GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libc/hash/sha2.c Lines: 183 200 91.5 %
Date: 2017-11-07 Branches: 45 58 77.6 %

Line Branch Exec Source
1
/*	$OpenBSD: sha2.c,v 1.26 2017/05/27 15:32:51 naddy Exp $	*/
2
3
/*
4
 * FILE:	sha2.c
5
 * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
6
 *
7
 * Copyright (c) 2000-2001, Aaron D. Gifford
8
 * All rights reserved.
9
 *
10
 * Redistribution and use in source and binary forms, with or without
11
 * modification, are permitted provided that the following conditions
12
 * are met:
13
 * 1. Redistributions of source code must retain the above copyright
14
 *    notice, this list of conditions and the following disclaimer.
15
 * 2. Redistributions in binary form must reproduce the above copyright
16
 *    notice, this list of conditions and the following disclaimer in the
17
 *    documentation and/or other materials provided with the distribution.
18
 * 3. Neither the name of the copyright holder nor the names of contributors
19
 *    may be used to endorse or promote products derived from this software
20
 *    without specific prior written permission.
21
 *
22
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32
 * SUCH DAMAGE.
33
 *
34
 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35
 */
36
37
#include <sys/types.h>
38
39
#include <string.h>
40
#include <sha2.h>
41
42
/*
43
 * UNROLLED TRANSFORM LOOP NOTE:
44
 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
45
 * loop version for the hash transform rounds (defined using macros
46
 * later in this file).  Either define on the command line, for example:
47
 *
48
 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
49
 *
50
 * or define below:
51
 *
52
 *   #define SHA2_UNROLL_TRANSFORM
53
 *
54
 */
55
#ifndef SHA2_SMALL
56
#if defined(__amd64__) || defined(__i386__)
57
#define SHA2_UNROLL_TRANSFORM
58
#endif
59
#endif
60
61
/*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
62
/*
63
 * BYTE_ORDER NOTE:
64
 *
65
 * Please make sure that your system defines BYTE_ORDER.  If your
66
 * architecture is little-endian, make sure it also defines
67
 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
68
 * equivilent.
69
 *
70
 * If your system does not define the above, then you can do so by
71
 * hand like this:
72
 *
73
 *   #define LITTLE_ENDIAN 1234
74
 *   #define BIG_ENDIAN    4321
75
 *
76
 * And for little-endian machines, add:
77
 *
78
 *   #define BYTE_ORDER LITTLE_ENDIAN
79
 *
80
 * Or for big-endian machines:
81
 *
82
 *   #define BYTE_ORDER BIG_ENDIAN
83
 *
84
 * The FreeBSD machine this was written on defines BYTE_ORDER
85
 * appropriately by including <sys/types.h> (which in turn includes
86
 * <machine/endian.h> where the appropriate definitions are actually
87
 * made).
