GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libcrypto/ec/ec2_mult.c Lines: 133 143 93.0 %
Date: 2017-11-07 Branches: 112 194 57.7 %

Line Branch Exec Source
1
/* $OpenBSD: ec2_mult.c,v 1.9 2017/01/29 17:49:23 beck Exp $ */
2
/* ====================================================================
3
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4
 *
5
 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6
 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7
 * to the OpenSSL project.
8
 *
9
 * The ECC Code is licensed pursuant to the OpenSSL open source
10
 * license provided below.
11
 *
12
 * The software is originally written by Sheueling Chang Shantz and
13
 * Douglas Stebila of Sun Microsystems Laboratories.
14
 *
15
 */
16
/* ====================================================================
17
 * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
18
 *
19
 * Redistribution and use in source and binary forms, with or without
20
 * modification, are permitted provided that the following conditions
21
 * are met:
22
 *
23
 * 1. Redistributions of source code must retain the above copyright
24
 *    notice, this list of conditions and the following disclaimer.
25
 *
26
 * 2. Redistributions in binary form must reproduce the above copyright
27
 *    notice, this list of conditions and the following disclaimer in
28
 *    the documentation and/or other materials provided with the
29
 *    distribution.
30
 *
31
 * 3. All advertising materials mentioning features or use of this
32
 *    software must display the following acknowledgment:
33
 *    "This product includes software developed by the OpenSSL Project
34
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35
 *
36
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37
 *    endorse or promote products derived from this software without
38
 *    prior written permission. For written permission, please contact
39
 *    openssl-core@openssl.org.
40
 *
41
 * 5. Products derived from this software may not be called "OpenSSL"
42
 *    nor may "OpenSSL" appear in their names without prior written
43
 *    permission of the OpenSSL Project.
44
 *
45
 * 6. Redistributions of any form whatsoever must retain the following
46
 *    acknowledgment:
47
 *    "This product includes software developed by the OpenSSL Project
48
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49
 *
50
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61
 * OF THE POSSIBILITY OF SUCH DAMAGE.
62
 * ====================================================================
63
 *
64
 * This product includes cryptographic software written by Eric Young
65
 * (eay@cryptsoft.com).  This product includes software written by Tim
66
 * Hudson (tjh@cryptsoft.com).
67
 *
68
 */
69
70
#include <openssl/opensslconf.h>
71
72
#include <openssl/err.h>
73
74
#include "ec_lcl.h"
75
76
#ifndef OPENSSL_NO_EC2M
77
78
79
/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
80
 * coordinates.
81
 * Uses algorithm Mdouble in appendix of
82
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
83
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
84
 * modified to not require precomputation of c=b^{2^{m-1}}.
85
 */
86
static int
87
gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)
88
{
89
	BIGNUM *t1;
90
	int ret = 0;
91
92
	/* Since Mdouble is static we can guarantee that ctx != NULL. */
93
1916118
	BN_CTX_start(ctx);
94
958059
	if ((t1 = BN_CTX_get(ctx)) == NULL)
95
		goto err;
96
97
958059
	if (!group->meth->field_sqr(group, x, x, ctx))
98
		goto err;
99
958059
	if (!group->meth->field_sqr(group, t1, z, ctx))
100
		goto err;
101
958059
	if (!group->meth->field_mul(group, z, x, t1, ctx))
102
		goto err;
103
958059
	if (!group->meth->field_sqr(group, x, x, ctx))
104
		goto err;
105
958059
	if (!group->meth->field_sqr(group, t1, t1, ctx))
106
		goto err;
107
958059
	if (!group->meth->field_mul(group, t1, &group->b, t1, ctx))
108
		goto err;
109
958059
	if (!BN_GF2m_add(x, x, t1))
110
		goto err;
111
112
958059
	ret = 1;
113
114
err:
115
958059
	BN_CTX_end(ctx);
116
958059
	return ret;
117
}
118
119
/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
120
 * projective coordinates.
121
 * Uses algorithm Madd in appendix of
122
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
123
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
124
 */
125
static int
126
gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,
127
    const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)
128
{
129
	BIGNUM *t1, *t2;
130
	int ret = 0;
131
132
	/* Since Madd is static we can guarantee that ctx != NULL. */
133
1916118
	BN_CTX_start(ctx);
134
958059
	if ((t1 = BN_CTX_get(ctx)) == NULL)
135
		goto err;
136
958059
	if ((t2 = BN_CTX_get(ctx)) == NULL)
137
		goto err;
138
139
958059
	if (!BN_copy(t1, x))
140
		goto err;
141
958059
	if (!group->meth->field_mul(group, x1, x1, z2, ctx))
142
		goto err;
143
958059
	if (!group->meth->field_mul(group, z1, z1, x2, ctx))
144
		goto err;
145
958059
	if (!group->meth->field_mul(group, t2, x1, z1, ctx))
146
		goto err;
147
958059
	if (!BN_GF2m_add(z1, z1, x1))
148
		goto err;
149
958059
	if (!group->meth->field_sqr(group, z1, z1, ctx))
150
		goto err;
151
958059
	if (!group->meth->field_mul(group, x1, z1, t1, ctx))
152
		goto err;
153
958059
	if (!BN_GF2m_add(x1, x1, t2))
154
		goto err;
155
156
958059
	ret = 1;
157
158
err:
159
958059
	BN_CTX_end(ctx);
160
958059
	return ret;
161
}
162
163
/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
164
 * using Montgomery point multiplication algorithm Mxy() in appendix of
165
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
166
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
167
 * Returns:
168
 *     0 on error
169
 *     1 if return value should be the point at infinity
170
 *     2 otherwise
171
 */
172
static int
173
gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,
174
    BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)
175
{
176
	BIGNUM *t3, *t4, *t5;
177
	int ret = 0;
178
179
7508
	if (BN_is_zero(z1)) {
180
502
		BN_zero(x2);
181
502
		BN_zero(z2);
182
502
		return 1;
183
	}
184
3252
	if (BN_is_zero(z2)) {
185
		if (!BN_copy(x2, x))
186
			return 0;
187
		if (!BN_GF2m_add(z2, x, y))
188
			return 0;
189
		return 2;
190
	}
191
	/* Since Mxy is static we can guarantee that ctx != NULL. */
192
3252
	BN_CTX_start(ctx);
193
3252
	if ((t3 = BN_CTX_get(ctx)) == NULL)
194
		goto err;
195
3252
	if ((t4 = BN_CTX_get(ctx)) == NULL)
196
		goto err;
197
3252
	if ((t5 = BN_CTX_get(ctx)) == NULL)
198
		goto err;
199
200
3252
	if (!BN_one(t5))
201
		goto err;
202
203
3252
	if (!group->meth->field_mul(group, t3, z1, z2, ctx))
204
		goto err;
205
206
3252
	if (!group->meth->field_mul(group, z1, z1, x, ctx))
207
		goto err;
208
3252
	if (!BN_GF2m_add(z1, z1, x1))
209
		goto err;
210
3252
	if (!group->meth->field_mul(group, z2, z2, x, ctx))
211
		goto err;
212
3252
	if (!group->meth->field_mul(group, x1, z2, x1, ctx))
213
		goto err;
214
3252
	if (!BN_GF2m_add(z2, z2, x2))
215
		goto err;
216
217
3252
	if (!group->meth->field_mul(group, z2, z2, z1, ctx))
218
		goto err;
219
3252
	if (!group->meth->field_sqr(group, t4, x, ctx))
220
		goto err;
221
3252
	if (!BN_GF2m_add(t4, t4, y))
222
		goto err;
223
3252
	if (!group->meth->field_mul(group, t4, t4, t3, ctx))
224
		goto err;
225
3252
	if (!BN_GF2m_add(t4, t4, z2))
226
		goto err;
227
228
3252
	if (!group->meth->field_mul(group, t3, t3, x, ctx))
229
		goto err;
230
3252
	if (!group->meth->field_div(group, t3, t5, t3, ctx))
231
		goto err;
232
3252
	if (!group->meth->field_mul(group, t4, t3, t4, ctx))
233
		goto err;
234
3252
	if (!group->meth->field_mul(group, x2, x1, t3, ctx))
235
		goto err;
236
3252
	if (!BN_GF2m_add(z2, x2, x))
237
		goto err;
238
239
3252
	if (!group->meth->field_mul(group, z2, z2, t4, ctx))
240
		goto err;
241
3252
	if (!BN_GF2m_add(z2, z2, y))
242
		goto err;
243
244
3252
	ret = 2;
245
246
err:
247
3252
	BN_CTX_end(ctx);
248
3252
	return ret;
249
3754
}
250
251
252
/* Computes scalar*point and stores the result in r.
253
 * point can not equal r.
254
 * Uses a modified algorithm 2P of
255
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
256
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
257
 *
258
 * To protect against side-channel attack the function uses constant time swap,
259
 * avoiding conditional branches.
260
 */
261
static int
262
ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r,
263
    const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx)
264
{
265
	BIGNUM *x1, *x2, *z1, *z2;
266
	int ret = 0, i;
267
	BN_ULONG mask, word;
268
269
7868
	if (r == point) {
270
		ECerror(EC_R_INVALID_ARGUMENT);
271
		return 0;
272
	}
273
	/* if result should be point at infinity */
274

