1 |
|
|
/* ===-- divdc3.c - Implement __divdc3 -------------------------------------=== |
2 |
|
|
* |
3 |
|
|
* The LLVM Compiler Infrastructure |
4 |
|
|
* |
5 |
|
|
* This file is dual licensed under the MIT and the University of Illinois Open |
6 |
|
|
* Source Licenses. See LICENSE.TXT for details. |
7 |
|
|
* |
8 |
|
|
* ===----------------------------------------------------------------------=== |
9 |
|
|
* |
10 |
|
|
* This file implements __divdc3 for the compiler_rt library. |
11 |
|
|
* |
12 |
|
|
* ===----------------------------------------------------------------------=== |
13 |
|
|
*/ |
14 |
|
|
|
15 |
|
|
#include "int_lib.h" |
16 |
|
|
#include "int_math.h" |
17 |
|
|
|
18 |
|
|
/* Returns: the quotient of (a + ib) / (c + id) */ |
19 |
|
|
|
20 |
|
|
COMPILER_RT_ABI Dcomplex |
21 |
|
|
__divdc3(double __a, double __b, double __c, double __d) |
22 |
|
|
{ |
23 |
|
|
int __ilogbw = 0; |
24 |
|
|
double __logbw = crt_logb(crt_fmax(crt_fabs(__c), crt_fabs(__d))); |
25 |
|
|
if (crt_isfinite(__logbw)) |
26 |
|
|
{ |
27 |
|
|
__ilogbw = (int)__logbw; |
28 |
|
|
__c = crt_scalbn(__c, -__ilogbw); |
29 |
|
|
__d = crt_scalbn(__d, -__ilogbw); |
30 |
|
|
} |
31 |
|
|
double __denom = __c * __c + __d * __d; |
32 |
|
|
Dcomplex z; |
33 |
|
|
COMPLEX_REAL(z) = crt_scalbn((__a * __c + __b * __d) / __denom, -__ilogbw); |
34 |
|
|
COMPLEX_IMAGINARY(z) = crt_scalbn((__b * __c - __a * __d) / __denom, -__ilogbw); |
35 |
|
|
if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) |
36 |
|
|
{ |
37 |
|
|
if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b))) |
38 |
|
|
{ |
39 |
|
|
COMPLEX_REAL(z) = crt_copysign(CRT_INFINITY, __c) * __a; |
40 |
|
|
COMPLEX_IMAGINARY(z) = crt_copysign(CRT_INFINITY, __c) * __b; |
41 |
|
|
} |
42 |
|
|
else if ((crt_isinf(__a) || crt_isinf(__b)) && |
43 |
|
|
crt_isfinite(__c) && crt_isfinite(__d)) |
44 |
|
|
{ |
45 |
|
|
__a = crt_copysign(crt_isinf(__a) ? 1.0 : 0.0, __a); |
46 |
|
|
__b = crt_copysign(crt_isinf(__b) ? 1.0 : 0.0, __b); |
47 |
|
|
COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d); |
48 |
|
|
COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d); |
49 |
|
|
} |
50 |
|
|
else if (crt_isinf(__logbw) && __logbw > 0.0 && |
51 |
|
|
crt_isfinite(__a) && crt_isfinite(__b)) |
52 |
|
|
{ |
53 |
|
|
__c = crt_copysign(crt_isinf(__c) ? 1.0 : 0.0, __c); |
54 |
|
|
__d = crt_copysign(crt_isinf(__d) ? 1.0 : 0.0, __d); |
55 |
|
|
COMPLEX_REAL(z) = 0.0 * (__a * __c + __b * __d); |
56 |
|
|
COMPLEX_IMAGINARY(z) = 0.0 * (__b * __c - __a * __d); |
57 |
|
|
} |
58 |
|
|
} |
59 |
|
|
return z; |
60 |
|
|
} |