88
 */
89
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
90
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
91
#endif
92
93
94
/*** SHA-224/256/384/512 Various Length Definitions ***********************/
95
/* NOTE: Most of these are in sha2.h */
96
#define SHA224_SHORT_BLOCK_LENGTH	(SHA224_BLOCK_LENGTH - 8)
97
#define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
98
#define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
99
#define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
100
101
/*** ENDIAN SPECIFIC COPY MACROS **************************************/
102
#define BE_8_TO_32(dst, cp) do {					\
103
	(dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |	\
104
	    ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);	\
105
} while(0)
106
107
#define BE_8_TO_64(dst, cp) do {					\
108
	(dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |	\
109
	    ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |	\
110
	    ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |	\
111
	    ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);	\
112
} while (0)
113
114
#define BE_64_TO_8(cp, src) do {					\
115
	(cp)[0] = (src) >> 56;						\
116
        (cp)[1] = (src) >> 48;						\
117
	(cp)[2] = (src) >> 40;						\
118
	(cp)[3] = (src) >> 32;						\
119
	(cp)[4] = (src) >> 24;						\
120
	(cp)[5] = (src) >> 16;						\
121
	(cp)[6] = (src) >> 8;						\
122
	(cp)[7] = (src);						\
123
} while (0)
124
125
#define BE_32_TO_8(cp, src) do {					\
126
	(cp)[0] = (src) >> 24;						\
127
	(cp)[1] = (src) >> 16;						\
128
	(cp)[2] = (src) >> 8;						\
129
	(cp)[3] = (src);						\
130
} while (0)
131
132
/*
133
 * Macro for incrementally adding the unsigned 64-bit integer n to the
134
 * unsigned 128-bit integer (represented using a two-element array of
135
 * 64-bit words):
136
 */
137
#define ADDINC128(w,n) do {						\
138
	(w)[0] += (u_int64_t)(n);					\
139
	if ((w)[0] < (n)) {						\
140
		(w)[1]++;						\
141
	}								\
142
} while (0)
143
144
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
145
/*
146
 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
147
 *
148
 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
149
 *   S is a ROTATION) because the SHA-224/256/384/512 description document
150
 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
151
 *   same "backwards" definition.
152
 */
153
/* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
154
#define R(b,x) 		((x) >> (b))
155
/* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
156
#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
157
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
158
#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
159
160
/* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
161
#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
162
#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
163
164
/* Four of six logical functions used in SHA-224 and SHA-256: */
165
#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
166
#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
167
#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
168
#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
169
170
/* Four of six logical functions used in SHA-384 and SHA-512: */
171
#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
172
#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
173
#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
174
#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
175
176
177
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
178
/* Hash constant words K for SHA-224 and SHA-256: */
179
static const u_int32_t K256[64] = {
180
	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
181
	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
182
	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
183
	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
184
	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
185
	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
186
	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
187
	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
