1 |
|
|
//===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===// |
2 |
|
|
// |
3 |
|
|
// The LLVM Compiler Infrastructure |
4 |
|
|
// |
5 |
|
|
// This file is dual licensed under the MIT and the University of Illinois Open |
6 |
|
|
// Source Licenses. See LICENSE.TXT for details. |
7 |
|
|
// |
8 |
|
|
//===----------------------------------------------------------------------===// |
9 |
|
|
// |
10 |
|
|
// This file implements the following soft-fp_t comparison routines: |
11 |
|
|
// |
12 |
|
|
// __eqsf2 __gesf2 __unordsf2 |
13 |
|
|
// __lesf2 __gtsf2 |
14 |
|
|
// __ltsf2 |
15 |
|
|
// __nesf2 |
16 |
|
|
// |
17 |
|
|
// The semantics of the routines grouped in each column are identical, so there |
18 |
|
|
// is a single implementation for each, and wrappers to provide the other names. |
19 |
|
|
// |
20 |
|
|
// The main routines behave as follows: |
21 |
|
|
// |
22 |
|
|
// __lesf2(a,b) returns -1 if a < b |
23 |
|
|
// 0 if a == b |
24 |
|
|
// 1 if a > b |
25 |
|
|
// 1 if either a or b is NaN |
26 |
|
|
// |
27 |
|
|
// __gesf2(a,b) returns -1 if a < b |
28 |
|
|
// 0 if a == b |
29 |
|
|
// 1 if a > b |
30 |
|
|
// -1 if either a or b is NaN |
31 |
|
|
// |
32 |
|
|
// __unordsf2(a,b) returns 0 if both a and b are numbers |
33 |
|
|
// 1 if either a or b is NaN |
34 |
|
|
// |
35 |
|
|
// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of |
36 |
|
|
// NaN values. |
37 |
|
|
// |
38 |
|
|
//===----------------------------------------------------------------------===// |
39 |
|
|
|
40 |
|
|
#define SINGLE_PRECISION |
41 |
|
|
#include "fp_lib.h" |
42 |
|
|
|
43 |
|
|
enum LE_RESULT { |
44 |
|
|
LE_LESS = -1, |
45 |
|
|
LE_EQUAL = 0, |
46 |
|
|
LE_GREATER = 1, |
47 |
|
|
LE_UNORDERED = 1 |
48 |
|
|
}; |
49 |
|
|
|
50 |
|
|
COMPILER_RT_ABI enum LE_RESULT |
51 |
|
|
__lesf2(fp_t a, fp_t b) { |
52 |
|
|
|
53 |
|
|
const srep_t aInt = toRep(a); |
54 |
|
|
const srep_t bInt = toRep(b); |
55 |
|
|
const rep_t aAbs = aInt & absMask; |
56 |
|
|
const rep_t bAbs = bInt & absMask; |
57 |
|
|
|
58 |
|
|
// If either a or b is NaN, they are unordered. |
59 |
|
|
if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED; |
60 |
|
|
|
61 |
|
|
// If a and b are both zeros, they are equal. |
62 |
|
|
if ((aAbs | bAbs) == 0) return LE_EQUAL; |
63 |
|
|
|
64 |
|
|
// If at least one of a and b is positive, we get the same result comparing |
65 |
|
|
// a and b as signed integers as we would with a fp_ting-point compare. |
66 |
|
|
if ((aInt & bInt) >= 0) { |
67 |
|
|
if (aInt < bInt) return LE_LESS; |
68 |
|
|
else if (aInt == bInt) return LE_EQUAL; |
69 |
|
|
else return LE_GREATER; |
70 |
|
|
} |
71 |
|
|
|
72 |
|
|
// Otherwise, both are negative, so we need to flip the sense of the |
73 |
|
|
// comparison to get the correct result. (This assumes a twos- or ones- |
74 |
|
|
// complement integer representation; if integers are represented in a |
75 |
|
|
// sign-magnitude representation, then this flip is incorrect). |
76 |
|
|
else { |
77 |
|
|
if (aInt > bInt) return LE_LESS; |
78 |
|
|
else if (aInt == bInt) return LE_EQUAL; |
79 |
|
|
else return LE_GREATER; |
80 |
|
|
} |
81 |
|
|
} |
82 |
|
|
|
83 |
|
|
#if defined(__ELF__) |
84 |
|
|
// Alias for libgcc compatibility |
85 |
|
|
FNALIAS(__cmpsf2, __lesf2); |
86 |
|
|
#endif |
87 |
|
|
|
88 |
|
|
enum GE_RESULT { |
89 |
|
|
GE_LESS = -1, |
90 |
|
|
GE_EQUAL = 0, |
91 |
|
|
GE_GREATER = 1, |
92 |
|
|
GE_UNORDERED = -1 // Note: different from LE_UNORDERED |
93 |
|
|
}; |
94 |
|
|
|
95 |
|
|
COMPILER_RT_ABI enum GE_RESULT |
96 |
|
|
__gesf2(fp_t a, fp_t b) { |
97 |
|
|
|
98 |
|
|
const srep_t aInt = toRep(a); |
99 |
|
|
const srep_t bInt = toRep(b); |
100 |
|
|
const rep_t aAbs = aInt & absMask; |
101 |
|
|
const rep_t bAbs = bInt & absMask; |
102 |
|
|
|
103 |
|
|
if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED; |
104 |
|
|
if ((aAbs | bAbs) == 0) return GE_EQUAL; |
105 |
|
|
if ((aInt & bInt) >= 0) { |
106 |
|
|
if (aInt < bInt) return GE_LESS; |
107 |
|
|
else if (aInt == bInt) return GE_EQUAL; |
108 |
|
|
else return GE_GREATER; |
109 |
|
|
} else { |
110 |
|
|
if (aInt > bInt) return GE_LESS; |
111 |
|
|
else if (aInt == bInt) return GE_EQUAL; |
112 |
|
|
else return GE_GREATER; |
113 |
|
|
} |
114 |
|
|
} |
115 |
|
|
|
116 |
|
|
ARM_EABI_FNALIAS(fcmpun, unordsf2) |
117 |
|
|
|
118 |
|
|
COMPILER_RT_ABI int |
119 |
|
|
__unordsf2(fp_t a, fp_t b) { |
120 |
|
|
const rep_t aAbs = toRep(a) & absMask; |
121 |
|
|
const rep_t bAbs = toRep(b) & absMask; |
122 |
|
|
return aAbs > infRep || bAbs > infRep; |
123 |
|
|
} |
124 |
|
|
|
125 |
|
|
// The following are alternative names for the preceding routines. |
126 |
|
|
|
127 |
|
|
COMPILER_RT_ABI enum LE_RESULT |
128 |
|
|
__eqsf2(fp_t a, fp_t b) { |
129 |
|
|
return __lesf2(a, b); |
130 |
|
|
} |
131 |
|
|
|
132 |
|
|
COMPILER_RT_ABI enum LE_RESULT |
133 |
|
|
__ltsf2(fp_t a, fp_t b) { |
134 |
|
|
return __lesf2(a, b); |
135 |
|
|
} |
136 |
|
|
|
137 |
|
|
COMPILER_RT_ABI enum LE_RESULT |
138 |
|
|
__nesf2(fp_t a, fp_t b) { |
139 |
|
|
return __lesf2(a, b); |
140 |
|
|
} |
141 |
|
|
|
142 |
|
|
COMPILER_RT_ABI enum GE_RESULT |
143 |
|
|
__gtsf2(fp_t a, fp_t b) { |
144 |
|
|
return __gesf2(a, b); |
145 |
|
|
} |