
     | 
     | 
    	 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,  | 
    
    
    231  | 
     | 
     | 
    	 * adding 1e-13 to the constant term more than suffices.  | 
    
    
    232  | 
     | 
     | 
    	 * Hence we adjust the constant term to 0.1760912590558.  | 
    
    
    233  | 
     | 
     | 
    	 * (We could get a more accurate k by invoking log10,  | 
    
    
    234  | 
     | 
     | 
    	 *  but this is probably not worthwhile.)  | 
    
    
    235  | 
     | 
     | 
    	 */  | 
    
    
    236  | 
     | 
     | 
    #ifdef IBM  | 
    
    
    237  | 
     | 
     | 
    	i <<= 2;  | 
    
    
    238  | 
     | 
     | 
    	i += j;  | 
    
    
    239  | 
     | 
     | 
    #endif  | 
    
    
    240  | 
     | 
     | 
    	ds = (dval(&d)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;  | 
    
    
    241  | 
     | 
     | 
     | 
    
    
    242  | 
     | 
     | 
    	/* correct assumption about exponent range */  | 
    
    
    243  | 
     | 
     | 
    	if ((j = i) < 0)  | 
    
    
    244  | 
     | 
     | 
    		j = -j;  | 
    
    
    245  | 
     | 
     | 
    	if ((j -= 1077) > 0)  | 
    
    
    246  | 
     | 
     | 
    		ds += j * 7e-17;  | 
    
    
    247  | 
     | 
     | 
     | 
    
    
    248  | 
     | 
     | 
    	k = (int)ds;  | 
    
    
    249  | 
     | 
     | 
    	if (ds < 0. && ds != k)  | 
    
    
    250  | 
     | 
     | 
    		k--;	/* want k = floor(ds) */  | 
    
    
    251  | 
     | 
     | 
    	k_check = 1;  | 
    
    
    252  | 
     | 
     | 
    #ifdef IBM  | 
    
    
    253  | 
     | 
     | 
    	j = be + bbits - 1;  | 
    
    
    254  | 
     | 
     | 
    	if ( (j1 = j & 3) !=0)  | 
    
    
    255  | 
     | 
     | 
    		dval(&d) *= 1 << j1;  | 
    
    
    256  | 
     | 
     | 
    	word0(&d) += j << Exp_shift - 2 & Exp_mask;  | 
    
    
    257  | 
     | 
     | 
    #else  | 
    
    
    258  | 
     | 
     | 
    	word0(&d) += (be + bbits - 1) << Exp_shift;  | 
    
    
    259  | 
     | 
     | 
    #endif  | 
    
    
    260  | 
     | 
     | 
    	if (k >= 0 && k <= Ten_pmax) { | 
    
    
    261  | 
     | 
     | 
    		if (dval(&d) < tens[k])  | 
    
    
    262  | 
     | 
     | 
    			k--;  | 
    
    
    263  | 
     | 
     | 
    		k_check = 0;  | 
    
    
    264  | 
     | 
     | 
    		}  | 
    
    
    265  | 
     | 
     | 
    	j = bbits - i - 1;  | 
    
    
    266  | 
     | 
     | 
    	if (j >= 0) { | 
    
    
    267  | 
     | 
     | 
    		b2 = 0;  | 
    
    
    268  | 
     | 
     | 
    		s2 = j;  | 
    
    
    269  | 
     | 
     | 
    		}  | 
    
    
    270  | 
     | 
     | 
    	else { | 
    
    
    271  | 
     | 
     | 
    		b2 = -j;  | 
    
    
    272  | 
     | 
     | 
    		s2 = 0;  | 
    
    
    273  | 
     | 
     | 
    		}  | 
    
    
    274  | 
     | 
     | 
    	if (k >= 0) { | 
    
    
    275  | 
     | 
     | 
    		b5 = 0;  | 
    
    
    276  | 
     | 
     | 
    		s5 = k;  | 
    
    
    277  | 
     | 
     | 
    		s2 += k;  | 
    
    
    278  | 
     | 
     | 
    		}  | 
    
    
    279  | 
     | 
     | 
    	else { | 
    
    
    280  | 
     | 
     | 
    		b2 -= k;  | 
    
    
    281  | 
     | 
     | 
    		b5 = -k;  | 
    
    
    282  | 
     | 
     | 
    		s5 = 0;  | 
    
    
    283  | 
     | 
     | 
    		}  | 
    
    
    284  | 
     | 
     | 
    	if (mode < 0 || mode > 9)  | 
    
    
    285  | 
     | 
     | 
    		mode = 0;  | 
    
    
    286  | 
     | 
     | 
    	try_quick = 1;  | 
    
    
    287  | 
     | 
     | 
    	if (mode > 5) { | 
    
    
    288  | 
     | 
     | 
    		mode -= 4;  | 
    
    
    289  | 
     | 
     | 
    		try_quick = 0;  | 
    
    
    290  | 
     | 
     | 
    		}  | 
    
    
    291  | 
     | 
     | 
    	else if (i >= -4 - Emin || i < Emin)  | 
    
    
    292  | 
     | 
     | 
    		try_quick = 0;  | 
    
    
    293  | 
     | 
     | 
    	leftright = 1;  | 
    
    
    294  | 
     | 
     | 
    	ilim = ilim1 = -1;	/* Values for cases 0 and 1; done here to */  | 
    