188
	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
189
	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
190
	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
191
	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
192
	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
193
	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
194
	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
195
	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
196
};
197
198
/* Initial hash value H for SHA-256: */
199
static const u_int32_t sha256_initial_hash_value[8] = {
200
	0x6a09e667UL,
201
	0xbb67ae85UL,
202
	0x3c6ef372UL,
203
	0xa54ff53aUL,
204
	0x510e527fUL,
205
	0x9b05688cUL,
206
	0x1f83d9abUL,
207
	0x5be0cd19UL
208
};
209
210
/* Hash constant words K for SHA-384 and SHA-512: */
211
static const u_int64_t K512[80] = {
212
	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
213
	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
214
	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
215
	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
216
	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
217
	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
218
	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
219
	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
220
	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
221
	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
222
	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
223
	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
224
	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
225
	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
226
	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
227
	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
228
	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
229
	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
230
	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
231
	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
232
	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
233
	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
234
	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
235
	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
236
	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
237
	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
238
	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
239
	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
240
	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
241
	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
242
	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
243
	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
244
	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
245
	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
246
	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
247
	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
248
	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
249
	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
250
	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
251
	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
252
};
253
254
/* Initial hash value H for SHA-512 */
255
static const u_int64_t sha512_initial_hash_value[8] = {
256
	0x6a09e667f3bcc908ULL,
257
	0xbb67ae8584caa73bULL,
258
	0x3c6ef372fe94f82bULL,
259
	0xa54ff53a5f1d36f1ULL,
260
	0x510e527fade682d1ULL,
261
	0x9b05688c2b3e6c1fULL,
262
	0x1f83d9abfb41bd6bULL,
263
	0x5be0cd19137e2179ULL
264
};
265
266
#if !defined(SHA2_SMALL)
267
/* Initial hash value H for SHA-224: */
268
static const u_int32_t sha224_initial_hash_value[8] = {
269
	0xc1059ed8UL,
270
	0x367cd507UL,
271
	0x3070dd17UL,
272
	0xf70e5939UL,
273
	0xffc00b31UL,
274
	0x68581511UL,
275
	0x64f98fa7UL,
276
	0xbefa4fa4UL
277
};
278
279
/* Initial hash value H for SHA-384 */
280
static const u_int64_t sha384_initial_hash_value[8] = {
281
	0xcbbb9d5dc1059ed8ULL,
282
	0x629a292a367cd507ULL,
283
	0x9159015a3070dd17ULL,
284
	0x152fecd8f70e5939ULL,
285
	0x67332667ffc00b31ULL,
286
	0x8eb44a8768581511ULL,
287
	0xdb0c2e0d64f98fa7ULL,
