1 |
|
|
/* $OpenBSD: bn_x931p.c,v 1.10 2017/01/25 06:15:44 beck Exp $ */ |
2 |
|
|
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
3 |
|
|
* project 2005. |
4 |
|
|
*/ |
5 |
|
|
/* ==================================================================== |
6 |
|
|
* Copyright (c) 2005 The OpenSSL Project. All rights reserved. |
7 |
|
|
* |
8 |
|
|
* Redistribution and use in source and binary forms, with or without |
9 |
|
|
* modification, are permitted provided that the following conditions |
10 |
|
|
* are met: |
11 |
|
|
* |
12 |
|
|
* 1. Redistributions of source code must retain the above copyright |
13 |
|
|
* notice, this list of conditions and the following disclaimer. |
14 |
|
|
* |
15 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
16 |
|
|
* notice, this list of conditions and the following disclaimer in |
17 |
|
|
* the documentation and/or other materials provided with the |
18 |
|
|
* distribution. |
19 |
|
|
* |
20 |
|
|
* 3. All advertising materials mentioning features or use of this |
21 |
|
|
* software must display the following acknowledgment: |
22 |
|
|
* "This product includes software developed by the OpenSSL Project |
23 |
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
24 |
|
|
* |
25 |
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
26 |
|
|
* endorse or promote products derived from this software without |
27 |
|
|
* prior written permission. For written permission, please contact |
28 |
|
|
* licensing@OpenSSL.org. |
29 |
|
|
* |
30 |
|
|
* 5. Products derived from this software may not be called "OpenSSL" |
31 |
|
|
* nor may "OpenSSL" appear in their names without prior written |
32 |
|
|
* permission of the OpenSSL Project. |
33 |
|
|
* |
34 |
|
|
* 6. Redistributions of any form whatsoever must retain the following |
35 |
|
|
* acknowledgment: |
36 |
|
|
* "This product includes software developed by the OpenSSL Project |
37 |
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
38 |
|
|
* |
39 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
40 |
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
41 |
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
42 |
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
43 |
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
44 |
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
45 |
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
46 |
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 |
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
48 |
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
49 |
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
50 |
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
51 |
|
|
* ==================================================================== |
52 |
|
|
* |
53 |
|
|
* This product includes cryptographic software written by Eric Young |
54 |
|
|
* (eay@cryptsoft.com). This product includes software written by Tim |
55 |
|
|
* Hudson (tjh@cryptsoft.com). |
56 |
|
|
* |
57 |
|
|
*/ |
58 |
|
|
|
59 |
|
|
#include <stdio.h> |
60 |
|
|
#include <openssl/bn.h> |
61 |
|
|
|
62 |
|
|
#include "bn_lcl.h" |
63 |
|
|
|
64 |
|
|
/* X9.31 routines for prime derivation */ |
65 |
|
|
|
66 |
|
|
/* X9.31 prime derivation. This is used to generate the primes pi |
