1 |
|
|
/* $OpenBSD: md5.c,v 1.11 2015/09/11 09:18:27 guenther Exp $ */ |
2 |
|
|
|
3 |
|
|
/* |
4 |
|
|
* This code implements the MD5 message-digest algorithm. |
5 |
|
|
* The algorithm is due to Ron Rivest. This code was |
6 |
|
|
* written by Colin Plumb in 1993, no copyright is claimed. |
7 |
|
|
* This code is in the public domain; do with it what you wish. |
8 |
|
|
* |
9 |
|
|
* Equivalent code is available from RSA Data Security, Inc. |
10 |
|
|
* This code has been tested against that, and is equivalent, |
11 |
|
|
* except that you don't need to include two pages of legalese |
12 |
|
|
* with every copy. |
13 |
|
|
* |
14 |
|
|
* To compute the message digest of a chunk of bytes, declare an |
15 |
|
|
* MD5Context structure, pass it to MD5Init, call MD5Update as |
16 |
|
|
* needed on buffers full of bytes, and then call MD5Final, which |
17 |
|
|
* will fill a supplied 16-byte array with the digest. |
18 |
|
|
*/ |
19 |
|
|
|
20 |
|
|
#include <sys/types.h> |
21 |
|
|
#include <string.h> |
22 |
|
|
#include <md5.h> |
23 |
|
|
|
24 |
|
|
#define PUT_64BIT_LE(cp, value) do { \ |
25 |
|
|
(cp)[7] = (value) >> 56; \ |
26 |
|
|
(cp)[6] = (value) >> 48; \ |
27 |
|
|
(cp)[5] = (value) >> 40; \ |
28 |
|
|
(cp)[4] = (value) >> 32; \ |
29 |
|
|
(cp)[3] = (value) >> 24; \ |
30 |
|
|
(cp)[2] = (value) >> 16; \ |
31 |
|
|
(cp)[1] = (value) >> 8; \ |
32 |
|
|
(cp)[0] = (value); } while (0) |
33 |
|
|
|
34 |
|
|
#define PUT_32BIT_LE(cp, value) do { \ |
35 |
|
|
(cp)[3] = (value) >> 24; \ |
36 |
|
|
(cp)[2] = (value) >> 16; \ |
37 |
|
|
(cp)[1] = (value) >> 8; \ |
38 |
|
|
(cp)[0] = (value); } while (0) |
39 |
|
|
|
40 |
|
|
static u_int8_t PADDING[MD5_BLOCK_LENGTH] = { |
41 |
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
42 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
43 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
44 |
|
|
}; |
45 |
|
|
|
46 |
|
|
/* |
47 |
|
|
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
48 |
|
|
* initialization constants. |
49 |
|
|
*/ |
50 |
|
|
void |
51 |
|
|
MD5Init(MD5_CTX *ctx) |
52 |
|
|
{ |
53 |
|
252 |
ctx->count = 0; |
54 |
|
126 |
ctx->state[0] = 0x67452301; |
55 |
|
126 |
ctx->state[1] = 0xefcdab89; |
56 |
|
126 |
ctx->state[2] = 0x98badcfe; |
57 |
|
126 |
ctx->state[3] = 0x10325476; |
58 |
|
126 |
} |
59 |
|
|
DEF_WEAK(MD5Init); |
60 |
|
|
|
61 |
|
|
/* |
62 |
|
|
* Update context to reflect the concatenation of another buffer full |
63 |
|
|
* of bytes. |
64 |
|
|
*/ |
65 |
|
|
void |
66 |
|
|
MD5Update(MD5_CTX *ctx, const unsigned char *input, size_t len) |
67 |
|
|
{ |
68 |
|
|
size_t have, need; |
69 |
|
|
|
70 |
|
|
/* Check how many bytes we already have and how many more we need. */ |
71 |
|
151888 |
have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1)); |
72 |
|
75944 |
need = MD5_BLOCK_LENGTH - have; |
73 |
|
|
|
74 |
|
|
/* Update bitcount */ |
75 |
|
75944 |
ctx->count += (u_int64_t)len << 3; |
76 |
|
|
|
77 |
✓✓ |
75944 |
if (len >= need) { |
78 |
✓✓ |
75758 |
if (have != 0) { |
79 |
|
8896 |
memcpy(ctx->buffer + have, input, need); |
80 |
|
8896 |
MD5Transform(ctx->state, ctx->buffer); |
81 |
|
8896 |
input += need; |
82 |
|
8896 |
len -= need; |
83 |
|
|
have = 0; |
84 |
|
8896 |
} |
85 |
|
|
|
86 |
|
|
/* Process data in MD5_BLOCK_LENGTH-byte chunks. */ |
87 |
✓✓ |
67545210 |
while (len >= MD5_BLOCK_LENGTH) { |
88 |
|
33734726 |
MD5Transform(ctx->state, input); |
89 |
|
33734726 |
input += MD5_BLOCK_LENGTH; |
90 |
|
33734726 |
len -= MD5_BLOCK_LENGTH; |
91 |
|
|
} |
92 |
|
|
} |
93 |
|
|
|
94 |
|
|
/* Handle any remaining bytes of data. */ |
95 |
✓✓ |
75944 |
if (len != 0) |
96 |
|
8956 |
memcpy(ctx->buffer + have, input, len); |
97 |
|
75944 |
} |
98 |
|
|
DEF_WEAK(MD5Update); |
99 |
|
|
|
100 |
|
|
/* |
101 |
|
|
* Pad pad to 64-byte boundary with the bit pattern |
102 |
|
|
* 1 0* (64-bit count of bits processed, MSB-first) |
103 |
|
|
*/ |
104 |
|
|
void |
105 |
|
|
MD5Pad(MD5_CTX *ctx) |
106 |
|
|
{ |