288
	0x47b5481dbefa4fa4ULL
289
};
290
291
/* Initial hash value H for SHA-512-256 */
292
static const u_int64_t sha512_256_initial_hash_value[8] = {
293
	0x22312194fc2bf72cULL,
294
	0x9f555fa3c84c64c2ULL,
295
	0x2393b86b6f53b151ULL,
296
	0x963877195940eabdULL,
297
	0x96283ee2a88effe3ULL,
298
	0xbe5e1e2553863992ULL,
299
	0x2b0199fc2c85b8aaULL,
300
	0x0eb72ddc81c52ca2ULL
301
};
302
303
/*** SHA-224: *********************************************************/
304
void
305
SHA224Init(SHA2_CTX *context)
306
{
307
180
	memcpy(context->state.st32, sha224_initial_hash_value,
308
	    sizeof(sha224_initial_hash_value));
309
90
	memset(context->buffer, 0, sizeof(context->buffer));
310
90
	context->bitcount[0] = 0;
311
90
}
312
DEF_WEAK(SHA224Init);
313
314
MAKE_CLONE(SHA224Transform, SHA256Transform);
315
MAKE_CLONE(SHA224Update, SHA256Update);
316
MAKE_CLONE(SHA224Pad, SHA256Pad);
317
DEF_WEAK(SHA224Transform);
318
DEF_WEAK(SHA224Update);
319
DEF_WEAK(SHA224Pad);
320
321
void
322
SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context)
323
{
324
180
	SHA224Pad(context);
325
326
#if BYTE_ORDER == LITTLE_ENDIAN
327
	int	i;
328
329
	/* Convert TO host byte order */
330
1440
	for (i = 0; i < 7; i++)
331
630
		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
332
#else
333
	memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH);
334
#endif
335
90
	explicit_bzero(context, sizeof(*context));
336
90
}
337
DEF_WEAK(SHA224Final);
338
#endif /* !defined(SHA2_SMALL) */
339
340
/*** SHA-256: *********************************************************/
341
void
342
SHA256Init(SHA2_CTX *context)
343
{
344
188
	memcpy(context->state.st32, sha256_initial_hash_value,
345
	    sizeof(sha256_initial_hash_value));
346
94
	memset(context->buffer, 0, sizeof(context->buffer));
347
94
	context->bitcount[0] = 0;
348
94
}
349
DEF_WEAK(SHA256Init);
350
351
#ifdef SHA2_UNROLL_TRANSFORM
352
353
/* Unrolled SHA-256 round macros: */
354
355
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
356
	BE_8_TO_32(W256[j], data);					    \
357
	data += 4;							    \
358
	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
359
	(d) += T1;							    \
360
	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
361
	j++;								    \
362
} while(0)
363
364
#define ROUND256(a,b,c,d,e,f,g,h) do {					    \
365
	s0 = W256[(j+1)&0x0f];						    \
366
	s0 = sigma0_256(s0);						    \
367
	s1 = W256[(j+14)&0x0f];						    \
368
	s1 = sigma1_256(s1);						    \
369
	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \
370
	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \
371
	(d) += T1;							    \
372
	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
373
	j++;								    \
374
} while(0)
375
376
void
377
SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
378
{
379
	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
380
625500
	u_int32_t	T1, W256[16];
381
	int		j;
382
383
	/* Initialize registers with the prev. intermediate value */
384
312750
	a = state[0];
385
312750
	b = state[1];
386
312750
	c = state[2];
387
312750
	d = state[3];
388
312750
	e = state[4];
389
312750
	f = state[5];
390
312750
	g = state[6];
391
312750
	h = state[7];
392
393
	j = 0;
394
312750
	do {
395
		/* Rounds 0 to 15 (unrolled): */
396
625500
		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
397
625500
		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
398
625500
		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
399
625500
		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
400
625500
		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
401
625500
		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
402
625500
		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
403
625500
		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
404
625500
	} while (j < 16);
405
406
	/* Now for the remaining rounds up to 63: */
407
	do {
408
1876500
		ROUND256(a,b,c,d,e,f,g,h);
409
1876500
		ROUND256(h,a,b,c,d,e,f,g);
410
1876500
		ROUND256(g,h,a,b,c,d,e,f);
411
1876500
		ROUND256(f,g,h,a,b,c,d,e);
412
1876500
		ROUND256(e,f,g,h,a,b,c,d);
413
1876500
		ROUND256(d,e,f,g,h,a,b,c);
414
1876500
