GCC Code Coverage Report | |||||||||||||||||||||
|
|||||||||||||||||||||
Line | Branch | Exec | Source |
1 |
/* $OpenBSD: ec_mult.c,v 1.21 2017/05/02 03:59:44 deraadt Exp $ */ |
||
2 |
/* |
||
3 |
* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project. |
||
4 |
*/ |
||
5 |
/* ==================================================================== |
||
6 |
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
||
7 |
* |
||
8 |
* Redistribution and use in source and binary forms, with or without |
||
9 |
* modification, are permitted provided that the following conditions |
||
10 |
* are met: |
||
11 |
* |
||
12 |
* 1. Redistributions of source code must retain the above copyright |
||
13 |
* notice, this list of conditions and the following disclaimer. |
||
14 |
* |
||
15 |
* 2. Redistributions in binary form must reproduce the above copyright |
||
16 |
* notice, this list of conditions and the following disclaimer in |
||
17 |
* the documentation and/or other materials provided with the |
||
18 |
* distribution. |
||
19 |
* |
||
20 |
* 3. All advertising materials mentioning features or use of this |
||
21 |
* software must display the following acknowledgment: |
||
22 |
* "This product includes software developed by the OpenSSL Project |
||
23 |
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
||
24 |
* |
||
25 |
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
||
26 |
* endorse or promote products derived from this software without |
||
27 |
* prior written permission. For written permission, please contact |
||
28 |
* openssl-core@openssl.org. |
||
29 |
* |
||
30 |
* 5. Products derived from this software may not be called "OpenSSL" |
||
31 |
* nor may "OpenSSL" appear in their names without prior written |
||
32 |
* permission of the OpenSSL Project. |
||
33 |
* |
||
34 |
* 6. Redistributions of any form whatsoever must retain the following |
||
35 |
* acknowledgment: |
||
36 |
* "This product includes software developed by the OpenSSL Project |
||
37 |
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
||
38 |
* |
||
39 |
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
||
40 |
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
41 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
||
42 |
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
||
43 |
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
||
44 |
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
45 |
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
46 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||
47 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
||
48 |
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
||
49 |
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
||
50 |
* OF THE POSSIBILITY OF SUCH DAMAGE. |
||
51 |
* ==================================================================== |
||
52 |
* |
||
53 |
* This product includes cryptographic software written by Eric Young |
||
54 |
* (eay@cryptsoft.com). This product includes software written by Tim |
||
55 |
* Hudson (tjh@cryptsoft.com). |
||
56 |
* |
||
57 |
*/ |
||
58 |
/* ==================================================================== |
||
59 |
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
||
60 |