    
    295  | 
     | 
     | 
    				/* silence erroneous "gcc -Wall" warning. */  | 
    
    
    296  | 
     | 
     | 
    	switch(mode) { | 
    
    
    297  | 
     | 
     | 
    		case 0:  | 
    
    
    298  | 
     | 
     | 
    		case 1:  | 
    
    
    299  | 
     | 
     | 
    			i = (int)(nbits * .30103) + 3;  | 
    
    
    300  | 
     | 
     | 
    			ndigits = 0;  | 
    
    
    301  | 
     | 
     | 
    			break;  | 
    
    
    302  | 
     | 
     | 
    		case 2:  | 
    
    
    303  | 
     | 
     | 
    			leftright = 0;  | 
    
    
    304  | 
     | 
     | 
    			/* no break */  | 
    
    
    305  | 
     | 
     | 
    		case 4:  | 
    
    
    306  | 
     | 
     | 
    			if (ndigits <= 0)  | 
    
    
    307  | 
     | 
     | 
    				ndigits = 1;  | 
    
    
    308  | 
     | 
     | 
    			ilim = ilim1 = i = ndigits;  | 
    
    
    309  | 
     | 
     | 
    			break;  | 
    
    
    310  | 
     | 
     | 
    		case 3:  | 
    
    
    311  | 
     | 
     | 
    			leftright = 0;  | 
    
    
    312  | 
     | 
     | 
    			/* no break */  | 
    
    
    313  | 
     | 
     | 
    		case 5:  | 
    
    
    314  | 
     | 
     | 
    			i = ndigits + k + 1;  | 
    
    
    315  | 
     | 
     | 
    			ilim = i;  | 
    
    
    316  | 
     | 
     | 
    			ilim1 = i - 1;  | 
    
    
    317  | 
     | 
     | 
    			if (i <= 0)  | 
    
    
    318  | 
     | 
     | 
    				i = 1;  | 
    
    
    319  | 
     | 
     | 
    		}  | 
    
    
    320  | 
     | 
     | 
    	s = s0 = rv_alloc(i);  | 
    
    
    321  | 
     | 
     | 
    	if (s == NULL)  | 
    
    
    322  | 
     | 
     | 
    		return (NULL);  | 
    
    
    323  | 
     | 
     | 
     | 
    
    
    324  | 
     | 
     | 
    	if ( (rdir = fpi->rounding - 1) !=0) { | 
    
    
    325  | 
     | 
     | 
    		if (rdir < 0)  | 
    
    
    326  | 
     | 
     | 
    			rdir = 2;  | 
    
    
    327  | 
     | 
     | 
    		if (kind & STRTOG_Neg)  | 
    
    
    328  | 
     | 
     | 
    			rdir = 3 - rdir;  | 
    
    
    329  | 
     | 
     | 
    		}  | 
    
    
    330  | 
     | 
     | 
     | 
    
    
    331  | 
     | 
     | 
    	/* Now rdir = 0 ==> round near, 1 ==> round up, 2 ==> round down. */  | 
    
    
    332  | 
     | 
     | 
     | 
    
    
    333  | 
     | 
     | 
    	if (ilim >= 0 && ilim <= Quick_max && try_quick && !rdir  | 
    
    
    334  | 
     | 
     | 
    #ifndef IMPRECISE_INEXACT  | 
    
    
    335  | 
     | 
     | 
    		&& k == 0  | 
    
    
    336  | 
     | 
     | 
    #endif  | 
    
    
    337  | 
     | 
     | 
    								) { | 
    
    
    338  | 
     | 
     | 
     | 
    
    
    339  | 
     | 
     | 
    		/* Try to get by with floating-point arithmetic. */  | 
    
    
    340  | 
     | 
     | 
     | 
    
    
    341  | 
     | 
     | 
    		i = 0;  | 
    
    
    342  | 
     | 
     | 
    		d2 = dval(&d);  | 
    
    
    343  | 
     | 
     | 
    #ifdef IBM  | 
    
    
    344  | 
     | 
     | 
    		if ( (j = 11 - hi0bits(word0(&d) & Frac_mask)) !=0)  | 
    