		ROUND256(c,d,e,f,g,h,a,b);
415
1876500
		ROUND256(b,c,d,e,f,g,h,a);
416
1876500
	} while (j < 64);
417
418
	/* Compute the current intermediate hash value */
419
312750
	state[0] += a;
420
312750
	state[1] += b;
421
312750
	state[2] += c;
422
312750
	state[3] += d;
423
312750
	state[4] += e;
424
312750
	state[5] += f;
425
312750
	state[6] += g;
426
312750
	state[7] += h;
427
428
	/* Clean up */
429
	a = b = c = d = e = f = g = h = T1 = 0;
430
312750
}
431
432
#else /* SHA2_UNROLL_TRANSFORM */
433
434
void
435
SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
436
{
437
	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
438
	u_int32_t	T1, T2, W256[16];
439
	int		j;
440
441
	/* Initialize registers with the prev. intermediate value */
442
	a = state[0];
443
	b = state[1];
444
	c = state[2];
445
	d = state[3];
446
	e = state[4];
447
	f = state[5];
448
	g = state[6];
449
	h = state[7];
450
451
	j = 0;
452
	do {
453
		BE_8_TO_32(W256[j], data);
454
		data += 4;
455
		/* Apply the SHA-256 compression function to update a..h */
456
		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
457
		T2 = Sigma0_256(a) + Maj(a, b, c);
458
		h = g;
459
		g = f;
460
		f = e;
461
		e = d + T1;
462
		d = c;
463
		c = b;
464
		b = a;
465
		a = T1 + T2;
466
467
		j++;
468
	} while (j < 16);
469
470
	do {
471
		/* Part of the message block expansion: */
472
		s0 = W256[(j+1)&0x0f];
473
		s0 = sigma0_256(s0);
474
		s1 = W256[(j+14)&0x0f];
475
		s1 = sigma1_256(s1);
476
477
		/* Apply the SHA-256 compression function to update a..h */
478
		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
479
		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
480
		T2 = Sigma0_256(a) + Maj(a, b, c);
481
		h = g;
482
		g = f;
483
		f = e;
484
		e = d + T1;
485
		d = c;
486
		c = b;
487
		b = a;
488
		a = T1 + T2;
489
490
		j++;
491
	} while (j < 64);
492
493
	/* Compute the current intermediate hash value */
494
	state[0] += a;
495
	state[1] += b;
496
	state[2] += c;
497
	state[3] += d;
498
	state[4] += e;
499
	state[5] += f;
500
	state[6] += g;
501
	state[7] += h;
502
503
	/* Clean up */
504
	a = b = c = d = e = f = g = h = T1 = T2 = 0;
505
}
506
507
#endif /* SHA2_UNROLL_TRANSFORM */
508
DEF_WEAK(SHA256Transform);
509
510
void
511
SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
512
{
513
	size_t	freespace, usedspace;
514
515
	/* Calling with no data is valid (we do nothing) */
516
40328
	if (len == 0)
517
20
		return;
518
519
20144
	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
520
20144
	if (usedspace > 0) {
521
		/* Calculate how much free space is available in the buffer */
522
17500
		freespace = SHA256_BLOCK_LENGTH - usedspace;
523
524
17500
		if (len >= freespace) {
525
			/* Fill the buffer completely and process it */
526
17500
			memcpy(&context->buffer[usedspace], data, freespace);
527
17500
			context->bitcount[0] += freespace << 3;
528
17500
			len -= freespace;
529
17500
			data += freespace;
530
17500
			SHA256Transform(context->state.st32, context->buffer);
531
		} else {
532
			/* The buffer is not yet full */
533
			memcpy(&context->buffer[usedspace], data, len);
534
			context->bitcount[0] += len << 3;
535
			/* Clean up: */
536
			usedspace = freespace = 0;
537
			return;
538
		}
539
17500
	}
540
610196
	while (len >= SHA256_BLOCK_LENGTH) {
541
		/* Process as many complete blocks as we can */
542
295026
		SHA256Transform(context->state.st32, data);
543
295026
		context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
544
295026
		len -= SHA256_BLOCK_LENGTH;
545
295026
		data += SHA256_BLOCK_LENGTH;
546
	}
547
20144
	if (len > 0) {
548
		/* There's left-overs, so save 'em */
549
17644
		memcpy(context->buffer, data, len);
550
17644
		context->bitcount[0] += len << 3;
551
17644
	}
552
	/* Clean up: */
553
	usedspace = freespace = 0;
554
40308
}
555
DEF_WEAK(SHA256Update);
556
557
void
558
SHA256Pad(SHA2_CTX *context)
559
{
560
	unsigned int	usedspace;
561
562
368
	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
563
184
	if (usedspace > 0) {
564
		/* Begin padding with a 1 bit: */
565
144
		context->buffer[usedspace++] = 0x80;
566
567
144