11802
	if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
275
3934
	    EC_POINT_is_at_infinity(group, point) > 0) {
276
180
		return EC_POINT_set_to_infinity(group, r);
277
	}
278
	/* only support affine coordinates */
279
3754
	if (!point->Z_is_one)
280
		return 0;
281
282
	/* Since point_multiply is static we can guarantee that ctx != NULL. */
283
3754
	BN_CTX_start(ctx);
284
3754
	if ((x1 = BN_CTX_get(ctx)) == NULL)
285
		goto err;
286
3754
	if ((z1 = BN_CTX_get(ctx)) == NULL)
287
		goto err;
288
289
3754
	x2 = &r->X;
290
3754
	z2 = &r->Y;
291
292

7508
	if (!bn_wexpand(x1, group->field.top))
293
                goto err;
294

7508
	if (!bn_wexpand(z1, group->field.top))
295
                goto err;
296

7508
	if (!bn_wexpand(x2, group->field.top))
297
                goto err;
298

7508
	if (!bn_wexpand(z2, group->field.top))
299
                goto err;
300
301
3754
	if (!BN_GF2m_mod_arr(x1, &point->X, group->poly))
302
		goto err;	/* x1 = x */
303
3754
	if (!BN_one(z1))
304
		goto err;	/* z1 = 1 */
305
3754
	if (!group->meth->field_sqr(group, z2, x1, ctx))
306
		goto err;	/* z2 = x1^2 = x^2 */
307
3754
	if (!group->meth->field_sqr(group, x2, z2, ctx))
308
		goto err;
309
3754
	if (!BN_GF2m_add(x2, x2, &group->b))
310
		goto err;	/* x2 = x^4 + b */
311
312
	/* find top most bit and go one past it */
313
3754
	i = scalar->top - 1;
314
	mask = BN_TBIT;
315
3754
	word = scalar->d[i];
316
99263
	while (!(word & mask))
317
		mask >>= 1;
318
	mask >>= 1;
319
	/* if top most bit was at word break, go to next word */
320
3754
	if (!mask) {
321
49
		i--;
322
		mask = BN_TBIT;
323
49
	}
324
36580
	for (; i >= 0; i--) {
325
16413
		word = scalar->d[i];
326
1948944
		while (mask) {
327
958059
			BN_consttime_swap(word & mask, x1, x2, group->field.top);
328
958059
			BN_consttime_swap(word & mask, z1, z2, group->field.top);
329
958059
			if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx))
330
				goto err;
331
958059
			if (!gf2m_Mdouble(group, x1, z1, ctx))
332
				goto err;
333
958059
			BN_consttime_swap(word & mask, x1, x2, group->field.top);
334
958059
			BN_consttime_swap(word & mask, z1, z2, group->field.top);
335
958059
			mask >>= 1;
336
		}
337
		mask = BN_TBIT;
338
	}
339
340
	/* convert out of "projective" coordinates */
341
3754
	i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
342
3754
	if (i == 0)
343
		goto err;
344
3754
	else if (i == 1) {
345
502
		if (!EC_POINT_set_to_infinity(group, r))
346
			goto err;
347
	} else {
348
3252
		if (!BN_one(&r->Z))
349
			goto err;
350
3252
		r->Z_is_one = 1;
351
	}
352
353
	/* GF(2^m) field elements should always have BIGNUM::neg = 0 */