    
    345  | 
     | 
     | 
    			dval(&d) /= 1 << j;  | 
    
    
    346  | 
     | 
     | 
    #endif  | 
    
    
    347  | 
     | 
     | 
    		k0 = k;  | 
    
    
    348  | 
     | 
     | 
    		ilim0 = ilim;  | 
    
    
    349  | 
     | 
     | 
    		ieps = 2; /* conservative */  | 
    
    
    350  | 
     | 
     | 
    		if (k > 0) { | 
    
    
    351  | 
     | 
     | 
    			ds = tens[k&0xf];  | 
    
    
    352  | 
     | 
     | 
    			j = k >> 4;  | 
    
    
    353  | 
     | 
     | 
    			if (j & Bletch) { | 
    
    
    354  | 
     | 
     | 
    				/* prevent overflows */  | 
    
    
    355  | 
     | 
     | 
    				j &= Bletch - 1;  | 
    
    
    356  | 
     | 
     | 
    				dval(&d) /= bigtens[n_bigtens-1];  | 
    
    
    357  | 
     | 
     | 
    				ieps++;  | 
    
    
    358  | 
     | 
     | 
    				}  | 
    
    
    359  | 
     | 
     | 
    			for(; j; j >>= 1, i++)  | 
    
    
    360  | 
     | 
     | 
    				if (j & 1) { | 
    
    
    361  | 
     | 
     | 
    					ieps++;  | 
    
    
    362  | 
     | 
     | 
    					ds *= bigtens[i];  | 
    
    
    363  | 
     | 
     | 
    					}  | 
    
    
    364  | 
     | 
     | 
    			}  | 
    
    
    365  | 
     | 
     | 
    		else  { | 
    
    
    366  | 
     | 
     | 
    			ds = 1.;  | 
    
    
    367  | 
     | 
     | 
    			if ( (j1 = -k) !=0) { | 
    
    
    368  | 
     | 
     | 
    				dval(&d) *= tens[j1 & 0xf];  | 
    
    
    369  | 
     | 
     | 
    				for(j = j1 >> 4; j; j >>= 1, i++)  | 
    
    
    370  | 
     | 
     | 
    					if (j & 1) { | 
    
    
    371  | 
     | 
     | 
    						ieps++;  | 
    
    
    372  | 
     | 
     | 
    						dval(&d) *= bigtens[i];  | 
    
    
    373  | 
     | 
     | 
    						}  | 
    
    
    374  | 
     | 
     | 
    				}  | 
    
    
    375  | 
     | 
     | 
    			}  | 
    
    
    376  | 
     | 
     | 
    		if (k_check && dval(&d) < 1. && ilim > 0) { | 
    
    
    377  | 
     | 
     | 
    			if (ilim1 <= 0)  | 
    
    
    378  | 
     | 
     | 
    				goto fast_failed;  | 
    
    
    379  | 
     | 
     | 
    			ilim = ilim1;  | 
    
    
    380  | 
     | 
     | 
    			k--;  | 
    
    
    381  | 
     | 
     | 
    			dval(&d) *= 10.;  | 
    
    
    382  | 
     | 
     | 
    			ieps++;  | 
    
    
    383  | 
     | 
     | 
    			}  | 
    
    
    384  | 
     | 
     | 
    		dval(&eps) = ieps*dval(&d) + 7.;  | 
    
    
    385  | 
     | 
     | 
    		word0(&eps) -= (P-1)*Exp_msk1;  | 
    
    
    386  | 
     | 
     | 
    		if (ilim == 0) { | 
    
    
    387  | 
     | 
     | 
    			S = mhi = 0;  | 
    
    
    388  | 
     | 
     | 
    			dval(&d) -= 5.;  | 
    
    
    389  | 
     | 
     | 
    			if (dval(&d) > dval(&eps))  | 
    
    
    390  | 
     | 
     | 
    				goto one_digit;  | 
    
    
    391  | 
     | 
     | 
    			if (dval(&d) < -dval(&eps))  | 
    
    
    392  | 
     | 
     | 
    				goto no_digits;  | 
    
    
    393  | 
     | 
     | 
    			goto fast_failed;  | 
    
    
    394  | 
     | 
     | 
    			}  | 
    
    
    395  | 
     | 
     | 
    #ifndef No_leftright  | 
    
    
    396  | 
     | 
     | 
    		if (leftright) { | 
    
    
    397  | 
     | 
     | 
    			/* Use Steele & White method of only  | 
    
    
    398  | 
     | 
     | 
    			 * generating digits needed.  | 
    
    
    399  | 
     | 
     | 
    			 */  | 
    
    
    400  | 
     | 
     | 
    			dval(&eps) = ds*0.5/tens[ilim-1] - dval(&eps);  | 
    
    
    401  | 
     | 
     | 
    			for(i = 0;;) { | 
    
    
    402  | 
     | 
     | 
    				L = (Long)(dval(&d)/ds);  | 
    
    
    403  | 
     | 
     | 
    				dval(&d) -= L*ds;  | 
    
    
    404  | 
     | 
     | 
    				*s++ = '0' + (int)L;  | 
    
    
    405  | 
     | 
     | 
    				if (dval(&d) < dval(&eps)) { | 
    
    
    406  | 
     | 
     | 
    					if (dval(&d))  | 
    
    
    407  | 
     | 
     | 
    						inex = STRTOG_Inexlo;  | 
    
    
    408  | 
     | 
     | 
    					goto ret1;  | 
    
    
    409  | 
     | 
     | 
    					}  | 
    
    
    410  | 
     | 
     | 
    				if (ds - dval(&d) < dval(&eps))  | 
    
    
    411  | 
     | 
     | 
    					goto bump_up;  | 
    
    
    412  | 
     | 
     | 
    				if (++i >= ilim)  | 
    
    
    413  | 
     | 
     | 
    					break;  | 
    
    
    414  | 
     | 
     | 
    				dval(&eps) *= 10.;  | 
    
    
    415  | 
     | 
     | 
    				dval(&d) *= 10.;  | 
    
    
    416  | 
     | 
     | 
    				}  | 
    
    
    417  | 
     | 
     | 
    			}  | 
    
    
    418  | 
     | 
     | 
    		else { | 
    
    
    419  | 
     | 
     | 
    #endif  | 
    
    
    420  | 
     | 
     | 
    			/* Generate ilim digits, then fix them up. */  | 
    
    
    421  | 
     | 
     | 
    			dval(&eps) *= tens[ilim-1];  | 
    
    
    422  | 
     | 
     | 
    			for(i = 1;; i++, dval(&d) *= 10.) { | 
    
    
    423  | 
     | 
     | 
    				if ( (L = (Long)(dval(&d)/ds)) !=0)  | 
    
    
    424  | 
     | 
     | 
    					dval(&d) -= L*ds;  | 
    
    
    425  | 
     | 
     | 
    				*s++ = '0' + (int)L;  | 
    
    
    426  | 
     | 
     | 
    				if (i == ilim) { | 
    
    
    427  | 
     | 
     | 
