GCC Code Coverage Report | |||||||||||||||||||||
|
|||||||||||||||||||||
Line | Branch | Exec | Source |
1 |
/* $OpenBSD: bn_gf2m.c,v 1.23 2017/01/29 17:49:22 beck Exp $ */ |
||
2 |
/* ==================================================================== |
||
3 |
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
||
4 |
* |
||
5 |
* The Elliptic Curve Public-Key Crypto Library (ECC Code) included |
||
6 |
* herein is developed by SUN MICROSYSTEMS, INC., and is contributed |
||
7 |
* to the OpenSSL project. |
||
8 |
* |
||
9 |
* The ECC Code is licensed pursuant to the OpenSSL open source |
||
10 |
* license provided below. |
||
11 |
* |
||
12 |
* In addition, Sun covenants to all licensees who provide a reciprocal |
||
13 |
* covenant with respect to their own patents if any, not to sue under |
||
14 |
* current and future patent claims necessarily infringed by the making, |
||
15 |
* using, practicing, selling, offering for sale and/or otherwise |
||
16 |
* disposing of the ECC Code as delivered hereunder (or portions thereof), |
||
17 |
* provided that such covenant shall not apply: |
||
18 |
* 1) for code that a licensee deletes from the ECC Code; |
||
19 |
* 2) separates from the ECC Code; or |
||
20 |
* 3) for infringements caused by: |
||
21 |
* i) the modification of the ECC Code or |
||
22 |
* ii) the combination of the ECC Code with other software or |
||
23 |
* devices where such combination causes the infringement. |
||
24 |
* |
||
25 |
* The software is originally written by Sheueling Chang Shantz and |
||
26 |
* Douglas Stebila of Sun Microsystems Laboratories. |
||
27 |
* |
||
28 |
*/ |
||
29 |
|||
30 |
/* NOTE: This file is licensed pursuant to the OpenSSL license below |
||
31 |
* and may be modified; but after modifications, the above covenant |
||
32 |
* may no longer apply! In such cases, the corresponding paragraph |
||
33 |
* ["In addition, Sun covenants ... causes the infringement."] and |
||
34 |
* this note can be edited out; but please keep the Sun copyright |
||
35 |
* notice and attribution. */ |
||
36 |
|||
37 |
/* ==================================================================== |
||
38 |
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. |
||
39 |
* |
||
40 |
* Redistribution and use in source and binary forms, with or without |
||
41 |
* modification, are permitted provided that the following conditions |
||
42 |
* are met: |
||
43 |
* |
||
44 |
* 1. Redistributions of source code must retain the above copyright |
||
45 |
* notice, this list of conditions and the following disclaimer. |
||
46 |
* |
||
47 |
* 2. Redistributions in binary form must reproduce the above copyright |
||
48 |
* notice, this list of conditions and the following disclaimer in |
||
49 |
* the documentation and/or other materials provided with the |
||
50 |
* distribution. |
||
51 |
* |
||
52 |
* 3. All advertising materials mentioning features or use of this |
||
53 |
* software must display the following acknowledgment: |
||
54 |
* "This product includes software developed by the OpenSSL Project |
||
55 |
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
||
56 |
* |
||
57 |
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
||
58 |
* endorse or promote products derived from this software without |
||
59 |
* prior written permission. For written permission, please contact |
||
60 |
* openssl-core@openssl.org. |
||
61 |
* |
||
62 |
* 5. Products derived from this software may not be called "OpenSSL" |
||
63 |
* nor may "OpenSSL" appear in their names without prior written |
||
64 |
* permission of the OpenSSL Project. |
||
65 |
* |
||
66 |
* 6. Redistributions of any form whatsoever must retain the following |
||
67 |
* acknowledgment: |
||
68 |
* "This product includes software developed by the OpenSSL Project |
||
69 |
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
||
70 |
* |
||
71 |
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
||
72 |
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
73 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
||
74 |
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
||
75 |
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
||
76 |
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
77 |
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
78 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||
79 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
||
80 |
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
||
81 |
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
||
82 |
* OF THE POSSIBILITY OF SUCH DAMAGE. |
||
83 |
* ==================================================================== |
||
84 |
* |
||
85 |
* This product includes cryptographic software written by Eric Young |
||
86 |
* (eay@cryptsoft.com). This product includes software written by Tim |
||
87 |
* Hudson (tjh@cryptsoft.com). |
||
88 |
* |
||
89 |
*/ |
||
90 |
|||
91 |
#include <limits.h> |
||
92 |
#include <stdio.h> |
||
93 |
|||
94 |
#include <openssl/opensslconf.h> |
||
95 |
|||
96 |
#include <openssl/err.h> |
||
97 |
|||
98 |
#include "bn_lcl.h" |
||
99 |
|||
100 |
#ifndef OPENSSL_NO_EC2M |
||
101 |
|||
102 |
/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */ |
||
103 |
#define MAX_ITERATIONS 50 |
||
104 |
|||
105 |
static const BN_ULONG SQR_tb[16] = |
||
106 |
{ 0, 1, 4, 5, 16, 17, 20, 21, |
||
107 |
64, 65, 68, 69, 80, 81, 84, 85 }; |
||
108 |
/* Platform-specific macros to accelerate squaring. */ |
||
109 |
#ifdef _LP64 |
||
110 |
#define SQR1(w) \ |
||
111 |
SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ |
