1 |
|
|
//=-lib/fp_extend_impl.inc - low precision -> high precision conversion -*-- -// |
2 |
|
|
// |
3 |
|
|
// The LLVM Compiler Infrastructure |
4 |
|
|
// |
5 |
|
|
// This file is dual licensed under the MIT and the University of Illinois Open |
6 |
|
|
// Source Licenses. See LICENSE.TXT for details. |
7 |
|
|
// |
8 |
|
|
//===----------------------------------------------------------------------===// |
9 |
|
|
// |
10 |
|
|
// This file implements a fairly generic conversion from a narrower to a wider |
11 |
|
|
// IEEE-754 floating-point type. The constants and types defined following the |
12 |
|
|
// includes below parameterize the conversion. |
13 |
|
|
// |
14 |
|
|
// It does not support types that don't use the usual IEEE-754 interchange |
15 |
|
|
// formats; specifically, some work would be needed to adapt it to |
16 |
|
|
// (for example) the Intel 80-bit format or PowerPC double-double format. |
17 |
|
|
// |
18 |
|
|
// Note please, however, that this implementation is only intended to support |
19 |
|
|
// *widening* operations; if you need to convert to a *narrower* floating-point |
20 |
|
|
// type (e.g. double -> float), then this routine will not do what you want it |
21 |
|
|
// to. |
22 |
|
|
// |
23 |
|
|
// It also requires that integer types at least as large as both formats |
24 |
|
|
// are available on the target platform; this may pose a problem when trying |
25 |
|
|
// to add support for quad on some 32-bit systems, for example. You also may |
26 |
|
|
// run into trouble finding an appropriate CLZ function for wide source types; |
27 |
|
|
// you will likely need to roll your own on some platforms. |
28 |
|
|
// |
29 |
|
|
// Finally, the following assumptions are made: |
30 |
|
|
// |
31 |
|
|
// 1. floating-point types and integer types have the same endianness on the |
32 |
|
|
// target platform |
33 |
|
|
// |
34 |
|
|
// 2. quiet NaNs, if supported, are indicated by the leading bit of the |
35 |
|
|
// significand field being set |
36 |
|
|
// |
37 |
|
|
//===----------------------------------------------------------------------===// |
38 |
|
|
|
39 |
|
|
#include "fp_extend.h" |
40 |
|
|
|
41 |
|
|
static __inline dst_t __extendXfYf2__(src_t a) { |
42 |
|
|
// Various constants whose values follow from the type parameters. |
43 |
|
|
// Any reasonable optimizer will fold and propagate all of these. |
44 |
|
|
const int srcBits = sizeof(src_t)*CHAR_BIT; |
45 |
|
|
const int srcExpBits = srcBits - srcSigBits - 1; |
46 |
|
|
const int srcInfExp = (1 << srcExpBits) - 1; |
47 |
|
|
const int srcExpBias = srcInfExp >> 1; |
48 |
|
|
|
49 |
|
|
const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits; |
50 |
|
|
const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits; |
51 |
|
|
const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits); |
52 |
|
|
const src_rep_t srcAbsMask = srcSignMask - 1; |
53 |
|
|
const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1); |
54 |
|
|
const src_rep_t srcNaNCode = srcQNaN - 1; |
55 |
|
|
|
56 |
|
|
const int dstBits = sizeof(dst_t)*CHAR_BIT; |
57 |
|
|
const int dstExpBits = dstBits - dstSigBits - 1; |
58 |
|
|
const int dstInfExp = (1 << dstExpBits) - 1; |
59 |
|
|
const int dstExpBias = dstInfExp >> 1; |
60 |
|
|
|
61 |
|
|
const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits; |
62 |
|
|
|
63 |
|
|
// Break a into a sign and representation of the absolute value |
64 |
|
|
const src_rep_t aRep = srcToRep(a); |
65 |
|
|
const src_rep_t aAbs = aRep & srcAbsMask; |
66 |
|
|
const src_rep_t sign = aRep & srcSignMask; |
67 |
|
|
dst_rep_t absResult; |
68 |
|
|
|
69 |
|
|
// If sizeof(src_rep_t) < sizeof(int), the subtraction result is promoted |
70 |
|
|
// to (signed) int. To avoid that, explicitly cast to src_rep_t. |
71 |
|
|
if ((src_rep_t)(aAbs - srcMinNormal) < srcInfinity - srcMinNormal) { |
72 |
|
|
// a is a normal number. |
73 |
|
|
// Extend to the destination type by shifting the significand and |
74 |
|
|
// exponent into the proper position and rebiasing the exponent. |
75 |
|
|
absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits); |
76 |
|
|
absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits; |
77 |
|
|
} |
78 |
|
|
|
79 |
|
|
else if (aAbs >= srcInfinity) { |
80 |
|
|
// a is NaN or infinity. |
81 |
|
|
// Conjure the result by beginning with infinity, then setting the qNaN |
82 |
|
|
// bit (if needed) and right-aligning the rest of the trailing NaN |
83 |
|
|
// payload field. |
84 |
|
|
absResult = (dst_rep_t)dstInfExp << dstSigBits; |
85 |
|
|
absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits); |
86 |
|
|
absResult |= (dst_rep_t)(aAbs & srcNaNCode) << (dstSigBits - srcSigBits); |
87 |
|
|
} |
88 |
|
|
|
89 |
|
|
else if (aAbs) { |
90 |
|
|
// a is denormal. |
91 |
|
|
// renormalize the significand and clear the leading bit, then insert |
92 |
|
|
// the correct adjusted exponent in the destination type. |
93 |
|
|
const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal); |
94 |
|
|
absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale); |
95 |
|
|
absResult ^= dstMinNormal; |
96 |
|
|
const int resultExponent = dstExpBias - srcExpBias - scale + 1; |
97 |
|
|
absResult |= (dst_rep_t)resultExponent << dstSigBits; |
98 |
|
|
} |
99 |
|
|
|
100 |
|
|
else { |
101 |
|
|
// a is zero. |
102 |
|
|
absResult = 0; |
103 |
|
|
} |
104 |
|
|
|
105 |
|
|
// Apply the signbit to (dst_t)abs(a). |
106 |
|
|
const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits); |
107 |
|
|
return dstFromRep(result); |
108 |
|
|
} |