    					ds *= 0.5;  | 
    
    
    428  | 
     | 
     | 
    					if (dval(&d) > ds + dval(&eps))  | 
    
    
    429  | 
     | 
     | 
    						goto bump_up;  | 
    
    
    430  | 
     | 
     | 
    					else if (dval(&d) < ds - dval(&eps)) { | 
    
    
    431  | 
     | 
     | 
    						if (dval(&d))  | 
    
    
    432  | 
     | 
     | 
    							inex = STRTOG_Inexlo;  | 
    
    
    433  | 
     | 
     | 
    						goto clear_trailing0;  | 
    
    
    434  | 
     | 
     | 
    						}  | 
    
    
    435  | 
     | 
     | 
    					break;  | 
    
    
    436  | 
     | 
     | 
    					}  | 
    
    
    437  | 
     | 
     | 
    				}  | 
    
    
    438  | 
     | 
     | 
    #ifndef No_leftright  | 
    
    
    439  | 
     | 
     | 
    			}  | 
    
    
    440  | 
     | 
     | 
    #endif  | 
    
    
    441  | 
     | 
     | 
     fast_failed:  | 
    
    
    442  | 
     | 
     | 
    		s = s0;  | 
    
    
    443  | 
     | 
     | 
    		dval(&d) = d2;  | 
    
    
    444  | 
     | 
     | 
    		k = k0;  | 
    
    
    445  | 
     | 
     | 
    		ilim = ilim0;  | 
    
    
    446  | 
     | 
     | 
    		}  | 
    
    
    447  | 
     | 
     | 
     | 
    
    
    448  | 
     | 
     | 
    	/* Do we have a "small" integer? */  | 
    
    
    449  | 
     | 
     | 
     | 
    
    
    450  | 
     | 
     | 
    	if (be >= 0 && k <= Int_max) { | 
    
    
    451  | 
     | 
     | 
    		/* Yes. */  | 
    
    
    452  | 
     | 
     | 
    		ds = tens[k];  | 
    
    
    453  | 
     | 
     | 
    		if (ndigits < 0 && ilim <= 0) { | 
    
    
    454  | 
     | 
     | 
    			S = mhi = 0;  | 
    
    
    455  | 
     | 
     | 
    			if (ilim < 0 || dval(&d) <= 5*ds)  | 
    
    
    456  | 
     | 
     | 
    				goto no_digits;  | 
    
    
    457  | 
     | 
     | 
    			goto one_digit;  | 
    
    
    458  | 
     | 
     | 
    			}  | 
    
    
    459  | 
     | 
     | 
    		for(i = 1;; i++, dval(&d) *= 10.) { | 
    
    
    460  | 
     | 
     | 
    			L = dval(&d) / ds;  | 
    
    
    461  | 
     | 
     | 
    			dval(&d) -= L*ds;  | 
    
    
    462  | 
     | 
     | 
    #ifdef Check_FLT_ROUNDS  | 
    
    
    463  | 
     | 
     | 
    			/* If FLT_ROUNDS == 2, L will usually be high by 1 */  | 
    
    
    464  | 
     | 
     | 
    			if (dval(&d) < 0) { | 
    
    
    465  | 
     | 
     | 
    				L--;  | 
    
    
    466  | 
     | 
     | 
    				dval(&d) += ds;  | 
    
    
    467  | 
     | 
     | 
    				}  | 
    
    
    468  | 
     | 
     | 
    #endif  | 
    
    
    469  | 
     | 
     | 
    			*s++ = '0' + (int)L;  | 
    
    
    470  | 
     | 
     | 
    			if (dval(&d) == 0.)  | 
    
    
    471  | 
     | 
     | 
    				break;  | 
    
    
    472  | 
     | 
     | 
    			if (i == ilim) { | 
    
    
    473  | 
     | 
     | 
    				if (rdir) { | 
    
    
    474  | 
     | 
     | 
    					if (rdir == 1)  | 
    
    
    475  | 
     | 
     | 
    						goto bump_up;  | 
    
    
    476  | 
     | 
     | 
    					inex = STRTOG_Inexlo;  | 
    
    
    477  | 
     | 
     | 
    					goto ret1;  | 
    
    
    478  | 
     | 
     | 
    					}  | 
    
    
    479  | 
     | 
     | 
    				dval(&d) += dval(&d);  | 
    
    
    480  | 
     | 
     | 
    #ifdef ROUND_BIASED  | 
    
    
    481  | 
     | 
     | 
    				if (dval(&d) >= ds)  | 
    
    
    482  | 
     | 
     | 
    #else  | 
    
    
    483  | 
     | 
     | 
    				if (dval(&d) > ds || (dval(&d) == ds && L & 1))  | 
    
    
    484  | 
     | 
     | 
    #endif  | 
    
    
    485  | 
     | 
     | 
    					{ | 
    
    
    486  | 
     | 
     | 
     bump_up:  | 
    
    
    487  | 
     | 
     | 
    					inex = STRTOG_Inexhi;  | 
    
    
    488  | 
     | 
     | 
    					while(*--s == '9')  | 
    
    
    489  | 
     | 
     | 
    						if (s == s0) { | 
    
    
    490  | 
     | 
     | 
    							k++;  | 
    
    
    491  | 
     | 
     | 
    							*s = '0';  | 
    
    
    492  | 
     | 
     | 
    							break;  | 
    
    
    493  | 
     | 
     | 
    							}  | 
    
    
    494  | 
     | 
     | 
    					++*s++;  | 
    
    
    495  | 
     | 
     | 
    					}  | 
    
    
    496  | 
     | 
     | 
    				else { | 
    
    
    497  | 
     | 
     | 
    					inex = STRTOG_Inexlo;  | 
    
    
    498  | 
     | 
     | 
     clear_trailing0:  | 
    
    
    499  | 
     | 
     | 
    					while(*--s == '0'){} | 
    
    
    500  | 
     | 
     | 
    					++s;  | 
    
    
    501  | 
     | 
     | 
    					}  | 
    
    
    502  | 
     | 
     | 
    				break;  | 
    
    
    503  | 
     | 
     | 
    				}  | 
    
    
    504  | 
     | 
     | 
    			}  | 
    
    
    505  | 
     | 
     | 
    		goto ret1;  | 
    
    
    506  | 
     | 
     | 
    		}  | 
    
    
    507  | 
     | 
     | 
     | 
    
    
    508  | 
     | 
     | 
    	m2 = b2;  | 
    
    
    509  | 
     | 
     | 
    	m5 = b5;  | 
    
    
    510  | 
     | 
     | 
    	mhi = mlo = 0;  | 
    
    
    511  | 
     | 
     | 
    	if (leftright) { | 
    
    
    512  | 
     | 
     | 
    		i = nbits - bbits;  | 
    
    
    513  | 
     | 
     | 
    		if (be - i++ < fpi->emin && mode != 3 && mode != 5) { | 
    