||
112 |
SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ |
||
113 |
SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ |
||
114 |
SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF] |
||
115 |
#define SQR0(w) \ |
||
116 |
SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ |
||
117 |
SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ |
||
118 |
SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ |
||
119 |
SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] |
||
120 |
#else |
||
121 |
#define SQR1(w) \ |
||
122 |
SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ |
||
123 |
SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF] |
||
124 |
#define SQR0(w) \ |
||
125 |
SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ |
||
126 |
SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] |
||
127 |
#endif |
||
128 |
|||
129 |
#if !defined(OPENSSL_BN_ASM_GF2m) |
||
130 |
/* Product of two polynomials a, b each with degree < BN_BITS2 - 1, |
||
131 |
* result is a polynomial r with degree < 2 * BN_BITS - 1 |
||
132 |
* The caller MUST ensure that the variables have the right amount |
||
133 |
* of space allocated. |
||
134 |
*/ |
||
135 |
static void |
||
136 |
bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) |
||
137 |
{ |
||
138 |
#ifndef _LP64 |
||
139 |
BN_ULONG h, l, s; |
||
140 |
BN_ULONG tab[8], top2b = a >> 30; |
||
141 |
BN_ULONG a1, a2, a4; |
||
142 |
|||
143 |
a1 = a & (0x3FFFFFFF); |
||
144 |
a2 = a1 << 1; |
||
145 |
a4 = a2 << 1; |
||
146 |
|||
147 |
tab[0] = 0; |
||
148 |
tab[1] = a1; |
||
149 |
tab[2] = a2; |
||
150 |
tab[3] = a1 ^ a2; |
||
151 |
tab[4] = a4; |
||
152 |
tab[5] = a1 ^ a4; |
||
153 |
tab[6] = a2 ^ a4; |
||
154 |
tab[7] = a1 ^ a2 ^ a4; |
||
155 |
|||
156 |
s = tab[b & 0x7]; |
||
157 |
l = s; |
||
158 |
s = tab[b >> 3 & 0x7]; |
||
159 |
l ^= s << 3; |
||
160 |
h = s >> 29; |
||
161 |
s = tab[b >> 6 & 0x7]; |
||
162 |
l ^= s << 6; |
||
163 |
h ^= s >> 26; |
||
164 |
s = tab[b >> 9 & 0x7]; |
||
165 |
l ^= s << 9; |
||
166 |
h ^= s >> 23; |
||
167 |
s = tab[b >> 12 & 0x7]; |
||
168 |
l ^= s << 12; |
||
169 |
h ^= s >> 20; |
||
170 |
s = tab[b >> 15 & 0x7]; |
||
171 |
l ^= s << 15; |
||
172 |
h ^= s >> 17; |
||
173 |
s = tab[b >> 18 & 0x7]; |
||
174 |
l ^= s << 18; |
||
175 |
h ^= s >> 14; |
||
176 |
s = tab[b >> 21 & 0x7]; |
||
177 |
l ^= s << 21; |
||
178 |
h ^= s >> 11; |
||
179 |
s = tab[b >> 24 & 0x7]; |
||
180 |
l ^= s << 24; |
||
181 |
h ^= s >> 8; |
||
182 |
s = tab[b >> 27 & 0x7]; |
||
183 |
l ^= s << 27; |
||
184 |
h ^= s >> 5; |
||
185 |
s = tab[b >> 30]; |
||
186 |
l ^= s << 30; |
||
187 |
h ^= s >> 2; |
||
188 |
|||
189 |
/* compensate for the top two bits of a */ |
||
190 |
if (top2b & 01) { |
||
191 |
l ^= b << 30; |
||
192 |
h ^= b >> 2; |
||
193 |
} |
||
194 |
if (top2b & 02) { |
||
195 |
l ^= b << 31; |
||
196 |
h ^= b >> 1; |
||
197 |
} |
||
198 |
|||
199 |
*r1 = h; |
||
200 |
*r0 = l; |
||
201 |
#else |
||
202 |
BN_ULONG h, l, s; |
||
203 |
BN_ULONG tab[16], top3b = a >> 61; |
||
204 |
BN_ULONG a1, a2, a4, a8; |
||
205 |
|||
206 |
a1 = a & (0x1FFFFFFFFFFFFFFFULL); |
||
207 |
a2 = a1 << 1; |
||
208 |
a4 = a2 << 1; |
||
209 |
a8 = a4 << 1; |
||
210 |
|||
211 |
tab[0] = 0; |
||
212 |
tab[1] = a1; |
||
213 |
tab[2] = a2; |
||
214 |
tab[3] = a1 ^ a2; |
||
215 |
tab[4] = a4; |
||
216 |
tab[5] = a1 ^ a4; |
||
217 |
tab[6] = a2 ^ a4; |
||
218 |
tab[7] = a1 ^ a2 ^ a4; |
||
219 |
tab[8] = a8; |
||
220 |
tab[9] = a1 ^ a8; |
||
221 |
tab[10] = a2 ^ a8; |
||
222 |
tab[11] = a1 ^ a2 ^ a8; |
||
223 |
tab[12] = a4 ^ a8; |
||
224 |
tab[13] = a1 ^ a4 ^ a8; |
||
225 |
tab[14] = a2 ^ a4 ^ a8; |
||
226 |
tab[15] = a1 ^ a2 ^ a4 ^ a8; |
||
227 |
|||
228 |
s = tab[b & 0xF]; |
||
229 |
l = s; |
||
230 |
s = tab[b >> 4 & 0xF]; |
||
231 |
l ^= s << 4; |
||
232 |
h = s >> 60; |
||
233 |
s = tab[b >> 8 & 0xF]; |
||
234 |
l ^= s << 8; |
||
235 |
h ^= s >> 56; |
||
236 |
s = tab[b >> 12 & 0xF]; |
||
237 |
l ^= s << 12; |
||
238 |
h ^= s >> 52; |
||
239 |
s = tab[b >> 16 & 0xF]; |
||
240 |
l ^= s << 16; |
||
241 |
h ^= s >> 48; |
||
242 |
s = tab[b >> 20 & 0xF]; |
||
243 |
l ^= s << 20; |
||
244 |
h ^= s >> 44; |
||
245 |
s = tab[b >> 24 & 0xF]; |
||
246 |
l ^= s << 24; |
||
247 |
h ^= s >> 40; |
||
248 |
s = tab[b >> 28 & 0xF]; |
||
249 |
l ^= s << 28; |
||
250 |
h ^= s >> 36; |
||
251 |
s = tab[b >> 32 & 0xF]; |
||
252 |
l ^= s << 32; |
||
253 |
h ^= s >> 32; |
||
254 |
s = tab[b >> 36 & 0xF]; |
||
255 |
l ^= s << 36; |
||
256 |
h ^= s >> 28; |
||
257 |
s = tab[b >> 40 & 0xF]; |
||
258 |
l ^= s << 40; |
||
259 |
h ^= s >> 24; |
||
260 |
s = tab[b >> 44 & 0xF]; |
||
261 |
l ^= s << 44; |
||
262 |
h ^= s >> 20; |
||
263 |
s = tab[b >> 48 & 0xF]; |
||
264 |
l ^= s << 48; |
||
265 |
h ^= s >> 16; |
||
266 |
s = tab[b >> 52 & 0xF]; |
||
267 |
l ^= s << 52; |
||
268 |
h ^= s >> 12; |
||
269 |
s = tab[b >> 56 & 0xF]; |
||
270 |
l ^= s << 56; |
||
271 |
h ^= s >> 8; |
||
272 |
s = tab[b >> 60]; |
||
273 |
l ^= s << 60; |
||
274 |
h ^= s >> 4; |
||
275 |
|||
276 |
/* compensate for the top three bits of a */ |
||
277 |
if (top3b & 01) { |
||
278 |
l ^= b << 61; |
||
279 |
h ^= b >> 3; |
||
280 |
} |
||
281 |
if (top3b & 02) { |
||
282 |
l ^= b << 62; |
||
283 |
h ^= b >> 2; |
||
284 |
} |
||
285 |
if (top3b & 04) { |
||
286 |
l ^= b << 63; |
||
287 |
h ^= b >> 1; |
||
288 |
} |
||
289 |
|||
290 |
*r1 = h; |
||
291 |
*r0 = l; |
||
292 |
#endif |
||
293 |
} |
||
294 |
|||
295 |
/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, |
||
296 |
* result is a polynomial r with degree < 4 * BN_BITS2 - 1 |