107 |
|
252 |
u_int8_t count[8]; |
108 |
|
|
size_t padlen; |
109 |
|
|
|
110 |
|
|
/* Convert count to 8 bytes in little endian order. */ |
111 |
|
126 |
PUT_64BIT_LE(count, ctx->count); |
112 |
|
|
|
113 |
|
|
/* Pad out to 56 mod 64. */ |
114 |
|
126 |
padlen = MD5_BLOCK_LENGTH - |
115 |
|
126 |
((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1)); |
116 |
✓✓ |
126 |
if (padlen < 1 + 8) |
117 |
|
20 |
padlen += MD5_BLOCK_LENGTH; |
118 |
|
126 |
MD5Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */ |
119 |
|
126 |
MD5Update(ctx, count, 8); |
120 |
|
126 |
} |
121 |
|
|
DEF_WEAK(MD5Pad); |
122 |
|
|
|
123 |
|
|
/* |
124 |
|
|
* Final wrapup--call MD5Pad, fill in digest and zero out ctx. |
125 |
|
|
*/ |
126 |
|
|
void |
127 |
|
|
MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx) |
128 |
|
|
{ |
129 |
|
|
int i; |
130 |
|
|
|
131 |
|
252 |
MD5Pad(ctx); |
132 |
✓✓ |
1260 |
for (i = 0; i < 4; i++) |
133 |
|
504 |
PUT_32BIT_LE(digest + i * 4, ctx->state[i]); |
134 |
|
126 |
explicit_bzero(ctx, sizeof(*ctx)); |
135 |
|
126 |
} |
136 |
|
|
DEF_WEAK(MD5Final); |
137 |
|
|
|
138 |
|
|
|
139 |
|
|
/* The four core functions - F1 is optimized somewhat */ |
140 |
|
|
|
141 |
|
|
/* #define F1(x, y, z) (x & y | ~x & z) */ |
142 |
|
|
#define F1(x, y, z) (z ^ (x & (y ^ z))) |
143 |
|
|
#define F2(x, y, z) F1(z, x, y) |
144 |
|
|
#define F3(x, y, z) (x ^ y ^ z) |
145 |
|
|
#define F4(x, y, z) (y ^ (x | ~z)) |
146 |
|
|
|
147 |
|
|
/* This is the central step in the MD5 algorithm. */ |
148 |
|
|
#define MD5STEP(f, w, x, y, z, data, s) \ |
149 |
|
|
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) |
150 |
|
|
|
151 |
|
|
/* |
152 |
|
|
* The core of the MD5 algorithm, this alters an existing MD5 hash to |
153 |
|
|
* reflect the addition of 16 longwords of new data. MD5Update blocks |
154 |
|
|
* the data and converts bytes into longwords for this routine. |
155 |
|
|
*/ |
156 |
|
|
void |
157 |
|
|
MD5Transform(u_int32_t state[4], const u_int8_t block[MD5_BLOCK_LENGTH]) |
158 |
|
|
{ |
159 |
|
|
u_int32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4]; |
160 |
|
|
|
161 |
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
162 |
|
67487244 |
memcpy(in, block, sizeof(in)); |
163 |
|
|
#else |
164 |
|
|
for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) { |
165 |
|
|
in[a] = (u_int32_t)( |
166 |
|
|
(u_int32_t)(block[a * 4 + 0]) | |
167 |
|
|
(u_int32_t)(block[a * 4 + 1]) << 8 | |
168 |
|
|
(u_int32_t)(block[a * 4 + 2]) << 16 | |
169 |
|
|
(u_int32_t)(block[a * 4 + 3]) << 24); |
170 |
|
|
} |
171 |
|
|
#endif |
172 |
|
|
|
173 |
|
33743622 |
a = state[0]; |
174 |
|
33743622 |
b = state[1]; |
175 |
|
33743622 |
c = state[2]; |
176 |
|
33743622 |
d = state[3]; |
177 |
|
|
|
178 |
|
33743622 |
MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7); |
179 |
|
33743622 |
MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12); |
180 |
|
33743622 |
MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17); |
181 |
|
33743622 |
MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22); |
182 |
|
33743622 |
MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7); |
183 |
|
33743622 |
MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12); |
184 |
|
33743622 |
MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17); |
185 |
|
33743622 |
MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22); |
186 |
|
33743622 |
MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7); |
187 |
|
33743622 |
MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12); |
188 |
|
33743622 |
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
189 |
|
33743622 |
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
190 |
|
33743622 |
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
191 |
|
33743622 |
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
192 |
|
33743622 |
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
193 |
|
33743622 |
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
