GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libcompiler_rt/fp_mul_impl.inc Lines: 0 38 0.0 %
Date: 2017-11-07 Branches: 0 40 0.0 %

Line Branch Exec Source
1
//===---- lib/fp_mul_impl.inc - floating point multiplication -----*- C -*-===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is dual licensed under the MIT and the University of Illinois Open
6
// Source Licenses. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file implements soft-float multiplication with the IEEE-754 default
11
// rounding (to nearest, ties to even).
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "fp_lib.h"
16
17
static __inline fp_t __mulXf3__(fp_t a, fp_t b) {
18
    const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
19
    const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
20
    const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit;
21
22
    rep_t aSignificand = toRep(a) & significandMask;
23
    rep_t bSignificand = toRep(b) & significandMask;
24
    int scale = 0;
25
26
    // Detect if a or b is zero, denormal, infinity, or NaN.
27
    if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
28
29
        const rep_t aAbs = toRep(a) & absMask;
30
        const rep_t bAbs = toRep(b) & absMask;
31
32
        // NaN * anything = qNaN
33
        if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
34
        // anything * NaN = qNaN
35
        if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
36
37
        if (aAbs == infRep) {
38
            // infinity * non-zero = +/- infinity
39
            if (bAbs) return fromRep(aAbs | productSign);
40
            // infinity * zero = NaN
41
            else return fromRep(qnanRep);
42
        }
43
44
        if (bAbs == infRep) {
45
            //? non-zero * infinity = +/- infinity
46
            if (aAbs) return fromRep(bAbs | productSign);
47
            // zero * infinity = NaN
48
            else return fromRep(qnanRep);
49
        }
50
51
        // zero * anything = +/- zero
52
        if (!aAbs) return fromRep(productSign);
53
        // anything * zero = +/- zero
54
        if (!bAbs) return fromRep(productSign);
55
56
        // one or both of a or b is denormal, the other (if applicable) is a
57
        // normal number.  Renormalize one or both of a and b, and set scale to
58
        // include the necessary exponent adjustment.
59
        if (aAbs < implicitBit) scale += normalize(&aSignificand);
60
        if (bAbs < implicitBit) scale += normalize(&bSignificand);
61
    }
62
63
    // Or in the implicit significand bit.  (If we fell through from the
64
    // denormal path it was already set by normalize( ), but setting it twice
65
    // won't hurt anything.)
66
    aSignificand |= implicitBit;
67
    bSignificand |= implicitBit;
68
69
    // Get the significand of a*b.  Before multiplying the significands, shift
70
    // one of them left to left-align it in the field.  Thus, the product will
71
    // have (exponentBits + 2) integral digits, all but two of which must be
72
    // zero.  Normalizing this result is just a conditional left-shift by one
73
    // and bumping the exponent accordingly.
74
    rep_t productHi, productLo;
75
    wideMultiply(aSignificand, bSignificand << exponentBits,
76
                 &productHi, &productLo);
77
78
    int productExponent = aExponent + bExponent - exponentBias + scale;
79
80
    // Normalize the significand, adjust exponent if needed.
81
    if (productHi & implicitBit) productExponent++;
82
    else wideLeftShift(&productHi, &productLo, 1);
83
84
    // If we have overflowed the type, return +/- infinity.
85
    if (productExponent >= maxExponent) return fromRep(infRep | productSign);
86
87
    if (productExponent <= 0) {
88
        // Result is denormal before rounding
89
        //
90
        // If the result is so small that it just underflows to zero, return
91
        // a zero of the appropriate sign.  Mathematically there is no need to
92
        // handle this case separately, but we make it a special case to
93
        // simplify the shift logic.
94
        const unsigned int shift = REP_C(1) - (unsigned int)productExponent;
95
        if (shift >= typeWidth) return fromRep(productSign);
96
97
        // Otherwise, shift the significand of the result so that the round
98
        // bit is the high bit of productLo.
99
        wideRightShiftWithSticky(&productHi, &productLo, shift);
100
    }
101
    else {
102
        // Result is normal before rounding; insert the exponent.
103
        productHi &= significandMask;
104
        productHi |= (rep_t)productExponent << significandBits;
105
    }
106
107
    // Insert the sign of the result:
108
    productHi |= productSign;
109
110
    // Final rounding.  The final result may overflow to infinity, or underflow
111
    // to zero, but those are the correct results in those cases.  We use the
112
    // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
113
    if (productLo > signBit) productHi++;
114
    if (productLo == signBit) productHi += productHi & 1;
115
    return fromRep(productHi);
116
}