||
297 |
* The caller MUST ensure that the variables have the right amount |
||
298 |
* of space allocated. |
||
299 |
*/ |
||
300 |
static void |
||
301 |
bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, |
||
302 |
const BN_ULONG b1, const BN_ULONG b0) |
||
303 |
{ |
||
304 |
BN_ULONG m1, m0; |
||
305 |
|||
306 |
/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
||
307 |
bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); |
||
308 |
bn_GF2m_mul_1x1(r + 1, r, a0, b0); |
||
309 |
bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
||
310 |
/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
||
311 |
r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
||
312 |
r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
||
313 |
} |
||
314 |
#else |
||
315 |
void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, |
||
316 |
BN_ULONG b0); |
||
317 |
#endif |
||
318 |
|||
319 |
/* Add polynomials a and b and store result in r; r could be a or b, a and b |
||
320 |
* could be equal; r is the bitwise XOR of a and b. |
||
321 |
*/ |
||
322 |
int |
||
323 |
BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) |
||
324 |
{ |
||
325 |
int i; |
||
326 |
const BIGNUM *at, *bt; |
||
327 |
|||
328 |
bn_check_top(a); |
||
329 |
bn_check_top(b); |
||
330 |
|||
331 |
✓✓ | 7015528 |
if (a->top < b->top) { |
332 |
at = b; |
||
333 |
bt = a; |
||
334 |
44136 |
} else { |
|
335 |
at = a; |
||
336 |
bt = b; |
||
337 |
} |
||
338 |
|||
339 |
✓✓✗✓ |
7016268 |
if (bn_wexpand(r, at->top) == NULL) |
340 |
return 0; |
||
341 |
|||
342 |
✓✓ | 43776588 |
for (i = 0; i < bt->top; i++) { |
343 |
18380530 |
r->d[i] = at->d[i] ^ bt->d[i]; |
|
344 |
} |
||
345 |
✓✓ | 4614752 |
for (; i < at->top; i++) { |
346 |
553494 |
r->d[i] = at->d[i]; |
|
347 |
} |
||
348 |
|||
349 |
3507764 |
r->top = at->top; |
|
350 |
✓✗✓✓ ✓✓ |
17747937 |
bn_correct_top(r); |
351 |
|||
352 |
3507764 |
return 1; |
|
353 |
3507764 |
} |
|
354 |
|||
355 |
|||
356 |
/* Some functions allow for representation of the irreducible polynomials |
||
357 |
* as an int[], say p. The irreducible f(t) is then of the form: |
||
358 |
* t^p[0] + t^p[1] + ... + t^p[k] |
||
359 |
* where m = p[0] > p[1] > ... > p[k] = 0. |
||
360 |
*/ |
||
361 |
|||
362 |
|||
363 |
/* Performs modular reduction of a and store result in r. r could be a. */ |
||
364 |
int |
||
365 |
BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) |
||
366 |
{ |
||
367 |
int j, k; |
||
368 |
int n, dN, d0, d1; |
||
369 |
BN_ULONG zz, *z; |
||
370 |
|||
371 |
bn_check_top(a); |
||
372 |
|||
373 |
✗✓ | 28261330 |
if (!p[0]) { |
374 |
/* reduction mod 1 => return 0 */ |
||
375 |
BN_zero(r); |
||
376 |
return 1; |
||
377 |
} |
||
378 |
|||
379 |
/* Since the algorithm does reduction in the r value, if a != r, copy |
||
380 |
* the contents of a into r so we can do reduction in r. |
||
381 |
*/ |
||
382 |
✓✓ | 14130665 |
if (a != r) { |
383 |
✓✓✗✓ ✗✓ |
28261298 |
if (!bn_wexpand(r, a->top)) |
384 |
return 0; |
||
385 |
✓✓ | 297263194 |
for (j = 0; j < a->top; j++) { |
386 |
134500948 |
r->d[j] = a->d[j]; |
|
387 |
} |
||
388 |
14130649 |
r->top = a->top; |
|
389 |
14130649 |
} |
|
390 |
14130665 |
z = r->d; |
|
391 |
|||
392 |
/* start reduction */ |
||
393 |
14130665 |
dN = p[0] / BN_BITS2; |
|
394 |
✓✓ | 159330138 |
for (j = r->top - 1; j > dN; ) { |
395 |
131068808 |
zz = z[j]; |
|
396 |
✓✓ | 131068808 |
if (z[j] == 0) { |
397 |
65534619 |
j--; |
|
398 |
65534619 |
continue; |
|
399 |
} |
||
400 |
65534189 |
z[j] = 0; |
|
401 |
|||
402 |
✓✓ | 405054672 |
for (k = 1; p[k] != 0; k++) { |
403 |
/* reducing component t^p[k] */ |
||
404 |
136993147 |
n = p[0] - p[k]; |
|
405 |
136993147 |
d0 = n % BN_BITS2; |
|
406 |
136993147 |
d1 = BN_BITS2 - d0; |
|
407 |
136993147 |
n /= BN_BITS2; |
|
408 |
136993147 |
z[j - n] ^= (zz >> d0); |
|
409 |
✓✓ | 136993147 |
if (d0) |
410 |
136949061 |
z[j - n - 1] ^= (zz << d1); |
|
411 |
} |
||
412 |
|||
413 |
/* reducing component t^0 */ |
||
414 |
n = dN; |
||
415 |
65534189 |
d0 = p[0] % BN_BITS2; |
|
416 |
65534189 |
d1 = BN_BITS2 - d0; |
|
417 |
65534189 |
z[j - n] ^= (zz >> d0); |
|
418 |
✗✓ | 65534189 |
if (d0) |
419 |
65534189 |
z[j - n - 1] ^= (zz << d1); |
|
420 |
} |
||
421 |
|||
422 |
/* final round of reduction */ |
||
423 |
✓✓ | 27398956 |
while (j == dN) { |
424 |
|||
425 |
27389596 |
d0 = p[0] % BN_BITS2; |
|
426 |
27389596 |
zz = z[dN] >> d0; |
|
427 |
✓✓ | 27389596 |
if (zz == 0) |
428 |
break; |
||
429 |
13268291 |
d1 = BN_BITS2 - d0; |
|
430 |
|||
431 |
/* clear up the top d1 bits */ |
||
432 |
✓✗ | 13268291 |
if (d0) |
433 |
13268291 |
z[dN] = (z[dN] << d1) >> d1; |
|
434 |
else |
||
435 |
z[dN] = 0; |
||
436 |
13268291 |
z[0] ^= zz; /* reduction t^0 component */ |
|
437 |
|||
438 |
✓✓ | 80383948 |
for (k = 1; p[k] != 0; k++) { |
439 |
BN_ULONG tmp_ulong; |
||
440 |
|||
441 |
/* reducing component t^p[k]*/ |
||
442 |
26923683 |
n = p[k] / BN_BITS2; |
|
443 |
26923683 |
d0 = p[k] % BN_BITS2; |
|
444 |
26923683 |
d1 = BN_BITS2 - d0; |
|
445 |
26923683 |
z[n] ^= (zz << d0); |
|
446 |
✓✗✓✓ |
53847366 |
if (d0 && (tmp_ulong = zz >> d1)) |
447 |
3044040 |
z[n + 1] ^= tmp_ulong; |
|
448 |
} |
||
449 |
|||
450 |
|||
451 |
} |
||
452 |
|||
453 |
✓✓✓✓ ✓✓ |
270348149 |
bn_correct_top(r); |
454 |
14130665 |
return 1; |
|
455 |
14130665 |
} |
|
456 |
|||
457 |
/* Performs modular reduction of a by p and store result in r. r could be a. |
||
458 |
* |
||
459 |
* This function calls down to the BN_GF2m_mod_arr implementation; this wrapper |
||
460 |
* function is only provided for convenience; for best performance, use the |