* Portions of this software developed by SUN MICROSYSTEMS, INC., |
||
61 |
* and contributed to the OpenSSL project. |
||
62 |
*/ |
||
63 |
|||
64 |
#include <string.h> |
||
65 |
|||
66 |
#include <openssl/err.h> |
||
67 |
|||
68 |
#include "ec_lcl.h" |
||
69 |
|||
70 |
|||
71 |
/* |
||
72 |
* This file implements the wNAF-based interleaving multi-exponentation method |
||
73 |
* (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>); |
||
74 |
* for multiplication with precomputation, we use wNAF splitting |
||
75 |
* (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>). |
||
76 |
*/ |
||
77 |
|||
78 |
|||
79 |
|||
80 |
|||
81 |
/* structure for precomputed multiples of the generator */ |
||
82 |
typedef struct ec_pre_comp_st { |
||
83 |
const EC_GROUP *group; /* parent EC_GROUP object */ |
||
84 |
size_t blocksize; /* block size for wNAF splitting */ |
||
85 |
size_t numblocks; /* max. number of blocks for which we have |
||
86 |
* precomputation */ |
||
87 |
size_t w; /* window size */ |
||
88 |
EC_POINT **points; /* array with pre-calculated multiples of |
||
89 |
* generator: 'num' pointers to EC_POINT |
||
90 |
* objects followed by a NULL */ |
||
91 |
size_t num; /* numblocks * 2^(w-1) */ |
||
92 |
int references; |
||
93 |
} EC_PRE_COMP; |
||
94 |
|||
95 |
/* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */ |
||
96 |
static void *ec_pre_comp_dup(void *); |
||
97 |
static void ec_pre_comp_free(void *); |
||
98 |
static void ec_pre_comp_clear_free(void *); |
||
99 |
|||
100 |
static EC_PRE_COMP * |
||
101 |
ec_pre_comp_new(const EC_GROUP * group) |
||
102 |
{ |
||
103 |
EC_PRE_COMP *ret = NULL; |
||
104 |
|||
105 |
✗✓ | 192 |
if (!group) |
106 |
return NULL; |
||
107 |
|||
108 |
96 |
ret = malloc(sizeof(EC_PRE_COMP)); |
|
109 |
✗✓ | 96 |
if (!ret) { |
110 |
ECerror(ERR_R_MALLOC_FAILURE); |
||
111 |
return ret; |
||
112 |
} |
||
113 |
96 |
ret->group = group; |
|
114 |
96 |
ret->blocksize = 8; /* default */ |
|
115 |
96 |
ret->numblocks = 0; |
|
116 |
96 |
ret->w = 4; /* default */ |
|
117 |
96 |
ret->points = NULL; |
|
118 |
96 |
ret->num = 0; |
|
119 |
96 |
ret->references = 1; |
|
120 |
96 |
return ret; |
|
121 |
96 |
} |
|
122 |
|||
123 |
static void * |
||
124 |
ec_pre_comp_dup(void *src_) |
||
125 |
{ |
||
126 |
192 |
EC_PRE_COMP *src = src_; |
|
127 |
|||
128 |
/* no need to actually copy, these objects never change! */ |
||
129 |
|||
130 |
96 |
CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); |
|
131 |
|||
132 |
96 |
return src_; |
|
133 |
} |
||
134 |
|||
135 |
static void |
||
136 |
ec_pre_comp_free(void *pre_) |
||
137 |
{ |
||
138 |
int i; |
||
139 |
576 |
EC_PRE_COMP *pre = pre_; |
|
140 |
|||
141 |
✓✓ | 288 |
if (!pre) |
142 |
96 |
return; |
|
143 |
|||
144 |
192 |
i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); |
|
145 |
✓✓ | 192 |
if (i > 0) |
146 |
96 |
return; |
|
147 |
|||
148 |
✓✗ | 96 |
if (pre->points) { |
149 |
EC_POINT **p; |
||
150 |
|||
151 |
✓✓ | 61536 |
for (p = pre->points; *p != NULL; p++) |
152 |
30672 |
EC_POINT_free(*p); |
|
153 |
96 |
free(pre->points); |
|
154 |
96 |
} |
|
155 |
96 |
free(pre); |
|
156 |
384 |
} |
|
157 |
|||
158 |
static void |
||
159 |
ec_pre_comp_clear_free(void *pre_) |
||
160 |
{ |
||
161 |
int i; |
||