    
    514  | 
     | 
     | 
    			/* denormal */  | 
    
    
    515  | 
     | 
     | 
    			i = be - fpi->emin + 1;  | 
    
    
    516  | 
     | 
     | 
    			if (mode >= 2 && ilim > 0 && ilim < i)  | 
    
    
    517  | 
     | 
     | 
    				goto small_ilim;  | 
    
    
    518  | 
     | 
     | 
    			}  | 
    
    
    519  | 
     | 
     | 
    		else if (mode >= 2) { | 
    
    
    520  | 
     | 
     | 
     small_ilim:  | 
    
    
    521  | 
     | 
     | 
    			j = ilim - 1;  | 
    
    
    522  | 
     | 
     | 
    			if (m5 >= j)  | 
    
    
    523  | 
     | 
     | 
    				m5 -= j;  | 
    
    
    524  | 
     | 
     | 
    			else { | 
    
    
    525  | 
     | 
     | 
    				s5 += j -= m5;  | 
    
    
    526  | 
     | 
     | 
    				b5 += j;  | 
    
    
    527  | 
     | 
     | 
    				m5 = 0;  | 
    
    
    528  | 
     | 
     | 
    				}  | 
    
    
    529  | 
     | 
     | 
    			if ((i = ilim) < 0) { | 
    
    
    530  | 
     | 
     | 
    				m2 -= i;  | 
    
    
    531  | 
     | 
     | 
    				i = 0;  | 
    
    
    532  | 
     | 
     | 
    				}  | 
    
    
    533  | 
     | 
     | 
    			}  | 
    
    
    534  | 
     | 
     | 
    		b2 += i;  | 
    
    
    535  | 
     | 
     | 
    		s2 += i;  | 
    
    
    536  | 
     | 
     | 
    		mhi = i2b(1);  | 
    
    
    537  | 
     | 
     | 
    		if (mhi == NULL)  | 
    
    
    538  | 
     | 
     | 
    			return (NULL);  | 
    
    
    539  | 
     | 
     | 
    		}  | 
    
    
    540  | 
     | 
     | 
    	if (m2 > 0 && s2 > 0) { | 
    
    
    541  | 
     | 
     | 
    		i = m2 < s2 ? m2 : s2;  | 
    
    
    542  | 
     | 
     | 
    		b2 -= i;  | 
    
    
    543  | 
     | 
     | 
    		m2 -= i;  | 
    
    
    544  | 
     | 
     | 
    		s2 -= i;  | 
    
    
    545  | 
     | 
     | 
    		}  | 
    
    
    546  | 
     | 
     | 
    	if (b5 > 0) { | 
    
    
    547  | 
     | 
     | 
    		if (leftright) { | 
    
    
    548  | 
     | 
     | 
    			if (m5 > 0) { | 
    
    
    549  | 
     | 
     | 
    				mhi = pow5mult(mhi, m5);  | 
    
    
    550  | 
     | 
     | 
    				if (mhi == NULL)  | 
    
    
    551  | 
     | 
     | 
    					return (NULL);  | 
    
    
    552  | 
     | 
     | 
    				b1 = mult(mhi, b);  | 
    
    
    553  | 
     | 
     | 
    				if (b1 == NULL)  | 
    
    
    554  | 
     | 
     | 
    					return (NULL);  | 
    
    
    555  | 
     | 
     | 
    				Bfree(b);  | 
    
    
    556  | 
     | 
     | 
    				b = b1;  | 
    
    
    557  | 
     | 
     | 
    				}  | 
    
    
    558  | 
     | 
     | 
    			if ( (j = b5 - m5) !=0) { | 
    
    
    559  | 
     | 
     | 
    				b = pow5mult(b, j);  | 
    
    
    560  | 
     | 
     | 
    				if (b == NULL)  | 
    
    
    561  | 
     | 
     | 
    					return (NULL);  | 
    
    
    562  | 
     | 
     | 
    				}  | 
    
    
    563  | 
     | 
     | 
    			}  | 
    
    
    564  | 
     | 
     | 
    		else { | 
    
    
    565  | 
     | 
     | 
    			b = pow5mult(b, b5);  | 
    
    
    566  | 
     | 
     | 
    			if (b == NULL)  | 
    
    
    567  | 
     | 
     | 
    				return (NULL);  | 
    
    
    568  | 
     | 
     | 
    			}  | 
    
    
    569  | 
     | 
     | 
    		}  | 
    
    
    570  | 
     | 
     | 
    	S = i2b(1);  | 
    
    
    571  | 
     | 
     | 
    	if (S == NULL)  | 
    
    
    572  | 
     | 
     | 
    		return (NULL);  | 
    
    
    573  | 
     | 
     | 
    	if (s5 > 0) { | 
    
    
    574  | 
     | 
     | 
    		S = pow5mult(S, s5);  | 
    
    
    575  | 
     | 
     | 
    		if (S == NULL)  | 
    
    
    576  | 
     | 
     | 
    			return (NULL);  | 
    
    
    577  | 
     | 
     | 
    		}  | 
    
    
    578  | 
     | 
     | 
     | 
    
    
    579  | 
     | 
     | 
    	/* Check for special case that d is a normalized power of 2. */  | 
    
    
    580  | 
     | 
     | 
     | 
    
    
    581  | 
     | 
     | 
    	spec_case = 0;  | 
    
    
    582  | 
     | 
     | 
    	if (mode < 2) { | 
    
    
    583  | 
     | 
     | 
    		if (bbits == 1 && be0 > fpi->emin + 1) { | 
    
    
    584  | 
     | 
     | 
    			/* The special case */  | 
    
    
    585  | 
     | 
     | 
    			b2++;  | 
    
    
    586  | 
     | 
     | 
    			s2++;  | 
    
    
    587  | 
     | 
     | 
    			spec_case = 1;  | 
    
    
    588  | 
     | 
     | 
    			}  | 
    
    
    589  | 
     | 
     | 
    		}  | 
    
    
    590  | 
     | 
     | 
     | 
    
    
    591  | 
     | 
     | 
    	/* Arrange for convenient computation of quotients:  | 
    
    
    592  | 
     | 
     | 
    	 * shift left if necessary so divisor has 4 leading 0 bits.  | 
    
    
    593  | 
     | 
     | 
    	 *  | 
    
    
    594  | 
     | 
     | 
    	 * Perhaps we should just compute leading 28 bits of S once  | 
    
    
    595  | 
     | 
     | 
    	 * and for all and pass them and a shift to quorem, so it  | 
    
    
    596  | 
     | 
     | 
    	 * can do shifts and ors to compute the numerator for q.  | 
    
    
    597  | 
     | 
     | 
    	 */  | 
    
    
    598  | 
     | 
     | 
    	i = ((s5 ? hi0bits(S->x[S->wds-1]) : ULbits - 1) - s2 - 4) & kmask;  | 
    