||
461 |
* BN_GF2m_mod_arr function. |
||
462 |
*/ |
||
463 |
int |
||
464 |
BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) |
||
465 |
{ |
||
466 |
int ret = 0; |
||
467 |
163410 |
int arr[6]; |
|
468 |
|||
469 |
bn_check_top(a); |
||
470 |
bn_check_top(p); |
||
471 |
81705 |
ret = BN_GF2m_poly2arr(p, arr, sizeof(arr) / sizeof(arr[0])); |
|
472 |
✗✓ | 81705 |
if (!ret || ret > (int)(sizeof(arr) / sizeof(arr[0]))) { |
473 |
BNerror(BN_R_INVALID_LENGTH); |
||
474 |
return 0; |
||
475 |
} |
||
476 |
81705 |
ret = BN_GF2m_mod_arr(r, a, arr); |
|
477 |
bn_check_top(r); |
||
478 |
81705 |
return ret; |
|
479 |
81705 |
} |
|
480 |
|||
481 |
|||
482 |
/* Compute the product of two polynomials a and b, reduce modulo p, and store |
||
483 |
* the result in r. r could be a or b; a could be b. |
||
484 |
*/ |
||
485 |
int |
||
486 |
BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], |
||
487 |
BN_CTX *ctx) |
||
488 |
{ |
||
489 |
int zlen, i, j, k, ret = 0; |
||
490 |
BIGNUM *s; |
||
491 |
13738376 |
BN_ULONG x1, x0, y1, y0, zz[4]; |
|
492 |
|||
493 |
bn_check_top(a); |
||
494 |
bn_check_top(b); |
||
495 |
|||
496 |
✗✓ | 6869188 |
if (a == b) { |
497 |
return BN_GF2m_mod_sqr_arr(r, a, p, ctx); |
||
498 |
} |
||
499 |
|||
500 |
6869188 |
BN_CTX_start(ctx); |
|
501 |
✓✗ | 6869188 |
if ((s = BN_CTX_get(ctx)) == NULL) |
502 |
goto err; |
||
503 |
|||
504 |
6869188 |
zlen = a->top + b->top + 4; |
|
505 |
✓✓✓✗ ✓✗ |
13738376 |
if (!bn_wexpand(s, zlen)) |
506 |
goto err; |
||
507 |
6869188 |
s->top = zlen; |
|
508 |
|||
509 |
✓✓ | 212157636 |
for (i = 0; i < zlen; i++) |
510 |
99209630 |
s->d[i] = 0; |
|
511 |
|||
512 |
✓✓ | 56545696 |
for (j = 0; j < b->top; j += 2) { |
513 |
21403660 |
y0 = b->d[j]; |
|
514 |
✓✓ | 60123706 |
y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; |
515 |
✓✓ | 174020628 |
for (i = 0; i < a->top; i += 2) { |
516 |
65606654 |
x0 = a->d[i]; |
|
517 |
✓✓ | 180288339 |
x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; |
518 |
65606654 |
bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); |
|
519 |
✓✓ | 656066540 |
for (k = 0; k < 4; k++) |
520 |
262426616 |
s->d[i + j + k] ^= zz[k]; |
|
521 |
} |
||
522 |
} |
||
523 |
|||
524 |
✓✗✓✓ ✓✓ |
122966988 |
bn_correct_top(s); |
525 |
✓✗ | 6869188 |
if (BN_GF2m_mod_arr(r, s, p)) |
526 |
6869188 |
ret = 1; |
|
527 |
bn_check_top(r); |
||
528 |
|||
529 |
err: |
||
530 |
6869188 |
BN_CTX_end(ctx); |
|
531 |
6869188 |
return ret; |
|
532 |
6869188 |
} |
|
533 |
|||
534 |
/* Compute the product of two polynomials a and b, reduce modulo p, and store |
||
535 |
* the result in r. r could be a or b; a could equal b. |
||
536 |
* |
||
537 |
* This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper |
||
538 |
* function is only provided for convenience; for best performance, use the |
||
539 |
* BN_GF2m_mod_mul_arr function. |
||
540 |
*/ |
||
541 |
int |
||
542 |
BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, |
||
543 |
BN_CTX *ctx) |
||
544 |
{ |
||
545 |
int ret = 0; |
||
546 |
169400 |
const int max = BN_num_bits(p) + 1; |
|
547 |
int *arr = NULL; |
||
548 |
|||
549 |
bn_check_top(a); |
||
550 |
bn_check_top(b); |
||
551 |
bn_check_top(p); |
||
552 |
✓✗ | 84700 |
if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) |
553 |
goto err; |
||
554 |
84700 |
ret = BN_GF2m_poly2arr(p, arr, max); |
|
555 |
✓✗✗✓ |
169400 |
if (!ret || ret > max) { |
556 |
BNerror(BN_R_INVALID_LENGTH); |
||
557 |
goto err; |
||
558 |
} |
||
559 |
84700 |
ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); |
|
560 |
bn_check_top(r); |
||
561 |
|||
562 |
err: |
||
563 |
84700 |
free(arr); |
|
564 |
84700 |
return ret; |
|
565 |
} |
||
566 |
|||
567 |
|||
568 |
/* Square a, reduce the result mod p, and store it in a. r could be a. */ |
||
569 |
int |
||
570 |
BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) |
||
571 |
{ |
||
572 |
int i, ret = 0; |
||
573 |
BIGNUM *s; |
||
574 |
|||
575 |
bn_check_top(a); |
||
576 |
14334860 |
BN_CTX_start(ctx); |
|
577 |
✓✗ | 7167430 |
if ((s = BN_CTX_get(ctx)) == NULL) |
578 |
goto err; |
||
579 |
✓✓✓✗ ✓✗ |
14334860 |
if (!bn_wexpand(s, 2 * a->top)) |
580 |
goto err; |
||
581 |
|||
582 |
✓✓ | 80558820 |
for (i = a->top - 1; i >= 0; i--) { |
583 |
33111980 |
s->d[2 * i + 1] = SQR1(a->d[i]); |
|
584 |
33111980 |
s->d[2 * i] = SQR0(a->d[i]); |
|
585 |
} |
||
586 |
|||
587 |
7167430 |
s->top = 2 * a->top; |
|
588 |
✓✓✓✗ ✓✓ |
41941660 |
bn_correct_top(s); |
589 |
✓✗ | 7167430 |
if (!BN_GF2m_mod_arr(r, s, p)) |
590 |
goto err; |
||
591 |
bn_check_top(r); |
||
592 |
7167430 |
ret = 1; |
|
593 |
|||
594 |
err: |
||
595 |
7167430 |
BN_CTX_end(ctx); |
|
596 |
7167430 |
return ret; |
|
597 |
} |
||
598 |
|||
599 |
/* Square a, reduce the result mod p, and store it in a. r could be a. |
||
600 |
* |
||
601 |
* This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper |
||
602 |
* function is only provided for convenience; for best performance, use the |
||
603 |
* BN_GF2m_mod_sqr_arr function. |
||
604 |
*/ |
||
605 |
int |
||
606 |
BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
||
607 |
{ |
||
608 |
int ret = 0; |
||
609 |
6010 |
const int max = BN_num_bits(p) + 1; |
|
610 |
int *arr = NULL; |
||
611 |
|||
612 |
bn_check_top(a); |
||
613 |
bn_check_top(p); |
||
614 |
✓✗ | 3005 |
if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) |
615 |
goto err; |
||
616 |
3005 |
ret = BN_GF2m_poly2arr(p, arr, max); |
|
617 |
✓✗✗✓ |
6010 |
if (!ret || ret > max) { |
618 |
BNerror(BN_R_INVALID_LENGTH); |
||
619 |
goto err; |
||
620 |
} |
||
621 |