67 |
|
|
* (p1, p2, q1, q2) from a parameter Xpi by checking successive odd |
68 |
|
|
* integers. |
69 |
|
|
*/ |
70 |
|
|
|
71 |
|
|
static int |
72 |
|
|
bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx, BN_GENCB *cb) |
73 |
|
|
{ |
74 |
|
|
int i = 0; |
75 |
|
|
|
76 |
|
|
if (!BN_copy(pi, Xpi)) |
77 |
|
|
return 0; |
78 |
|
|
if (!BN_is_odd(pi) && !BN_add_word(pi, 1)) |
79 |
|
|
return 0; |
80 |
|
|
for (;;) { |
81 |
|
|
i++; |
82 |
|
|
BN_GENCB_call(cb, 0, i); |
83 |
|
|
/* NB 27 MR is specificed in X9.31 */ |
84 |
|
|
if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb)) |
85 |
|
|
break; |
86 |
|
|
if (!BN_add_word(pi, 2)) |
87 |
|
|
return 0; |
88 |
|
|
} |
89 |
|
|
BN_GENCB_call(cb, 2, i); |
90 |
|
|
return 1; |
91 |
|
|
} |
92 |
|
|
|
93 |
|
|
/* This is the main X9.31 prime derivation function. From parameters |
94 |
|
|
* Xp1, Xp2 and Xp derive the prime p. If the parameters p1 or p2 are |
95 |
|
|
* not NULL they will be returned too: this is needed for testing. |
96 |
|
|
*/ |
97 |
|
|
|
98 |
|
|
int |
99 |
|
|
BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, const BIGNUM *Xp, |
100 |
|
|
const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, |
101 |
|
|
BN_GENCB *cb) |
102 |
|
|
{ |
103 |
|
|
int ret = 0; |
104 |
|
|
|
105 |
|
|
BIGNUM *t, *p1p2, *pm1; |
106 |
|
|
|
107 |
|
|
/* Only even e supported */ |
108 |
|
|
if (!BN_is_odd(e)) |
109 |
|
|
return 0; |
110 |
|
|
|
111 |
|
|
BN_CTX_start(ctx); |
112 |
|
|
if (p1 == NULL) { |
113 |
|
|
if ((p1 = BN_CTX_get(ctx)) == NULL) |
114 |
|
|
goto err; |
115 |
|
|
} |
116 |
|
|
if (p2 == NULL) { |
117 |
|
|
if ((p2 = BN_CTX_get(ctx)) == NULL) |
118 |
|
|
goto err; |
119 |
|
|
} |
120 |
|
|
|
121 |
|
|
if ((t = BN_CTX_get(ctx)) == NULL) |
122 |
|
|
goto err; |
123 |
|
|
if ((p1p2 = BN_CTX_get(ctx)) == NULL) |
124 |
|
|
goto err; |
125 |
|
|
if ((pm1 = BN_CTX_get(ctx)) == NULL) |
126 |
|
|
goto err; |
127 |
|
|
|
128 |
|
|
if (!bn_x931_derive_pi(p1, Xp1, ctx, cb)) |
129 |
|
|
goto err; |
130 |
|
|
|
131 |
|
|
if (!bn_x931_derive_pi(p2, Xp2, ctx, cb)) |
132 |
|
|
goto err; |
133 |
|
|
|
134 |
|
|
if (!BN_mul(p1p2, p1, p2, ctx)) |
135 |
|
|
goto err; |
136 |
|
|
|
137 |
|
|
/* First set p to value of Rp */ |
138 |
|
|
|
139 |
|
|
if (!BN_mod_inverse_ct(p, p2, p1, ctx)) |
140 |
|
|
goto err; |
141 |
|
|
|
142 |
|
|
if (!BN_mul(p, p, p2, ctx)) |
143 |
|
|
goto err; |
144 |
|
|
|
145 |
|
|
if (!BN_mod_inverse_ct(t, p1, p2, ctx)) |
146 |
|
|
goto err; |
147 |
|
|
|
148 |
|
|
if (!BN_mul(t, t, p1, ctx)) |
149 |
|
|
goto err; |
150 |
|
|
|
151 |
|
|
if (!BN_sub(p, p, t)) |
152 |
|
|
goto err; |
153 |
|
|
|
154 |
|
|
if (p->neg && !BN_add(p, p, p1p2)) |
155 |
|
|
goto err; |
156 |
|
|
|
157 |
|
|
/* p now equals Rp */ |
158 |
|
|
|
159 |
|
|
if (!BN_mod_sub(p, p, Xp, p1p2, ctx)) |
160 |
|
|
goto err; |
161 |
|
|
|
162 |
|
|
if (!BN_add(p, p, Xp)) |
163 |
|
|
goto err; |
164 |
|
|
|
165 |
|
|
/* p now equals Yp0 */ |
166 |
|
|
|
167 |
|
|
for (;;) { |
168 |
|
|
int i = 1; |
169 |
|
|
BN_GENCB_call(cb, 0, i++); |
170 |
|
|
if (!BN_copy(pm1, p)) |
171 |
|
|
goto err; |
172 |
|
|
if (!BN_sub_word(pm1, 1)) |
173 |
|
|
goto err; |
174 |
|
|
if (!BN_gcd_ct(t, pm1, e, ctx)) |
175 |
|
|
goto err; |
176 |
|