162 |
EC_PRE_COMP *pre = pre_; |
||
163 |
|||
164 |
if (!pre) |
||
165 |
return; |
||
166 |
|||
167 |
i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); |
||
168 |
if (i > 0) |
||
169 |
return; |
||
170 |
|||
171 |
if (pre->points) { |
||
172 |
EC_POINT **p; |
||
173 |
|||
174 |
for (p = pre->points; *p != NULL; p++) { |
||
175 |
EC_POINT_clear_free(*p); |
||
176 |
explicit_bzero(p, sizeof *p); |
||
177 |
} |
||
178 |
free(pre->points); |
||
179 |
} |
||
180 |
freezero(pre, sizeof *pre); |
||
181 |
} |
||
182 |
|||
183 |
|||
184 |
|||
185 |
|||
186 |
/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'. |
||
187 |
* This is an array r[] of values that are either zero or odd with an |
||
188 |
* absolute value less than 2^w satisfying |
||
189 |
* scalar = \sum_j r[j]*2^j |
||
190 |
* where at most one of any w+1 consecutive digits is non-zero |
||
191 |
* with the exception that the most significant digit may be only |
||
192 |
* w-1 zeros away from that next non-zero digit. |
||
193 |
*/ |
||
194 |
static signed char * |
||
195 |
compute_wNAF(const BIGNUM * scalar, int w, size_t * ret_len) |
||
196 |
{ |
||
197 |
int window_val; |
||
198 |
int ok = 0; |
||
199 |
signed char *r = NULL; |
||
200 |
int sign = 1; |
||
201 |
int bit, next_bit, mask; |
||
202 |
size_t len = 0, j; |
||
203 |
|||
204 |
✓✓ | 14672 |
if (BN_is_zero(scalar)) { |
205 |
6 |
r = malloc(1); |
|
206 |
✗✓ | 6 |
if (!r) { |
207 |
ECerror(ERR_R_MALLOC_FAILURE); |
||
208 |
goto err; |
||
209 |
} |
||
210 |
6 |
r[0] = 0; |
|
211 |
6 |
*ret_len = 1; |
|
212 |
6 |
return r; |
|
213 |
} |
||
214 |
✗✓ | 7330 |
if (w <= 0 || w > 7) { |
215 |
/* 'signed char' can represent integers with |
||
216 |
* absolute values less than 2^7 */ |
||
217 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
218 |
goto err; |
||
219 |
} |
||
220 |
7330 |
bit = 1 << w; /* at most 128 */ |
|
221 |
7330 |
next_bit = bit << 1; /* at most 256 */ |
|
222 |
7330 |
mask = next_bit - 1; /* at most 255 */ |
|
223 |
|||
224 |
✓✓ | 7330 |
if (BN_is_negative(scalar)) { |
225 |
sign = -1; |
||
226 |
90 |
} |
|
227 |
✓✗✗✓ |
14660 |
if (scalar->d == NULL || scalar->top == 0) { |
228 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
229 |
goto err; |
||
230 |
} |
||
231 |
7330 |
len = BN_num_bits(scalar); |
|
232 |
7330 |
r = malloc(len + 1); /* modified wNAF may be one digit longer than |
|
233 |
* binary representation (*ret_len will be |
||
234 |
* set to the actual length, i.e. at most |
||
235 |
* BN_num_bits(scalar) + 1) */ |
||
236 |
✗✓ | 7330 |
if (r == NULL) { |
237 |
ECerror(ERR_R_MALLOC_FAILURE); |
||
238 |
goto err; |
||
239 |
} |
||
240 |
7330 |
window_val = scalar->d[0] & mask; |
|
241 |
j = 0; |
||
242 |
✓✓✓✓ |
2242216 |
while ((window_val != 0) || (j + w + 1 < len)) { |
243 |
/* if j+w+1 >= len, window_val will not increase */ |
||
244 |
int digit = 0; |
||
245 |
|||
246 |
/* 0 <= window_val <= 2^(w+1) */ |
||
247 |
✓✓ | 2014190 |
if (window_val & 1) { |
248 |
/* 0 < window_val < 2^(w+1) */ |
||
249 |
✓✓ | 365148 |
if (window_val & bit) { |
250 |
179452 |
digit = window_val - next_bit; /* -2^w < digit < 0 */ |
|
251 |
|||
252 |
#if 1 /* modified wNAF */ |
||
253 |
✓✓ | 179452 |
if (j + w + 1 >= len) { |
254 |
/* |
||
255 |