3005 |
ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); |
|
622 |
bn_check_top(r); |
||
623 |
|||
624 |
err: |
||
625 |
3005 |
free(arr); |
|
626 |
3005 |
return ret; |
|
627 |
} |
||
628 |
|||
629 |
|||
630 |
/* Invert a, reduce modulo p, and store the result in r. r could be a. |
||
631 |
* Uses Modified Almost Inverse Algorithm (Algorithm 10) from |
||
632 |
* Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation |
||
633 |
* of Elliptic Curve Cryptography Over Binary Fields". |
||
634 |
*/ |
||
635 |
int |
||
636 |
BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
||
637 |
{ |
||
638 |
BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; |
||
639 |
int ret = 0; |
||
640 |
|||
641 |
bn_check_top(a); |
||
642 |
bn_check_top(p); |
||
643 |
|||
644 |
155000 |
BN_CTX_start(ctx); |
|
645 |
|||
646 |
✓✗ | 77500 |
if ((b = BN_CTX_get(ctx)) == NULL) |
647 |
goto err; |
||
648 |
✓✗ | 77500 |
if ((c = BN_CTX_get(ctx)) == NULL) |
649 |
goto err; |
||
650 |
✓✗ | 77500 |
if ((u = BN_CTX_get(ctx)) == NULL) |
651 |
goto err; |
||
652 |
✓✗ | 77500 |
if ((v = BN_CTX_get(ctx)) == NULL) |
653 |
goto err; |
||
654 |
|||
655 |
✓✗ | 77500 |
if (!BN_GF2m_mod(u, a, p)) |
656 |
goto err; |
||
657 |
✓✗ | 77500 |
if (BN_is_zero(u)) |
658 |
goto err; |
||
659 |
|||
660 |
✓✗ | 77500 |
if (!BN_copy(v, p)) |
661 |
goto err; |
||
662 |
#if 0 |
||
663 |
if (!BN_one(b)) |
||
664 |
goto err; |
||
665 |
|||
666 |
while (1) { |
||
667 |
while (!BN_is_odd(u)) { |
||
668 |
if (BN_is_zero(u)) |
||
669 |
goto err; |
||
670 |
if (!BN_rshift1(u, u)) |
||
671 |
goto err; |
||
672 |
if (BN_is_odd(b)) { |
||
673 |
if (!BN_GF2m_add(b, b, p)) |
||
674 |
goto err; |
||
675 |
} |
||
676 |
if (!BN_rshift1(b, b)) |
||
677 |
goto err; |
||
678 |
} |
||
679 |
|||
680 |
if (BN_abs_is_word(u, 1)) |
||
681 |
break; |
||
682 |
|||
683 |
if (BN_num_bits(u) < BN_num_bits(v)) { |
||
684 |
tmp = u; |
||
685 |
u = v; |
||
686 |
v = tmp; |
||
687 |
tmp = b; |
||
688 |
b = c; |
||
689 |
c = tmp; |
||
690 |
} |
||
691 |
|||
692 |
if (!BN_GF2m_add(u, u, v)) |
||
693 |
goto err; |
||
694 |
if (!BN_GF2m_add(b, b, c)) |
||
695 |
goto err; |
||
696 |
} |
||
697 |
#else |
||
698 |
{ |
||
699 |
77500 |
int i, ubits = BN_num_bits(u), |
|
700 |
77500 |
vbits = BN_num_bits(v), /* v is copy of p */ |
|
701 |
77500 |
top = p->top; |
|
702 |
BN_ULONG *udp, *bdp, *vdp, *cdp; |
||
703 |
|||
704 |
✓✓✗✓ ✗✓ |
155000 |
if (!bn_wexpand(u, top)) |
705 |
goto err; |
||
706 |
77500 |
udp = u->d; |
|
707 |
✓✓ | 157276 |
for (i = u->top; i < top; i++) |
708 |
1138 |
udp[i] = 0; |
|
709 |
77500 |
u->top = top; |
|
710 |
✓✓✗✓ ✗✓ |
155000 |
if (!bn_wexpand(b, top)) |
711 |
goto err; |
||
712 |
77500 |
bdp = b->d; |
|
713 |
77500 |
bdp[0] = 1; |
|
714 |
✓✓ | 1017792 |
for (i = 1; i < top; i++) |
715 |
431396 |
bdp[i] = 0; |
|
716 |
77500 |
b->top = top; |
|
717 |
✓✓✗✓ ✗✓ |
155000 |
if (!bn_wexpand(c, top)) |
718 |
goto err; |
||
719 |
77500 |
cdp = c->d; |
|
720 |
✓✓ | 1172792 |
for (i = 0; i < top; i++) |
721 |
508896 |
cdp[i] = 0; |
|
722 |
77500 |
c->top = top; |
|
723 |
77500 |
vdp = v->d; /* It pays off to "cache" *->d pointers, because |
|
724 |
* it allows optimizer to be more aggressive. |
||
725 |
* But we don't have to "cache" p->d, because *p |
||
726 |
* is declared 'const'... */ |
||
727 |
77500 |
while (1) { |
|
728 |
✓✗✓✓ |
229952445 |
while (ubits && !(udp[0]&1)) { |
729 |
BN_ULONG u0, u1, b0, b1, mask; |
||
730 |
|||
731 |
u0 = udp[0]; |
||
732 |
51078946 |
b0 = bdp[0]; |
|
733 |
51078946 |
mask = (BN_ULONG)0 - (b0 & 1); |
|
734 |
51078946 |
b0 ^= p->d[0] & mask; |
|
735 |
✓✓ | 762083266 |
for (i = 0; i < top - 1; i++) { |
736 |
329962687 |
u1 = udp[i + 1]; |
|
737 |
659925374 |
udp[i] = ((u0 >> 1) | |
|
738 |
329962687 |
(u1 << (BN_BITS2 - 1))) & BN_MASK2; |
|
739 |
u0 = u1; |
||
740 |
329962687 |
b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); |
|
741 |
659925374 |
bdp[i] = ((b0 >> 1) | |
|
742 |
329962687 |
(b1 << (BN_BITS2 - 1))) & BN_MASK2; |
|
743 |
b0 = b1; |
||
744 |
} |
||
745 |
51078946 |
udp[i] = u0 >> 1; |
|
746 |
51078946 |
bdp[i] = b0 >> 1; |
|
747 |
51078946 |
ubits--; |
|
748 |
} |
||
749 |
|||
750 |
✓✓ | 25571869 |
if (ubits <= BN_BITS2) { |
751 |
/* See if poly was reducible. */ |
||
752 |
✗✓ | 4041023 |
if (udp[0] == 0) |
753 |
goto err; |
||
754 |
✓✓ | 4041023 |
if (udp[0] == 1) |
755 |
break; |
||
756 |
} |
||
757 |
|||
758 |
✓✓ | 25494369 |
if (ubits < vbits) { |
759 |
i = ubits; |
||
760 |
ubits = vbits; |
||
761 |
vbits = i; |
||
762 |
tmp = u; |
||
763 |
u = v; |
||
764 |
v = tmp; |
||
765 |
tmp = b; |
||
766 |
b = c; |
||
767 |
c = tmp; |
||
768 |
udp = vdp; |
||
769 |
10221328 |
vdp = v->d; |
|
770 |
bdp = cdp; |
||
771 |
10221328 |
cdp = c->d; |
|
772 |
10221328 |
} |
|
773 |
✓✓ | 431410430 |
for (i = 0; i < top; i++) { |
774 |
190210846 |
udp[i] ^= vdp[i]; |
|
775 |
190210846 |
bdp[i] ^= cdp[i]; |
|
776 |
} |
||
777 |
✓✓ | 25494369 |
if (ubits == vbits) { |
778 |
BN_ULONG ul; |
||
779 |
5083979 |
int utop = (ubits - 1) / BN_BITS2; |
|
780 |
|||
781 |
✓✓ | 10453512 |
while ((ul = udp[utop]) == 0 && utop) |
782 |
142777 |
utop--; |
|
783 |
5083979 |
ubits = utop*BN_BITS2 + BN_num_bits_word(ul); |
|
784 |
5083979 |
} |
|
785 |
} |
||
786 |
✓✗✓✗ ✓✓ |
390404 |
bn_correct_top(b); |
787 |
✓✓✓ | 77500 |
} |
788 |
#endif |
||
789 |
|||
790 |
✓✗ | 77500 |
if (!BN_copy(r, b)) |
791 |
goto err; |
||
792 |
bn_check_top(r); |
||
793 |
77500 |
ret = 1; |
|
794 |
|||
795 |
err: |
||
796 |
#ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */ |
||
797 |
bn_correct_top(c); |
||
798 |
bn_correct_top(u); |