		if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
568
			/* Set-up for the last transform: */
569
208
			memset(&context->buffer[usedspace], 0,
570
104
			    SHA256_SHORT_BLOCK_LENGTH - usedspace);
571
104
		} else {
572
40
			if (usedspace < SHA256_BLOCK_LENGTH) {
573
80
				memset(&context->buffer[usedspace], 0,
574
40
				    SHA256_BLOCK_LENGTH - usedspace);
575
40
			}
576
			/* Do second-to-last transform: */
577
40
			SHA256Transform(context->state.st32, context->buffer);
578
579
			/* Prepare for last transform: */
580
40
			memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
581
		}
582
	} else {
583
		/* Set-up for the last transform: */
584
40
		memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
585
586
		/* Begin padding with a 1 bit: */
587
40
		*context->buffer = 0x80;
588
	}
589
	/* Store the length of input data (in bits) in big endian format: */
590
184
	BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
591
	    context->bitcount[0]);
592
593
	/* Final transform: */
594
184
	SHA256Transform(context->state.st32, context->buffer);
595
596
	/* Clean up: */
597
	usedspace = 0;
598
184
}
599
DEF_WEAK(SHA256Pad);
600
601
void
602
SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
603
{
604
188
	SHA256Pad(context);
605
606
#if BYTE_ORDER == LITTLE_ENDIAN
607
	int	i;
608
609
	/* Convert TO host byte order */
610
1692
	for (i = 0; i < 8; i++)
611
752
		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
612
#else
613
	memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
614
#endif
615
94
	explicit_bzero(context, sizeof(*context));
616
94
}
617
DEF_WEAK(SHA256Final);
618
619
620
/*** SHA-512: *********************************************************/
621
void
622
SHA512Init(SHA2_CTX *context)
623
{
624
188
	memcpy(context->state.st64, sha512_initial_hash_value,
625
	    sizeof(sha512_initial_hash_value));
626
94
	memset(context->buffer, 0, sizeof(context->buffer));
627
94
	context->bitcount[0] = context->bitcount[1] =  0;
628
94
}
629
DEF_WEAK(SHA512Init);
630
631
#ifdef SHA2_UNROLL_TRANSFORM
632
633
/* Unrolled SHA-512 round macros: */
634
635
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
636
	BE_8_TO_64(W512[j], data);					    \
637
	data += 8;							    \
638
	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
639
	(d) += T1;							    \
640
	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
641
	j++;								    \
642
} while(0)
643
644
645
#define ROUND512(a,b,c,d,e,f,g,h) do {					    \
646
	s0 = W512[(j+1)&0x0f];						    \
647
	s0 = sigma0_512(s0);						    \
648
	s1 = W512[(j+14)&0x0f];						    \
649
	s1 = sigma1_512(s1);						    \
650
	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \
651
             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \
652
	(d) += T1;							    \
653
	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
654
	j++;								    \
655
} while(0)
656
657
void
658
SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
659
{
660
	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
661
312848
	u_int64_t	T1, W512[16];
662
	int		j;
663
664
	/* Initialize registers with the prev. intermediate value */
665
156424
	a = state[0];
666
156424
	b = state[1];
667
156424
	c = state[2];
668
156424
	d = state[3];
669
156424
	e = state[4];
670
156424
	f = state[5];
671
156424
	g = state[6];
672
156424
	h = state[7];
673
674
	j = 0;
675
156424
	do {
676
		/* Rounds 0 to 15 (unrolled): */
677
312848
		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
678
312848
		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
679
312848
		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
680
312848
		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
681
312848
		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
682
312848
		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
683
312848
		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
684
312848
		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
685
312848
	} while (j < 16);
686
687
	/* Now for the remaining rounds up to 79: */
688
	do {
689
1251392
		ROUND512(a,b,c,d,e,f,g,h);
690
1251392
		ROUND512(h,a,b,c,d,e,f,g);
691