* special case for generating |
||
256 |
* modified wNAFs: no new bits will |
||
257 |
* be added into window_val, so using |
||
258 |
* a positive digit here will |
||
259 |
* decrease the total length of the |
||
260 |
* representation |
||
261 |
*/ |
||
262 |
|||
263 |
1265 |
digit = window_val & (mask >> 1); /* 0 < digit < 2^w */ |
|
264 |
1265 |
} |
|
265 |
#endif |
||
266 |
} else { |
||
267 |
digit = window_val; /* 0 < digit < 2^w */ |
||
268 |
} |
||
269 |
|||
270 |
✓✗✓✗ ✗✓ |
1095444 |
if (digit <= -bit || digit >= bit || !(digit & 1)) { |
271 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
272 |
goto err; |
||
273 |
} |
||
274 |
365148 |
window_val -= digit; |
|
275 |
|||
276 |
/* |
||
277 |
* now window_val is 0 or 2^(w+1) in standard wNAF |
||
278 |
* generation; for modified window NAFs, it may also |
||
279 |
* be 2^w |
||
280 |
*/ |
||
281 |
✓✓✓✓ ✗✓ |
545865 |
if (window_val != 0 && window_val != next_bit && window_val != bit) { |
282 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
283 |
goto err; |
||
284 |
} |
||
285 |
} |
||
286 |
2014190 |
r[j++] = sign * digit; |
|
287 |
|||
288 |
2014190 |
window_val >>= 1; |
|
289 |
2014190 |
window_val += bit * BN_is_bit_set(scalar, j + w); |
|
290 |
|||
291 |
✗✓ | 2014190 |
if (window_val > next_bit) { |
292 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
293 |
goto err; |
||
294 |
} |
||
295 |
✓✓✓ | 2014190 |
} |
296 |
|||
297 |
✗✓ | 7330 |
if (j > len + 1) { |
298 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
299 |
goto err; |
||
300 |
} |
||
301 |
len = j; |
||
302 |
7330 |
ok = 1; |
|
303 |
|||
304 |
err: |
||
305 |
✗✓ | 7330 |
if (!ok) { |
306 |
free(r); |
||
307 |
r = NULL; |
||
308 |
} |
||
309 |
✓✗ | 7330 |
if (ok) |
310 |
7330 |
*ret_len = len; |
|
311 |
7330 |
return r; |
|
312 |
7336 |
} |
|
313 |
|||
314 |
|||
315 |
/* TODO: table should be optimised for the wNAF-based implementation, |
||
316 |
* sometimes smaller windows will give better performance |
||
317 |
* (thus the boundaries should be increased) |
||
318 |
*/ |
||
319 |
#define EC_window_bits_for_scalar_size(b) \ |
||
320 |
((size_t) \ |
||
321 |
((b) >= 2000 ? 6 : \ |
||
322 |
(b) >= 800 ? 5 : \ |
||
323 |
(b) >= 300 ? 4 : \ |
||
324 |
(b) >= 70 ? 3 : \ |
||
325 |
(b) >= 20 ? 2 : \ |
||
326 |
1)) |
||
327 |
|||
328 |
/* Compute |
||
329 |
* \sum scalars[i]*points[i], |
||
330 |
* also including |
||
331 |
* scalar*generator |
||
332 |
* in the addition if scalar != NULL |
||
333 |
*/ |
||
334 |
int |
||
335 |
ec_wNAF_mul(const EC_GROUP * group, EC_POINT * r, const BIGNUM * scalar, |
||
336 |
size_t num, const EC_POINT * points[], const BIGNUM * scalars[], BN_CTX * ctx) |
||
337 |
{ |
||
338 |
BN_CTX *new_ctx = NULL; |
||
339 |
const EC_POINT *generator = NULL; |
||
340 |
EC_POINT *tmp = NULL; |
||
341 |
size_t totalnum; |
||
342 |
size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ |
||
343 |
size_t pre_points_per_block = 0; |
||
344 |
size_t i, j; |
||
345 |
int k; |
||
346 |
int r_is_inverted = 0; |
||
347 |
int r_is_at_infinity = 1; |
||
348 |
size_t *wsize = NULL; /* individual window sizes */ |
||
349 |
signed char **wNAF = NULL; /* individual wNAFs */ |
||
350 |
signed char *tmp_wNAF = NULL; |
||
351 |
size_t *wNAF_len = NULL; |
||
352 |