||
799 |
bn_correct_top(v); |
||
800 |
#endif |
||
801 |
77500 |
BN_CTX_end(ctx); |
|
802 |
77500 |
return ret; |
|
803 |
77500 |
} |
|
804 |
|||
805 |
/* Invert xx, reduce modulo p, and store the result in r. r could be xx. |
||
806 |
* |
||
807 |
* This function calls down to the BN_GF2m_mod_inv implementation; this wrapper |
||
808 |
* function is only provided for convenience; for best performance, use the |
||
809 |
* BN_GF2m_mod_inv function. |
||
810 |
*/ |
||
811 |
int |
||
812 |
BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx) |
||
813 |
{ |
||
814 |
BIGNUM *field; |
||
815 |
int ret = 0; |
||
816 |
|||
817 |
bn_check_top(xx); |
||
818 |
BN_CTX_start(ctx); |
||
819 |
if ((field = BN_CTX_get(ctx)) == NULL) |
||
820 |
goto err; |
||
821 |
if (!BN_GF2m_arr2poly(p, field)) |
||
822 |
goto err; |
||
823 |
|||
824 |
ret = BN_GF2m_mod_inv(r, xx, field, ctx); |
||
825 |
bn_check_top(r); |
||
826 |
|||
827 |
err: |
||
828 |
BN_CTX_end(ctx); |
||
829 |
return ret; |
||
830 |
} |
||
831 |
|||
832 |
|||
833 |
#ifndef OPENSSL_SUN_GF2M_DIV |
||
834 |
/* Divide y by x, reduce modulo p, and store the result in r. r could be x |
||
835 |
* or y, x could equal y. |
||
836 |
*/ |
||
837 |
int |
||
838 |
BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, |
||
839 |
BN_CTX *ctx) |
||
840 |
{ |
||
841 |
BIGNUM *xinv = NULL; |
||
842 |
int ret = 0; |
||
843 |
|||
844 |
bn_check_top(y); |
||
845 |
bn_check_top(x); |
||
846 |
bn_check_top(p); |
||
847 |
|||
848 |
152600 |
BN_CTX_start(ctx); |
|
849 |
✓✗ | 76300 |
if ((xinv = BN_CTX_get(ctx)) == NULL) |
850 |
goto err; |
||
851 |
|||
852 |
✓✗ | 76300 |
if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) |
853 |
goto err; |
||
854 |
✓✗ | 76300 |
if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) |
855 |
goto err; |
||
856 |
bn_check_top(r); |
||
857 |
76300 |
ret = 1; |
|
858 |
|||
859 |
err: |
||
860 |
76300 |
BN_CTX_end(ctx); |
|
861 |
76300 |
return ret; |
|
862 |
} |
||
863 |
#else |
||
864 |
/* Divide y by x, reduce modulo p, and store the result in r. r could be x |
||
865 |
* or y, x could equal y. |
||
866 |
* Uses algorithm Modular_Division_GF(2^m) from |
||
867 |
* Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to |
||
868 |
* the Great Divide". |
||
869 |
*/ |
||
870 |
int |
||
871 |
BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, |
||
872 |
BN_CTX *ctx) |
||
873 |
{ |
||
874 |
BIGNUM *a, *b, *u, *v; |
||
875 |
int ret = 0; |
||
876 |
|||
877 |
bn_check_top(y); |
||
878 |
bn_check_top(x); |
||
879 |
bn_check_top(p); |
||
880 |
|||
881 |
BN_CTX_start(ctx); |
||
882 |
|||
883 |
if ((a = BN_CTX_get(ctx)) == NULL) |
||
884 |
goto err; |
||
885 |
if ((b = BN_CTX_get(ctx)) == NULL) |
||
886 |
goto err; |
||
887 |
if ((u = BN_CTX_get(ctx)) == NULL) |
||
888 |
goto err; |
||
889 |
if ((v = BN_CTX_get(ctx)) == NULL) |
||
890 |
goto err; |
||
891 |
|||
892 |
/* reduce x and y mod p */ |
||
893 |
if (!BN_GF2m_mod(u, y, p)) |
||
894 |
goto err; |
||
895 |
if (!BN_GF2m_mod(a, x, p)) |
||
896 |
goto err; |
||
897 |
if (!BN_copy(b, p)) |
||
898 |
goto err; |
||
899 |
|||
900 |
while (!BN_is_odd(a)) { |
||
901 |
if (!BN_rshift1(a, a)) |
||
902 |
goto err; |
||
903 |
if (BN_is_odd(u)) |
||
904 |
if (!BN_GF2m_add(u, u, p)) |
||
905 |
goto err; |
||
906 |
if (!BN_rshift1(u, u)) |
||
907 |
goto err; |
||
908 |
} |
||
909 |
|||
910 |
do { |
||
911 |
if (BN_GF2m_cmp(b, a) > 0) { |
||
912 |
if (!BN_GF2m_add(b, b, a)) |
||
913 |
goto err; |
||
914 |
if (!BN_GF2m_add(v, v, u)) |
||
915 |
goto err; |
||
916 |
do { |
||
917 |
if (!BN_rshift1(b, b)) |
||
918 |
goto err; |
||
919 |
if (BN_is_odd(v)) |
||
920 |
if (!BN_GF2m_add(v, v, p)) |
||
921 |
goto err; |
||
922 |
if (!BN_rshift1(v, v)) |
||
923 |
goto err; |
||
924 |
} while (!BN_is_odd(b)); |
||
925 |
} else if (BN_abs_is_word(a, 1)) |
||
926 |
break; |
||
927 |
else { |
||
928 |
if (!BN_GF2m_add(a, a, b)) |
||
929 |
goto err; |
||
930 |
if (!BN_GF2m_add(u, u, v)) |
||
931 |
goto err; |
||
932 |
do { |
||
933 |
if (!BN_rshift1(a, a)) |
||
934 |
goto err; |
||
935 |
if (BN_is_odd(u)) |
||
936 |
if (!BN_GF2m_add(u, u, p)) |
||
937 |
goto err; |
||
938 |
if (!BN_rshift1(u, u)) |
||
939 |
goto err; |
||
940 |
} while (!BN_is_odd(a)); |
||
941 |
} |
||
942 |
} while (1); |
||
943 |
|||
944 |
if (!BN_copy(r, u)) |
||
945 |
goto err; |
||
946 |
bn_check_top(r); |
||
947 |
ret = 1; |
||
948 |
|||
949 |
err: |
||
950 |
BN_CTX_end(ctx); |
||
951 |
return ret; |
||
952 |
} |
||
953 |
#endif |
||
954 |
|||
955 |
/* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx |
||
956 |
* or yy, xx could equal yy. |
||
957 |
* |
||
958 |
* This function calls down to the BN_GF2m_mod_div implementation; this wrapper |
||
959 |
* function is only provided for convenience; for best performance, use the |
||
960 |
* BN_GF2m_mod_div function. |
||
961 |
*/ |
||
962 |
int |
||
963 |
BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, |
||
964 |
const int p[], BN_CTX *ctx) |
||
965 |
{ |
||
966 |
BIGNUM *field; |
||
967 |
int ret = 0; |
||
968 |
|||
969 |
bn_check_top(yy); |
||
970 |
bn_check_top(xx); |
||
971 |
|||
972 |
BN_CTX_start(ctx); |
||
973 |
if ((field = BN_CTX_get(ctx)) == NULL) |
||
974 |
goto err; |
||
975 |
if (!BN_GF2m_arr2poly(p, field)) |
||
976 |
goto err; |
||
977 |
|||
978 |
ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); |
||
979 |
bn_check_top(r); |
||
980 |
|||
981 |
err: |
||
982 |
BN_CTX_end(ctx); |
||
983 |
return ret; |
||
984 |
} |
||
985 |
|||
986 |
|||
987 |
/* Compute the bth power of a, reduce modulo p, and store |
||
988 |