354
3754
	BN_set_negative(&r->X, 0);
355
3754
	BN_set_negative(&r->Y, 0);
356
357
3754
	ret = 1;
358
359
err:
360
3754
	BN_CTX_end(ctx);
361
3754
	return ret;
362
3934
}
363
364
365
/* Computes the sum
366
 *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
367
 * gracefully ignoring NULL scalar values.
368
 */
369
int
370
ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
371
    size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
372
{
373
	BN_CTX *new_ctx = NULL;
374
	int ret = 0;
375
	size_t i;
376
	EC_POINT *p = NULL;
377
	EC_POINT *acc = NULL;
378
379
6068
	if (ctx == NULL) {
380
20
		ctx = new_ctx = BN_CTX_new();
381
20
		if (ctx == NULL)
382
			return 0;
383
	}
384
	/*
385
	 * This implementation is more efficient than the wNAF implementation
386
	 * for 2 or fewer points.  Use the ec_wNAF_mul implementation for 3
387
	 * or more points, or if we can perform a fast multiplication based
388
	 * on precomputation.
389
	 */
390

4466
	if ((scalar && (num > 1)) || (num > 2) ||
391
4454
	    (num == 0 && EC_GROUP_have_precompute_mult(group))) {
392
126
		ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
393
126
		goto err;
394
	}
395
2908
	if ((p = EC_POINT_new(group)) == NULL)
396
		goto err;
397
2908
	if ((acc = EC_POINT_new(group)) == NULL)
398
		goto err;
399
400
2908
	if (!EC_POINT_set_to_infinity(group, acc))
401
		goto err;
402
403
2908
	if (scalar) {
404
2332
		if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx))
405
			goto err;
406
2332
		if (BN_is_negative(scalar))
407
			if (!group->meth->invert(group, p, ctx))
408
				goto err;
409
2332
		if (!group->meth->add(group, acc, acc, p, ctx))
410
			goto err;
411
	}
412
9020
	for (i = 0; i < num; i++) {
413
1602
		if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx))
414
			goto err;
415
1602
		if (BN_is_negative(scalars[i]))
416
126
			if (!group->meth->invert(group, p, ctx))
417
				goto err;
418
1602
		if (!group->meth->add(group, acc, acc, p, ctx))
419
			goto err;
420
	}
421
422
2908
	if (!EC_POINT_copy(r, acc))
423
		goto err;
424
425
2908
	ret = 1;
426
427
err:
428
3034
	EC_POINT_free(p);
429
3034
	EC_POINT_free(acc);
430
3034
	BN_CTX_free(new_ctx);
431
3034
	return ret;
432
3034
}
433
434
435
/* Precomputation for point multiplication: fall back to wNAF methods
436
 * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */
437
438
int
439
ec_GF2m_precompute_mult(EC_GROUP * group, BN_CTX * ctx)
440
{
441
120
	return ec_wNAF_precompute_mult(group, ctx);
442
}
443
444
int
445
ec_GF2m_have_precompute_mult(const EC_GROUP * group)
446
{
447
2864
	return ec_wNAF_have_precompute_mult(group);
448
}
449
450
#endif