size_t max_len = 0; |
||
353 |
size_t num_val; |
||
354 |
EC_POINT **val = NULL; /* precomputation */ |
||
355 |
EC_POINT **v; |
||
356 |
EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or |
||
357 |
* 'pre_comp->points' */ |
||
358 |
const EC_PRE_COMP *pre_comp = NULL; |
||
359 |
int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be |
||
360 |
* treated like other scalars, i.e. |
||
361 |
* precomputation is not available */ |
||
362 |
int ret = 0; |
||
363 |
|||
364 |
✗✓ | 12020 |
if (group->meth != r->meth) { |
365 |
ECerror(EC_R_INCOMPATIBLE_OBJECTS); |
||
366 |
return 0; |
||
367 |
} |
||
368 |
✗✓ | 6010 |
if ((scalar == NULL) && (num == 0)) { |
369 |
return EC_POINT_set_to_infinity(group, r); |
||
370 |
} |
||
371 |
✓✓ | 18308 |
for (i = 0; i < num; i++) { |
372 |
✗✓ | 3144 |
if (group->meth != points[i]->meth) { |
373 |
ECerror(EC_R_INCOMPATIBLE_OBJECTS); |
||
374 |
return 0; |
||
375 |
} |
||
376 |
} |
||
377 |
|||
378 |
✓✓ | 6010 |
if (ctx == NULL) { |
379 |
126 |
ctx = new_ctx = BN_CTX_new(); |
|
380 |
✓✗ | 126 |
if (ctx == NULL) |
381 |
goto err; |
||
382 |
} |
||
383 |
✓✓ | 6010 |
if (scalar != NULL) { |
384 |
4192 |
generator = EC_GROUP_get0_generator(group); |
|
385 |
✗✓ | 4192 |
if (generator == NULL) { |
386 |
ECerror(EC_R_UNDEFINED_GENERATOR); |
||
387 |
goto err; |
||
388 |
} |
||
389 |
/* look if we can use precomputed multiples of generator */ |
||
390 |
|||
391 |
4192 |
pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free); |
|
392 |
|||
393 |
✓✓✓✗ ✓✓ |
4576 |
if (pre_comp && pre_comp->numblocks && |
394 |
192 |
(EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0)) { |
|
395 |
108 |
blocksize = pre_comp->blocksize; |
|
396 |
|||
397 |
/* |
||
398 |
* determine maximum number of blocks that wNAF |
||
399 |
* splitting may yield (NB: maximum wNAF length is |
||
400 |
* bit length plus one) |
||
401 |
*/ |
||
402 |
108 |
numblocks = (BN_num_bits(scalar) / blocksize) + 1; |
|
403 |
|||
404 |
/* |
||
405 |
* we cannot use more blocks than we have |
||
406 |
* precomputation for |
||
407 |
*/ |
||
408 |
✓✓ | 108 |
if (numblocks > pre_comp->numblocks) |
409 |
30 |
numblocks = pre_comp->numblocks; |
|
410 |
|||
411 |
108 |
pre_points_per_block = (size_t) 1 << (pre_comp->w - 1); |
|
412 |
|||
413 |
/* check that pre_comp looks sane */ |
||
414 |
✗✓ | 108 |
if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) { |
415 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
416 |
goto err; |
||
417 |
} |
||
418 |
} else { |
||
419 |
/* can't use precomputation */ |
||
420 |
pre_comp = NULL; |
||
421 |
numblocks = 1; |
||
422 |
num_scalar = 1; /* treat 'scalar' like 'num'-th |
||
423 |
* element of 'scalars' */ |
||
424 |
} |
||
425 |
} |
||
426 |
6010 |
totalnum = num + numblocks; |
|
427 |
|||
428 |
/* includes space for pivot */ |
||
429 |
6010 |
wNAF = reallocarray(NULL, (totalnum + 1), sizeof wNAF[0]); |
|
430 |
✗✓ | 6010 |
if (wNAF == NULL) { |
431 |
ECerror(ERR_R_MALLOC_FAILURE); |
||
432 |
goto err; |
||
433 |
} |
||
434 |
|||
435 |
6010 |
wNAF[0] = NULL; /* preliminary pivot */ |
|
436 |
|||
437 |
6010 |
wsize = reallocarray(NULL, totalnum, sizeof wsize[0]); |
|
438 |
6010 |
wNAF_len = reallocarray(NULL, totalnum, sizeof wNAF_len[0]); |
|
439 |
6010 |