* the result in r. r could be a. |
||
989 |
* Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. |
||
990 |
*/ |
||
991 |
int |
||
992 |
BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], |
||
993 |
BN_CTX *ctx) |
||
994 |
{ |
||
995 |
int ret = 0, i, n; |
||
996 |
BIGNUM *u; |
||
997 |
|||
998 |
bn_check_top(a); |
||
999 |
bn_check_top(b); |
||
1000 |
|||
1001 |
✗✓ | 9600 |
if (BN_is_zero(b)) |
1002 |
return (BN_one(r)); |
||
1003 |
|||
1004 |
✗✓✗✗ |
4800 |
if (BN_abs_is_word(b, 1)) |
1005 |
return (BN_copy(r, a) != NULL); |
||
1006 |
|||
1007 |
4800 |
BN_CTX_start(ctx); |
|
1008 |
✓✗ | 4800 |
if ((u = BN_CTX_get(ctx)) == NULL) |
1009 |
goto err; |
||
1010 |
|||
1011 |
✓✗ | 4800 |
if (!BN_GF2m_mod_arr(u, a, p)) |
1012 |
goto err; |
||
1013 |
|||
1014 |
4800 |
n = BN_num_bits(b) - 1; |
|
1015 |
✓✓ | 4116000 |
for (i = n - 1; i >= 0; i--) { |
1016 |
✓✗ | 2053200 |
if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) |
1017 |
goto err; |
||
1018 |
✓✓ | 2053200 |
if (BN_is_bit_set(b, i)) { |
1019 |
✓✗ | 927754 |
if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) |
1020 |
goto err; |
||
1021 |
} |
||
1022 |
} |
||
1023 |
✓✗ | 4800 |
if (!BN_copy(r, u)) |
1024 |
goto err; |
||
1025 |
bn_check_top(r); |
||
1026 |
4800 |
ret = 1; |
|
1027 |
|||
1028 |
err: |
||
1029 |
4800 |
BN_CTX_end(ctx); |
|
1030 |
4800 |
return ret; |
|
1031 |
4800 |
} |
|
1032 |
|||
1033 |
/* Compute the bth power of a, reduce modulo p, and store |
||
1034 |
* the result in r. r could be a. |
||
1035 |
* |
||
1036 |
* This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper |
||
1037 |
* function is only provided for convenience; for best performance, use the |
||
1038 |
* BN_GF2m_mod_exp_arr function. |
||
1039 |
*/ |
||
1040 |
int |
||
1041 |
BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, |
||
1042 |
BN_CTX *ctx) |
||
1043 |
{ |
||
1044 |
int ret = 0; |
||
1045 |
7200 |
const int max = BN_num_bits(p) + 1; |
|
1046 |
int *arr = NULL; |
||
1047 |
|||
1048 |
bn_check_top(a); |
||
1049 |
bn_check_top(b); |
||
1050 |
bn_check_top(p); |
||
1051 |
✓✗ | 3600 |
if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) |
1052 |
goto err; |
||
1053 |
3600 |
ret = BN_GF2m_poly2arr(p, arr, max); |
|
1054 |
✓✗✗✓ |
7200 |
if (!ret || ret > max) { |
1055 |
BNerror(BN_R_INVALID_LENGTH); |
||
1056 |
goto err; |
||
1057 |
} |
||
1058 |
3600 |
ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); |
|
1059 |
bn_check_top(r); |
||
1060 |
|||
1061 |
err: |
||
1062 |
3600 |
free(arr); |
|
1063 |
3600 |
return ret; |
|
1064 |
} |
||
1065 |
|||
1066 |
/* Compute the square root of a, reduce modulo p, and store |
||
1067 |
* the result in r. r could be a. |
||
1068 |
* Uses exponentiation as in algorithm A.4.1 from IEEE P1363. |
||
1069 |
*/ |
||
1070 |
int |
||
1071 |
BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) |
||
1072 |
{ |
||
1073 |
int ret = 0; |
||
1074 |
BIGNUM *u; |
||
1075 |
|||
1076 |
bn_check_top(a); |
||
1077 |
|||
1078 |
✗✓ | 2400 |
if (!p[0]) { |
1079 |
/* reduction mod 1 => return 0 */ |
||
1080 |
BN_zero(r); |
||
1081 |
return 1; |
||
1082 |
} |
||
1083 |
|||
1084 |
1200 |
BN_CTX_start(ctx); |
|
1085 |
✓✗ | 1200 |
if ((u = BN_CTX_get(ctx)) == NULL) |
1086 |
goto err; |
||
1087 |
|||
1088 |
✓✗ | 1200 |
if (!BN_set_bit(u, p[0] - 1)) |
1089 |
goto err; |
||
1090 |
1200 |
ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); |
|
1091 |
bn_check_top(r); |
||
1092 |
|||
1093 |
err: |
||
1094 |
1200 |
BN_CTX_end(ctx); |
|
1095 |
1200 |
return ret; |
|
1096 |
1200 |
} |
|
1097 |
|||
1098 |
/* Compute the square root of a, reduce modulo p, and store |
||
1099 |
* the result in r. r could be a. |
||
1100 |
* |
||
1101 |
* This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper |
||
1102 |
* function is only provided for convenience; for best performance, use the |
||
1103 |
* BN_GF2m_mod_sqrt_arr function. |
||
1104 |
*/ |
||
1105 |
int |
||
1106 |
BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
||
1107 |
{ |
||
1108 |
int ret = 0; |
||
1109 |
2400 |
const int max = BN_num_bits(p) + 1; |
|
1110 |
int *arr = NULL; |
||
1111 |
bn_check_top(a); |
||
1112 |
bn_check_top(p); |
||
1113 |
✓✗ | 1200 |
if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) |
1114 |
goto err; |
||
1115 |
1200 |
ret = BN_GF2m_poly2arr(p, arr, max); |
|
1116 |
✓✗✗✓ |
2400 |
if (!ret || ret > max) { |
1117 |
BNerror(BN_R_INVALID_LENGTH); |
||
1118 |
goto err; |
||
1119 |
} |
||
1120 |
1200 |
ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); |
|
1121 |
bn_check_top(r); |
||
1122 |
|||
1123 |
err: |
||
1124 |
1200 |
free(arr); |
|
1125 |
1200 |
return ret; |
|
1126 |
} |
||
1127 |
|||
1128 |
/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. |
||
1129 |
* Uses algorithms A.4.7 and A.4.6 from IEEE P1363. |
||
1130 |
*/ |
||
1131 |
int |
||
1132 |
BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], |
||
1133 |
BN_CTX *ctx) |
||
1134 |
{ |
||
1135 |
int ret = 0, count = 0, j; |
||
1136 |
BIGNUM *a, *z, *rho, *w, *w2, *tmp; |
||
1137 |
|||
1138 |
bn_check_top(a_); |
||
1139 |
|||
1140 |
✗✓ | 2568 |
if (!p[0]) { |
1141 |
/* reduction mod 1 => return 0 */ |
||
1142 |
BN_zero(r); |
||
1143 |
return 1; |
||
1144 |
} |
||
1145 |
|||
1146 |
1284 |
BN_CTX_start(ctx); |
|
1147 |
✓✗ | 1284 |
if ((a = BN_CTX_get(ctx)) == NULL) |
1148 |
goto err; |
||
1149 |
✓✗ | 1284 |
if ((z = BN_CTX_get(ctx)) == NULL) |
1150 |
goto err; |
||
1151 |
✓✗ | 1284 |
if ((w = BN_CTX_get(ctx)) == NULL) |
1152 |
goto err; |
||
1153 |
|||
1154 |
✓✗ | 1284 |
if (!BN_GF2m_mod_arr(a, a_, p)) |
1155 |
goto err; |
||