1251392
		ROUND512(g,h,a,b,c,d,e,f);
692
1251392
		ROUND512(f,g,h,a,b,c,d,e);
693
1251392
		ROUND512(e,f,g,h,a,b,c,d);
694
1251392
		ROUND512(d,e,f,g,h,a,b,c);
695
1251392
		ROUND512(c,d,e,f,g,h,a,b);
696
1251392
		ROUND512(b,c,d,e,f,g,h,a);
697
1251392
	} while (j < 80);
698
699
	/* Compute the current intermediate hash value */
700
156424
	state[0] += a;
701
156424
	state[1] += b;
702
156424
	state[2] += c;
703
156424
	state[3] += d;
704
156424
	state[4] += e;
705
156424
	state[5] += f;
706
156424
	state[6] += g;
707
156424
	state[7] += h;
708
709
	/* Clean up */
710
	a = b = c = d = e = f = g = h = T1 = 0;
711
156424
}
712
713
#else /* SHA2_UNROLL_TRANSFORM */
714
715
void
716
SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
717
{
718
	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
719
	u_int64_t	T1, T2, W512[16];
720
	int		j;
721
722
	/* Initialize registers with the prev. intermediate value */
723
	a = state[0];
724
	b = state[1];
725
	c = state[2];
726
	d = state[3];
727
	e = state[4];
728
	f = state[5];
729
	g = state[6];
730
	h = state[7];
731
732
	j = 0;
733
	do {
734
		BE_8_TO_64(W512[j], data);
735
		data += 8;
736
		/* Apply the SHA-512 compression function to update a..h */
737
		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
738
		T2 = Sigma0_512(a) + Maj(a, b, c);
739
		h = g;
740
		g = f;
741
		f = e;
742
		e = d + T1;
743
		d = c;
744
		c = b;
745
		b = a;
746
		a = T1 + T2;
747
748
		j++;
749
	} while (j < 16);
750
751
	do {
752
		/* Part of the message block expansion: */
753
		s0 = W512[(j+1)&0x0f];
754
		s0 = sigma0_512(s0);
755
		s1 = W512[(j+14)&0x0f];
756
		s1 =  sigma1_512(s1);
757
758
		/* Apply the SHA-512 compression function to update a..h */
759
		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
760
		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
761
		T2 = Sigma0_512(a) + Maj(a, b, c);
762
		h = g;
763
		g = f;
764
		f = e;
765
		e = d + T1;
766
		d = c;
767
		c = b;
768
		b = a;
769
		a = T1 + T2;
770
771
		j++;
772
	} while (j < 80);
773
774
	/* Compute the current intermediate hash value */
775
	state[0] += a;
776
	state[1] += b;
777
	state[2] += c;
778
	state[3] += d;
779
	state[4] += e;
780
	state[5] += f;
781
	state[6] += g;
782
	state[7] += h;
783
784
	/* Clean up */
785
	a = b = c = d = e = f = g = h = T1 = T2 = 0;
786
}
787
788
#endif /* SHA2_UNROLL_TRANSFORM */
789
DEF_WEAK(SHA512Transform);
790
791
void
792
SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
793
{
794
	size_t	freespace, usedspace;
795
796
	/* Calling with no data is valid (we do nothing) */
797
40328
	if (len == 0)
798
20
		return;
799
800
20144
	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
801
20144
	if (usedspace > 0) {
802
		/* Calculate how much free space is available in the buffer */
803
18740
		freespace = SHA512_BLOCK_LENGTH - usedspace;
804
805
18740
		if (len >= freespace) {
806
			/* Fill the buffer completely and process it */
807
18740
			memcpy(&context->buffer[usedspace], data, freespace);
808
18740
			ADDINC128(context->bitcount, freespace << 3);
809
18740
			len -= freespace;
810
18740
			data += freespace;
811
18740
			SHA512Transform(context->state.st64, context->buffer);
812
		} else {
813
			/* The buffer is not yet full */
814
			memcpy(&context->buffer[usedspace], data, len);
815
			ADDINC128(context->bitcount, len << 3);
816
			/* Clean up: */
817
			usedspace = freespace = 0;
818
			return;
819
		}
820
18740
	}
821
295144
	while (len >= SHA512_BLOCK_LENGTH) {
822
		/* Process as many complete blocks as we can */
823
137500
		SHA512Transform(context->state.st64, data);
824
137500
		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
825
137500
		len -= SHA512_BLOCK_LENGTH;
826
137500
		data += SHA512_BLOCK_LENGTH;
827
	}
828
20144
	if (len > 0) {
829
		/* There's left-overs, so save 'em */
830
18904
		memcpy(context->buffer, data, len);
831
18904
		ADDINC128(context->bitcount, len << 3);
832
	}
833
	/* Clean up: */
834
	usedspace = freespace = 0;
835
40308
}
836
DEF_WEAK(SHA512Update);
837
838
void
839
SHA512Pad(SHA2_CTX *context)
840
{
841
	unsigned int	usedspace;
842
843
368