|
if (BN_is_one(t) |
177 |
|
|
/* X9.31 specifies 8 MR and 1 Lucas test or any prime test |
178 |
|
|
* offering similar or better guarantees 50 MR is considerably |
179 |
|
|
* better. |
180 |
|
|
*/ |
181 |
|
|
&& BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb)) |
182 |
|
|
break; |
183 |
|
|
if (!BN_add(p, p, p1p2)) |
184 |
|
|
goto err; |
185 |
|
|
} |
186 |
|
|
|
187 |
|
|
BN_GENCB_call(cb, 3, 0); |
188 |
|
|
|
189 |
|
|
ret = 1; |
190 |
|
|
|
191 |
|
|
err: |
192 |
|
|
|
193 |
|
|
BN_CTX_end(ctx); |
194 |
|
|
|
195 |
|
|
return ret; |
196 |
|
|
} |
197 |
|
|
|
198 |
|
|
/* Generate pair of paramters Xp, Xq for X9.31 prime generation. |
199 |
|
|
* Note: nbits paramter is sum of number of bits in both. |
200 |
|
|
*/ |
201 |
|
|
|
202 |
|
|
int |
203 |
|
|
BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx) |
204 |
|
|
{ |
205 |
|
|
BIGNUM *t; |
206 |
|
|
int i; |
207 |
|
|
int ret = 0; |
208 |
|
|
|
209 |
|
|
/* Number of bits for each prime is of the form |
210 |
|
|
* 512+128s for s = 0, 1, ... |
211 |
|
|
*/ |
212 |
|
|
if ((nbits < 1024) || (nbits & 0xff)) |
213 |
|
|
return 0; |
214 |
|
|
nbits >>= 1; |
215 |
|
|
/* The random value Xp must be between sqrt(2) * 2^(nbits-1) and |
216 |
|
|
* 2^nbits - 1. By setting the top two bits we ensure that the lower |
217 |
|
|
* bound is exceeded. |
218 |
|
|
*/ |
219 |
|
|
if (!BN_rand(Xp, nbits, 1, 0)) |
220 |
|
|
return 0; |
221 |
|
|
|
222 |
|
|
BN_CTX_start(ctx); |
223 |
|
|
if ((t = BN_CTX_get(ctx)) == NULL) |
224 |
|
|
goto err; |
225 |
|
|
|
226 |
|
|
for (i = 0; i < 1000; i++) { |
227 |
|
|
if (!BN_rand(Xq, nbits, 1, 0)) |
228 |
|
|
goto err; |
229 |
|
|
/* Check that |Xp - Xq| > 2^(nbits - 100) */ |
230 |
|
|
BN_sub(t, Xp, Xq); |
231 |
|
|
if (BN_num_bits(t) > (nbits - 100)) |
232 |
|
|
break; |
233 |
|
|
} |
234 |
|
|
|
235 |
|
|
if (i < 1000) |
236 |
|
|
ret = 1; |
237 |
|
|
|
238 |
|
|
err: |
239 |
|
|
BN_CTX_end(ctx); |
240 |
|
|
|
241 |
|
|
return ret; |
242 |
|
|
} |
243 |
|
|
|
244 |
|
|
/* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 |
245 |
|
|
* and Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL |
246 |
|
|
* the relevant parameter will be stored in it. |
247 |
|
|
* |
248 |
|
|
* Due to the fact that |Xp - Xq| > 2^(nbits - 100) must be satisfied Xp and Xq |
249 |
|
|
* are generated using the previous function and supplied as input. |
250 |
|
|
*/ |
251 |
|
|
|
252 |
|
|
int |
253 |
|
|
BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, |
254 |
|
|
BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) |
255 |
|
|
{ |
256 |
|
|
int ret = 0; |
257 |
|
|
|
258 |
|
|
BN_CTX_start(ctx); |
259 |
|
|
if (Xp1 == NULL) { |
260 |
|
|
if ((Xp1 = BN_CTX_get(ctx)) == NULL) |
261 |
|
|
goto error; |
262 |
|
|
} |
263 |
|
|
if (Xp2 == NULL) { |
264 |
|
|
if ((Xp2 = BN_CTX_get(ctx)) == NULL) |
265 |
|
|
goto error; |
266 |
|
|
} |
267 |
|
|
|
268 |
|
|
if (!BN_rand(Xp1, 101, 0, 0)) |
269 |
|
|
goto error; |
270 |
|
|
if (!BN_rand(Xp2, 101, 0, 0)) |
271 |
|
|
goto error; |
272 |
|
|
if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) |
273 |
|
|
goto error; |
274 |
|
|
|
275 |
|
|
ret = 1; |
276 |
|
|
|
277 |
|
|
error: |
278 |
|
|
BN_CTX_end(ctx); |
279 |
|
|
|
280 |
|
|
return ret; |
281 |
|
|
} |