    
    599  | 
     | 
     | 
    	m2 += i;  | 
    
    
    600  | 
     | 
     | 
    	if ((b2 += i) > 0) { | 
    
    
    601  | 
     | 
     | 
    		b = lshift(b, b2);  | 
    
    
    602  | 
     | 
     | 
    		if (b == NULL)  | 
    
    
    603  | 
     | 
     | 
    			return (NULL);  | 
    
    
    604  | 
     | 
     | 
    		}  | 
    
    
    605  | 
     | 
     | 
    	if ((s2 += i) > 0) { | 
    
    
    606  | 
     | 
     | 
    		S = lshift(S, s2);  | 
    
    
    607  | 
     | 
     | 
    		if (S == NULL)  | 
    
    
    608  | 
     | 
     | 
    			return (NULL);  | 
    
    
    609  | 
     | 
     | 
    		}  | 
    
    
    610  | 
     | 
     | 
    	if (k_check) { | 
    
    
    611  | 
     | 
     | 
    		if (cmp(b,S) < 0) { | 
    
    
    612  | 
     | 
     | 
    			k--;  | 
    
    
    613  | 
     | 
     | 
    			b = multadd(b, 10, 0);	/* we botched the k estimate */  | 
    
    
    614  | 
     | 
     | 
    			if (b == NULL)  | 
    
    
    615  | 
     | 
     | 
    				return (NULL);  | 
    
    
    616  | 
     | 
     | 
    			if (leftright) { | 
    
    
    617  | 
     | 
     | 
    				mhi = multadd(mhi, 10, 0);  | 
    
    
    618  | 
     | 
     | 
    				if (mhi == NULL)  | 
    
    
    619  | 
     | 
     | 
    					return (NULL);  | 
    
    
    620  | 
     | 
     | 
    				}  | 
    
    
    621  | 
     | 
     | 
    			ilim = ilim1;  | 
    
    
    622  | 
     | 
     | 
    			}  | 
    
    
    623  | 
     | 
     | 
    		}  | 
    
    
    624  | 
     | 
     | 
    	if (ilim <= 0 && mode > 2) { | 
    
    
    625  | 
     | 
     | 
    		S = multadd(S,5,0);  | 
    
    
    626  | 
     | 
     | 
    		if (S == NULL)  | 
    
    
    627  | 
     | 
     | 
    			return (NULL);  | 
    
    
    628  | 
     | 
     | 
    		if (ilim < 0 || cmp(b,S) <= 0) { | 
    
    
    629  | 
     | 
     | 
    			/* no digits, fcvt style */  | 
    
    
    630  | 
     | 
     | 
     no_digits:  | 
    
    
    631  | 
     | 
     | 
    			k = -1 - ndigits;  | 
    
    
    632  | 
     | 
     | 
    			inex = STRTOG_Inexlo;  | 
    
    
    633  | 
     | 
     | 
    			goto ret;  | 
    
    
    634  | 
     | 
     | 
    			}  | 
    
    
    635  | 
     | 
     | 
     one_digit:  | 
    
    
    636  | 
     | 
     | 
    		inex = STRTOG_Inexhi;  | 
    
    
    637  | 
     | 
     | 
    		*s++ = '1';  | 
    
    
    638  | 
     | 
     | 
    		k++;  | 
    
    
    639  | 
     | 
     | 
    		goto ret;  | 
    
    
    640  | 
     | 
     | 
    		}  | 
    
    
    641  | 
     | 
     | 
    	if (leftright) { | 
    
    
    642  | 
     | 
     | 
    		if (m2 > 0) { | 
    
    
    643  | 
     | 
     | 
    			mhi = lshift(mhi, m2);  | 
    
    
    644  | 
     | 
     | 
    			if (mhi == NULL)  | 
    
    
    645  | 
     | 
     | 
    				return (NULL);  | 
    
    
    646  | 
     | 
     | 
    			}  | 
    
    
    647  | 
     | 
     | 
     | 
    
    
    648  | 
     | 
     | 
    		/* Compute mlo -- check for special case  | 
    
    
    649  | 
     | 
     | 
    		 * that d is a normalized power of 2.  | 
    
    
    650  | 
     | 
     | 
    		 */  | 
    
    
    651  | 
     | 
     | 
     | 
    
    
    652  | 
     | 
     | 
    		mlo = mhi;  | 
    
    
    653  | 
     | 
     | 
    		if (spec_case) { | 
    
    
    654  | 
     | 
     | 
    			mhi = Balloc(mhi->k);  | 
    
    
    655  | 
     | 
     | 
    			if (mhi == NULL)  | 
    
    
    656  | 
     | 
     | 
    				return (NULL);  | 
    
    
    657  | 
     | 
     | 
    			Bcopy(mhi, mlo);  | 
    
    
    658  | 
     | 
     | 
    			mhi = lshift(mhi, 1);  | 
    
    
    659  | 
     | 
     | 
    			if (mhi == NULL)  | 
    
    
    660  | 
     | 
     | 
    				return (NULL);  | 
    
    
    661  | 
     | 
     | 
    			}  | 
    
    
    662  | 
     | 
     | 
     | 
    
    
    663  | 
     | 
     | 
    		for(i = 1;;i++) { | 
    
    
    664  | 
     | 
     | 
    			dig = quorem(b,S) + '0';  | 
    
    
    665  | 
     | 
     | 
    			/* Do we yet have the shortest decimal string  | 
    
    
    666  | 
     | 
     | 
    			 * that will round to d?  | 
    
    
    667  | 
     | 
     | 
    			 */  | 
    
    
    668  | 
     | 
     | 
    			j = cmp(b, mlo);  | 
    
    
    669  | 
     | 
     | 
    			delta = diff(S, mhi);  | 
    
    
    670  | 
     | 
     | 
    			if (delta == NULL)  | 
    
    
    671  | 
     | 
     | 
    				return (NULL);  | 
    
    
    672  | 
     | 
     | 
    			j1 = delta->sign ? 1 : cmp(b, delta);  | 
    
    
    673  | 
     | 
     | 
    			Bfree(delta);  | 
    
    
    674  | 
     | 
     | 
    #ifndef ROUND_BIASED  | 
    
    
    675  | 
     | 
     | 
    			if (j1 == 0 && !mode && !(bits[0] & 1) && !rdir) { | 
    