1156 |
|||
1157 |
✗✓ | 1284 |
if (BN_is_zero(a)) { |
1158 |
BN_zero(r); |
||
1159 |
ret = 1; |
||
1160 |
goto err; |
||
1161 |
} |
||
1162 |
|||
1163 |
✓✓ | 1284 |
if (p[0] & 0x1) /* m is odd */ |
1164 |
{ |
||
1165 |
/* compute half-trace of a */ |
||
1166 |
✓✗ | 1274 |
if (!BN_copy(z, a)) |
1167 |
goto err; |
||
1168 |
✓✓ | 231916 |
for (j = 1; j <= (p[0] - 1) / 2; j++) { |
1169 |
✓✗ | 114684 |
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1170 |
goto err; |
||
1171 |
✓✗ | 114684 |
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1172 |
goto err; |
||
1173 |
✓✗ | 114684 |
if (!BN_GF2m_add(z, z, a)) |
1174 |
goto err; |
||
1175 |
} |
||
1176 |
|||
1177 |
} |
||
1178 |
else /* m is even */ |
||
1179 |
{ |
||
1180 |
✓✗ | 10 |
if ((rho = BN_CTX_get(ctx)) == NULL) |
1181 |
goto err; |
||
1182 |
✓✗ | 10 |
if ((w2 = BN_CTX_get(ctx)) == NULL) |
1183 |
goto err; |
||
1184 |
✓✗ | 10 |
if ((tmp = BN_CTX_get(ctx)) == NULL) |
1185 |
goto err; |
||
1186 |
do { |
||
1187 |
✓✗ | 16 |
if (!BN_rand(rho, p[0], 0, 0)) |
1188 |
goto err; |
||
1189 |
✓✗ | 16 |
if (!BN_GF2m_mod_arr(rho, rho, p)) |
1190 |
goto err; |
||
1191 |
16 |
BN_zero(z); |
|
1192 |
✓✗ | 16 |
if (!BN_copy(w, rho)) |
1193 |
goto err; |
||
1194 |
✓✓ | 8832 |
for (j = 1; j <= p[0] - 1; j++) { |
1195 |
✓✗ | 4400 |
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1196 |
goto err; |
||
1197 |
✓✗ | 4400 |
if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) |
1198 |
goto err; |
||
1199 |
✓✗ | 4400 |
if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) |
1200 |
goto err; |
||
1201 |
✓✗ | 4400 |
if (!BN_GF2m_add(z, z, tmp)) |
1202 |
goto err; |
||
1203 |
✓✗ | 4400 |
if (!BN_GF2m_add(w, w2, rho)) |
1204 |
goto err; |
||
1205 |
} |
||
1206 |
16 |
count++; |
|
1207 |
✓✓ | 16 |
} while (BN_is_zero(w) && (count < MAX_ITERATIONS)); |
1208 |
✗✓ | 10 |
if (BN_is_zero(w)) { |
1209 |
BNerror(BN_R_TOO_MANY_ITERATIONS); |
||
1210 |
goto err; |
||
1211 |
} |
||
1212 |
} |
||
1213 |
|||
1214 |
✓✗ | 1284 |
if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) |
1215 |
goto err; |
||
1216 |
✓✗ | 1284 |
if (!BN_GF2m_add(w, z, w)) |
1217 |
goto err; |
||
1218 |
✓✓ | 1284 |
if (BN_GF2m_cmp(w, a)) { |
1219 |
595 |
BNerror(BN_R_NO_SOLUTION); |
|
1220 |
595 |
goto err; |
|
1221 |
} |
||
1222 |
|||
1223 |
✓✗ | 689 |
if (!BN_copy(r, z)) |
1224 |
goto err; |
||
1225 |
bn_check_top(r); |
||
1226 |
|||
1227 |
689 |
ret = 1; |
|
1228 |
|||
1229 |
err: |
||
1230 |
1284 |
BN_CTX_end(ctx); |
|
1231 |
1284 |
return ret; |
|
1232 |
1284 |
} |
|
1233 |
|||
1234 |
/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. |
||
1235 |
* |
||
1236 |
* This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper |
||
1237 |
* function is only provided for convenience; for best performance, use the |
||
1238 |
* BN_GF2m_mod_solve_quad_arr function. |
||
1239 |
*/ |
||
1240 |
int |
||
1241 |
BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
||
1242 |
{ |
||
1243 |
int ret = 0; |
||
1244 |
2400 |
const int max = BN_num_bits(p) + 1; |
|
1245 |
int *arr = NULL; |
||
1246 |
|||
1247 |
bn_check_top(a); |
||
1248 |
bn_check_top(p); |
||
1249 |
✓✗ | 1200 |
if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) |
1250 |
goto err; |
||
1251 |
1200 |
ret = BN_GF2m_poly2arr(p, arr, max); |
|
1252 |
✓✗✗✓ |
2400 |
if (!ret || ret > max) { |
1253 |
BNerror(BN_R_INVALID_LENGTH); |
||
1254 |
goto err; |
||
1255 |
} |
||
1256 |
1200 |
ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); |
|
1257 |
bn_check_top(r); |
||
1258 |
|||
1259 |
err: |
||
1260 |
1200 |
free(arr); |
|
1261 |
1200 |
return ret; |
|
1262 |
} |
||
1263 |
|||
1264 |
/* Convert the bit-string representation of a polynomial |
||
1265 |
* ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding |
||
1266 |
* to the bits with non-zero coefficient. Array is terminated with -1. |
||
1267 |
* Up to max elements of the array will be filled. Return value is total |
||
1268 |
* number of array elements that would be filled if array was large enough. |
||
1269 |
*/ |
||
1270 |
int |
||
1271 |
BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) |
||
1272 |
{ |
||
1273 |
int i, j, k = 0; |
||
1274 |
BN_ULONG mask; |
||
1275 |
|||
1276 |
✗✓ | 352972 |
if (BN_is_zero(a)) |
1277 |
return 0; |
||
1278 |
|||
1279 |
✓✓ | 2540780 |
for (i = a->top - 1; i >= 0; i--) { |
1280 |
✓✓ | 1093904 |
if (!a->d[i]) |
1281 |
/* skip word if a->d[i] == 0 */ |
||
1282 |
continue; |
||
1283 |
mask = BN_TBIT; |
||
1284 |
✓✓ | 52496600 |
for (j = BN_BITS2 - 1; j >= 0; j--) { |
1285 |
✓✓ | 25844480 |
if (a->d[i] & mask) { |
1286 |
✓✗ | 748674 |
if (k < max) |
1287 |
748674 |
p[k] = BN_BITS2 * i + j; |
|
1288 |
748674 |
k++; |
|
1289 |
748674 |
} |
|
1290 |
25844480 |
mask >>= 1; |
|
1291 |
} |
||
1292 |
} |
||
1293 |
|||
1294 |
✓✗ | 176486 |
if (k < max) { |
1295 |
176486 |
p[k] = -1; |
|
1296 |
176486 |
k++; |
|
1297 |
176486 |
} |
|
1298 |
|||
1299 |
176486 |
return k; |
|
1300 |
176486 |
} |
|
1301 |
|||
1302 |
/* Convert the coefficient array representation of a polynomial to a |
||
1303 |
* bit-string. The array must be terminated by -1. |
||
1304 |
*/ |
||
1305 |
int |
||
1306 |
BN_GF2m_arr2poly(const int p[], BIGNUM *a) |
||
1307 |
{ |
||
1308 |
int i; |
||
1309 |
|||
1310 |
bn_check_top(a); |
||
1311 |
192 |
BN_zero(a); |
|
1312 |
✓✓ | 960 |
for (i = 0; p[i] != -1; i++) { |
1313 |
✗✓ | 384 |
if (BN_set_bit(a, p[i]) == 0) |
1314 |
return 0; |
||
1315 |
} |
||
1316 |
bn_check_top(a); |
||
1317 |
|||
1318 |
96 |
return 1; |
|
1319 |
96 |
} |
|
1320 |
|||
1321 |
#endif |
Generated by: GCOVR (Version 3.3) |