194 |
|
|
|
195 |
|
33743622 |
MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5); |
196 |
|
33743622 |
MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9); |
197 |
|
33743622 |
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
198 |
|
33743622 |
MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20); |
199 |
|
33743622 |
MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5); |
200 |
|
33743622 |
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
201 |
|
33743622 |
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
202 |
|
33743622 |
MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20); |
203 |
|
33743622 |
MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5); |
204 |
|
33743622 |
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
205 |
|
33743622 |
MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14); |
206 |
|
33743622 |
MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20); |
207 |
|
33743622 |
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
208 |
|
33743622 |
MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9); |
209 |
|
33743622 |
MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14); |
210 |
|
33743622 |
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
211 |
|
|
|
212 |
|
33743622 |
MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4); |
213 |
|
33743622 |
MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11); |
214 |
|
33743622 |
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
215 |
|
33743622 |
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
216 |
|
33743622 |
MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4); |
217 |
|
33743622 |
MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11); |
218 |
|
33743622 |
MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16); |
219 |
|
33743622 |
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
220 |
|
33743622 |
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
221 |
|
33743622 |
MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11); |
222 |
|
33743622 |
MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16); |
223 |
|
33743622 |
MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23); |
224 |
|
33743622 |
MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4); |
225 |
|
33743622 |
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
226 |
|
33743622 |
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
227 |
|
33743622 |
MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23); |
228 |
|
|
|
229 |
|
33743622 |
MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6); |
230 |
|
33743622 |
MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10); |
231 |
|
33743622 |
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
232 |
|
33743622 |
MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21); |
233 |
|
33743622 |
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
234 |
|
33743622 |
MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10); |
235 |
|
33743622 |
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
236 |
|
33743622 |
MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21); |
237 |
|
33743622 |
MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6); |
238 |
|
33743622 |
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
239 |
|
33743622 |
MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15); |
240 |
|
33743622 |
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
241 |
|
33743622 |
MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6); |
242 |
|
33743622 |
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
243 |
|
33743622 |
MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15); |
244 |
|
33743622 |
MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21); |
245 |
|
|
|
246 |
|
33743622 |
state[0] += a; |
247 |
|
33743622 |
state[1] += b; |
248 |
|
33743622 |
state[2] += c; |
249 |
|
33743622 |
state[3] += d; |
250 |
|
33743622 |
} |
251 |
|
|
DEF_WEAK(MD5Transform); |