    
    676  | 
     | 
     | 
    				if (dig == '9')  | 
    
    
    677  | 
     | 
     | 
    					goto round_9_up;  | 
    
    
    678  | 
     | 
     | 
    				if (j <= 0) { | 
    
    
    679  | 
     | 
     | 
    					if (b->wds > 1 || b->x[0])  | 
    
    
    680  | 
     | 
     | 
    						inex = STRTOG_Inexlo;  | 
    
    
    681  | 
     | 
     | 
    					}  | 
    
    
    682  | 
     | 
     | 
    				else { | 
    
    
    683  | 
     | 
     | 
    					dig++;  | 
    
    
    684  | 
     | 
     | 
    					inex = STRTOG_Inexhi;  | 
    
    
    685  | 
     | 
     | 
    					}  | 
    
    
    686  | 
     | 
     | 
    				*s++ = dig;  | 
    
    
    687  | 
     | 
     | 
    				goto ret;  | 
    
    
    688  | 
     | 
     | 
    				}  | 
    
    
    689  | 
     | 
     | 
    #endif  | 
    
    
    690  | 
     | 
     | 
    			if (j < 0 || (j == 0 && !mode  | 
    
    
    691  | 
     | 
     | 
    #ifndef ROUND_BIASED  | 
    
    
    692  | 
     | 
     | 
    							&& !(bits[0] & 1)  | 
    
    
    693  | 
     | 
     | 
    #endif  | 
    
    
    694  | 
     | 
     | 
    					)) { | 
    
    
    695  | 
     | 
     | 
    				if (rdir && (b->wds > 1 || b->x[0])) { | 
    
    
    696  | 
     | 
     | 
    					if (rdir == 2) { | 
    
    
    697  | 
     | 
     | 
    						inex = STRTOG_Inexlo;  | 
    
    
    698  | 
     | 
     | 
    						goto accept;  | 
    
    
    699  | 
     | 
     | 
    						}  | 
    
    
    700  | 
     | 
     | 
    					while (cmp(S,mhi) > 0) { | 
    
    
    701  | 
     | 
     | 
    						*s++ = dig;  | 
    
    
    702  | 
     | 
     | 
    						mhi1 = multadd(mhi, 10, 0);  | 
    
    
    703  | 
     | 
     | 
    						if (mhi1 == NULL)  | 
    
    
    704  | 
     | 
     | 
    							return (NULL);  | 
    
    
    705  | 
     | 
     | 
    						if (mlo == mhi)  | 
    
    
    706  | 
     | 
     | 
    							mlo = mhi1;  | 
    
    
    707  | 
     | 
     | 
    						mhi = mhi1;  | 
    
    
    708  | 
     | 
     | 
    						b = multadd(b, 10, 0);  | 
    
    
    709  | 
     | 
     | 
    						if (b == NULL)  | 
    
    
    710  | 
     | 
     | 
    							return (NULL);  | 
    
    
    711  | 
     | 
     | 
    						dig = quorem(b,S) + '0';  | 
    
    
    712  | 
     | 
     | 
    						}  | 
    
    
    713  | 
     | 
     | 
    					if (dig++ == '9')  | 
    
    
    714  | 
     | 
     | 
    						goto round_9_up;  | 
    
    
    715  | 
     | 
     | 
    					inex = STRTOG_Inexhi;  | 
    
    
    716  | 
     | 
     | 
    					goto accept;  | 
    
    
    717  | 
     | 
     | 
    					}  | 
    
    
    718  | 
     | 
     | 
    				if (j1 > 0) { | 
    
    
    719  | 
     | 
     | 
    					b = lshift(b, 1);  | 
    
    
    720  | 
     | 
     | 
    					if (b == NULL)  | 
    
    
    721  | 
     | 
     | 
    						return (NULL);  | 
    
    
    722  | 
     | 
     | 
    					j1 = cmp(b, S);  | 
    
    
    723  | 
     | 
     | 
    #ifdef ROUND_BIASED  | 
    
    
    724  | 
     | 
     | 
    					if (j1 >= 0 /*)*/  | 
    
    
    725  | 
     | 
     | 
    #else  | 
    
    
    726  | 
     | 
     | 
    					if ((j1 > 0 || (j1 == 0 && dig & 1))  | 
    
    
    727  | 
     | 
     | 
    #endif  | 
    
    
    728  | 
     | 
     | 
    					&& dig++ == '9')  | 
    
    
    729  | 
     | 
     | 
    						goto round_9_up;  | 
    
    
    730  | 
     | 
     | 
    					inex = STRTOG_Inexhi;  | 
    
    
    731  | 
     | 
     | 
    					}  | 
    
    
    732  | 
     | 
     | 
    				if (b->wds > 1 || b->x[0])  | 
    
    
    733  | 
     | 
     | 
    					inex = STRTOG_Inexlo;  | 
    
    
    734  | 
     | 
     | 
     accept:  | 
    
    
    735  | 
     | 
     | 
    				*s++ = dig;  | 
    
    
    736  | 
     | 
     | 
    				goto ret;  | 
    
    
    737  | 
     | 
     | 
    				}  | 
    
    
    738  | 
     | 
     | 
    			if (j1 > 0 && rdir != 2) { | 
    
    
    739  | 
     | 
     | 
    				if (dig == '9') { /* possible if i == 1 */ | 
    
    
    740  | 
     | 
     | 
     round_9_up:  | 
    
    
    741  | 
     | 
     | 
    					*s++ = '9';  | 
    
    
    742  | 
     | 
     | 
    					inex = STRTOG_Inexhi;  | 
    
    
    743  | 
     | 
     | 
    					goto roundoff;  | 
    
    
    744  | 
     | 
     | 
    					}  | 
    
    
    745  | 
     | 
     | 
    				inex = STRTOG_Inexhi;  | 
    
    
    746  | 
     | 
     | 
    				*s++ = dig + 1;  | 
    
    
    747  | 
     | 
     | 
    				goto ret;  | 
    
    
    748  | 
     | 
     | 
    				}  | 
    
    
    749  | 
     | 
     | 
    			*s++ = dig;  | 
    
    
    750  | 
     | 
     | 