	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
844
184
	if (usedspace > 0) {
845
		/* Begin padding with a 1 bit: */
846
164
		context->buffer[usedspace++] = 0x80;
847
848
164
		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
849
			/* Set-up for the last transform: */
850
164
			memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
851
164
		} else {
852
			if (usedspace < SHA512_BLOCK_LENGTH) {
853
				memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
854
			}
855
			/* Do second-to-last transform: */
856
			SHA512Transform(context->state.st64, context->buffer);
857
858
			/* And set-up for the last transform: */
859
			memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
860
		}
861
	} else {
862
		/* Prepare for final transform: */
863
20
		memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
864
865
		/* Begin padding with a 1 bit: */
866
20
		*context->buffer = 0x80;
867
	}
868
	/* Store the length of input data (in bits) in big endian format: */
869
184
	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
870
	    context->bitcount[1]);
871
184
	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
872
	    context->bitcount[0]);
873
874
	/* Final transform: */
875
184
	SHA512Transform(context->state.st64, context->buffer);
876
877
	/* Clean up: */
878
	usedspace = 0;
879
184
}
880
DEF_WEAK(SHA512Pad);
881
882
void
883
SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
884
{
885
188
	SHA512Pad(context);
886
887
#if BYTE_ORDER == LITTLE_ENDIAN
888
	int	i;
889
890
	/* Convert TO host byte order */
891
1692
	for (i = 0; i < 8; i++)
892
752
		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
893
#else
894
	memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
895
#endif
896
94
	explicit_bzero(context, sizeof(*context));
897
94
}
898
DEF_WEAK(SHA512Final);
899
900
#if !defined(SHA2_SMALL)
901
902
/*** SHA-384: *********************************************************/
903
void
904
SHA384Init(SHA2_CTX *context)
905
{
906
180
	memcpy(context->state.st64, sha384_initial_hash_value,
907
	    sizeof(sha384_initial_hash_value));
908
90
	memset(context->buffer, 0, sizeof(context->buffer));
909
90
	context->bitcount[0] = context->bitcount[1] = 0;
910
90
}
911
DEF_WEAK(SHA384Init);
912
913
MAKE_CLONE(SHA384Transform, SHA512Transform);
914
MAKE_CLONE(SHA384Update, SHA512Update);
915
MAKE_CLONE(SHA384Pad, SHA512Pad);
916
DEF_WEAK(SHA384Transform);
917
DEF_WEAK(SHA384Update);
918
DEF_WEAK(SHA384Pad);
919
920
void
921
SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
922
{
923
180
	SHA384Pad(context);
924
925
#if BYTE_ORDER == LITTLE_ENDIAN
926
	int	i;
927
928
	/* Convert TO host byte order */
929
1260
	for (i = 0; i < 6; i++)
930
540
		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
931
#else
932
	memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
933
#endif
934
	/* Zero out state data */
935
90
	explicit_bzero(context, sizeof(*context));
936
90
}
937
DEF_WEAK(SHA384Final);
938
939
/*** SHA-512/256: *********************************************************/
940
void
941
SHA512_256Init(SHA2_CTX *context)
942
{
943
	memcpy(context->state.st64, sha512_256_initial_hash_value,
944
	    sizeof(sha512_256_initial_hash_value));
945
	memset(context->buffer, 0, sizeof(context->buffer));
946
	context->bitcount[0] = context->bitcount[1] = 0;
947
}
948
DEF_WEAK(SHA512_256Init);
949
950
MAKE_CLONE(SHA512_256Transform, SHA512Transform);
951
MAKE_CLONE(SHA512_256Update, SHA512Update);
952
MAKE_CLONE(SHA512_256Pad, SHA512Pad);
953
DEF_WEAK(SHA512_256Transform);
954
DEF_WEAK(SHA512_256Update);
955
DEF_WEAK(SHA512_256Pad);
956
957
void
958
SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context)
959
{
960
	SHA512_256Pad(context);
961
962
#if BYTE_ORDER == LITTLE_ENDIAN
963
	int	i;
964
965
	/* Convert TO host byte order */
966
	for (i = 0; i < 4; i++)
967
		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
968
#else
969
	memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH);
970
#endif
971
	/* Zero out state data */
972
	explicit_bzero(context, sizeof(*context));
973
}
974
DEF_WEAK(SHA512_256Final);
975
#endif /* !defined(SHA2_SMALL) */