    			if (i == ilim)  | 
    
    
    751  | 
     | 
     | 
    				break;  | 
    
    
    752  | 
     | 
     | 
    			b = multadd(b, 10, 0);  | 
    
    
    753  | 
     | 
     | 
    			if (b == NULL)  | 
    
    
    754  | 
     | 
     | 
    				return (NULL);  | 
    
    
    755  | 
     | 
     | 
    			if (mlo == mhi) { | 
    
    
    756  | 
     | 
     | 
    				mlo = mhi = multadd(mhi, 10, 0);  | 
    
    
    757  | 
     | 
     | 
    				if (mlo == NULL)  | 
    
    
    758  | 
     | 
     | 
    					return (NULL);  | 
    
    
    759  | 
     | 
     | 
    				}  | 
    
    
    760  | 
     | 
     | 
    			else { | 
    
    
    761  | 
     | 
     | 
    				mlo = multadd(mlo, 10, 0);  | 
    
    
    762  | 
     | 
     | 
    				if (mlo == NULL)  | 
    
    
    763  | 
     | 
     | 
    					return (NULL);  | 
    
    
    764  | 
     | 
     | 
    				mhi = multadd(mhi, 10, 0);  | 
    
    
    765  | 
     | 
     | 
    				if (mhi == NULL)  | 
    
    
    766  | 
     | 
     | 
    					return (NULL);  | 
    
    
    767  | 
     | 
     | 
    				}  | 
    
    
    768  | 
     | 
     | 
    			}  | 
    
    
    769  | 
     | 
     | 
    		}  | 
    
    
    770  | 
     | 
     | 
    	else  | 
    
    
    771  | 
     | 
     | 
    		for(i = 1;; i++) { | 
    
    
    772  | 
     | 
     | 
    			*s++ = dig = quorem(b,S) + '0';  | 
    
    
    773  | 
     | 
     | 
    			if (i >= ilim)  | 
    
    
    774  | 
     | 
     | 
    				break;  | 
    
    
    775  | 
     | 
     | 
    			b = multadd(b, 10, 0);  | 
    
    
    776  | 
     | 
     | 
    			if (b == NULL)  | 
    
    
    777  | 
     | 
     | 
    				return (NULL);  | 
    
    
    778  | 
     | 
     | 
    			}  | 
    
    
    779  | 
     | 
     | 
     | 
    
    
    780  | 
     | 
     | 
    	/* Round off last digit */  | 
    
    
    781  | 
     | 
     | 
     | 
    
    
    782  | 
     | 
     | 
    	if (rdir) { | 
    
    
    783  | 
     | 
     | 
    		if (rdir == 2 || (b->wds <= 1 && !b->x[0]))  | 
    
    
    784  | 
     | 
     | 
    			goto chopzeros;  | 
    
    
    785  | 
     | 
     | 
    		goto roundoff;  | 
    
    
    786  | 
     | 
     | 
    		}  | 
    
    
    787  | 
     | 
     | 
    	b = lshift(b, 1);  | 
    
    
    788  | 
     | 
     | 
    	if (b == NULL)  | 
    
    
    789  | 
     | 
     | 
    		return (NULL);  | 
    
    
    790  | 
     | 
     | 
    	j = cmp(b, S);  | 
    
    
    791  | 
     | 
     | 
    #ifdef ROUND_BIASED  | 
    
    
    792  | 
     | 
     | 
    	if (j >= 0)  | 
    
    
    793  | 
     | 
     | 
    #else  | 
    
    
    794  | 
     | 
     | 
    	if (j > 0 || (j == 0 && dig & 1))  | 
    
    
    795  | 
     | 
     | 
    #endif  | 
    
    
    796  | 
     | 
     | 
    		{ | 
    
    
    797  | 
     | 
     | 
     roundoff:  | 
    
    
    798  | 
     | 
     | 
    		inex = STRTOG_Inexhi;  | 
    
    
    799  | 
     | 
     | 
    		while(*--s == '9')  | 
    
    
    800  | 
     | 
     | 
    			if (s == s0) { | 
    
    
    801  | 
     | 
     | 
    				k++;  | 
    
    
    802  | 
     | 
     | 
    				*s++ = '1';  | 
    
    
    803  | 
     | 
     | 
    				goto ret;  | 
    
    
    804  | 
     | 
     | 
    				}  | 
    
    
    805  | 
     | 
     | 
    		++*s++;  | 
    
    
    806  | 
     | 
     | 
    		}  | 
    
    
    807  | 
     | 
     | 
    	else { | 
    
    
    808  | 
     | 
     | 
     chopzeros:  | 
    
    
    809  | 
     | 
     | 
    		if (b->wds > 1 || b->x[0])  | 
    
    
    810  | 
     | 
     | 
    			inex = STRTOG_Inexlo;  | 
    
    
    811  | 
     | 
     | 
    		while(*--s == '0'){} | 
    
    
    812  | 
     | 
     | 
    		++s;  | 
    
    
    813  | 
     | 
     | 
    		}  | 
    
    
    814  | 
     | 
     | 
     ret:  | 
    
    
    815  | 
     | 
     | 
    	Bfree(S);  | 
    
    
    816  | 
     | 
     | 
    	if (mhi) { | 
    
    
    817  | 
     | 
     | 
    		if (mlo && mlo != mhi)  | 
    
    
    818  | 
     | 
     | 
    			Bfree(mlo);  | 
    
    
    819  | 
     | 
     | 
    		Bfree(mhi);  | 
    
    
    820  | 
     | 
     | 
    		}  | 
    
    
    821  | 
     | 
     | 
     ret1:  | 
    
    
    822  | 
     | 
     | 
    	Bfree(b);  | 
    
    
    823  | 
     | 
     | 
    	*s = 0;  | 
    
    
    824  | 
     | 
     | 
    	*decpt = k + 1;  | 
    
    
    825  | 
     | 
     | 
    	if (rve)  | 
    
    
    826  | 
     | 
     | 
    		*rve = s;  | 
    
    
    827  | 
     | 
     | 
    	*kindp |= inex;  | 
    
    
    828  | 
     | 
     | 
    	return s0;  | 
    
    
    829  | 
     | 
     | 
    	}  | 
    
    
    830  | 
     | 
     | 
    DEF_STRONG(gdtoa);  |