val_sub = reallocarray(NULL, totalnum, sizeof val_sub[0]); |
|
440 |
|||
441 |
✗✓ | 6010 |
if (wsize == NULL || wNAF_len == NULL || val_sub == NULL) { |
442 |
ECerror(ERR_R_MALLOC_FAILURE); |
||
443 |
goto err; |
||
444 |
} |
||
445 |
|||
446 |
/* num_val will be the total number of temporarily precomputed points */ |
||
447 |
num_val = 0; |
||
448 |
|||
449 |
✓✓ | 26476 |
for (i = 0; i < num + num_scalar; i++) { |
450 |
size_t bits; |
||
451 |
|||
452 |
✓✓ | 21684 |
bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); |
453 |
✓✗✓✓ ✓✓✓✓ |
34684 |
wsize[i] = EC_window_bits_for_scalar_size(bits); |
454 |
7228 |
num_val += (size_t) 1 << (wsize[i] - 1); |
|
455 |
7228 |
wNAF[i + 1] = NULL; /* make sure we always have a pivot */ |
|
456 |
✓✓ | 21684 |
wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]); |
457 |
✗✓ | 7228 |
if (wNAF[i] == NULL) |
458 |
goto err; |
||
459 |
✓✓ | 7228 |
if (wNAF_len[i] > max_len) |
460 |
6474 |
max_len = wNAF_len[i]; |
|
461 |
✓✗✗ | 7228 |
} |
462 |
|||
463 |
✓✓ | 6010 |
if (numblocks) { |
464 |
/* we go here iff scalar != NULL */ |
||
465 |
|||
466 |
✓✓ | 4192 |
if (pre_comp == NULL) { |
467 |
✗✓ | 4084 |
if (num_scalar != 1) { |
468 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
469 |
goto err; |
||
470 |
} |
||
471 |
/* we have already generated a wNAF for 'scalar' */ |
||
472 |
} else { |
||
473 |
108 |
size_t tmp_len = 0; |
|
474 |
|||
475 |
✗✓ | 108 |
if (num_scalar != 0) { |
476 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
477 |
goto err; |
||
478 |
} |
||
479 |
/* |
||
480 |
* use the window size for which we have |
||
481 |
* precomputation |
||
482 |
*/ |
||
483 |
108 |
wsize[num] = pre_comp->w; |
|
484 |
108 |
tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len); |
|
485 |
✗✓ | 108 |
if (tmp_wNAF == NULL) |
486 |
goto err; |
||
487 |
|||
488 |
✗✓ | 108 |
if (tmp_len <= max_len) { |
489 |
/* |
||
490 |
* One of the other wNAFs is at least as long |
||
491 |
* as the wNAF belonging to the generator, so |
||
492 |
* wNAF splitting will not buy us anything. |
||
493 |
*/ |
||
494 |
|||
495 |
numblocks = 1; |
||
496 |
totalnum = num + 1; /* don't use wNAF |
||
497 |
* splitting */ |
||
498 |
wNAF[num] = tmp_wNAF; |
||
499 |
tmp_wNAF = NULL; |
||
500 |
wNAF[num + 1] = NULL; |
||
501 |
wNAF_len[num] = tmp_len; |
||
502 |
if (tmp_len > max_len) |
||
503 |
max_len = tmp_len; |
||
504 |
/* |
||
505 |
* pre_comp->points starts with the points |
||
506 |
* that we need here: |
||
507 |
*/ |
||
508 |
val_sub[num] = pre_comp->points; |
||
509 |
} else { |
||
510 |
/* |
||
511 |
* don't include tmp_wNAF directly into wNAF |
||
512 |
* array - use wNAF splitting and include the |
||
513 |
* blocks |
||
514 |
*/ |
||
515 |
|||
516 |
signed char *pp; |
||
517 |
EC_POINT **tmp_points; |
||
518 |
|||
519 |
✓✓ | 108 |
if (tmp_len < numblocks * blocksize) { |
520 |
/* |
||
521 |
* possibly we can do with fewer |
||
522 |
* blocks than estimated |
||
523 |
*/ |
||
524 |
72 |
numblocks = (tmp_len + blocksize - 1) / blocksize; |
|
525 |
✗✓ | 72 |
if (numblocks > pre_comp->numblocks) { |
526 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
527 |
goto err; |
||
528 |
} |
||
529 |
72 |
totalnum = num + numblocks; |
|
530 |
72 |
} |
|
531 |
/* split wNAF in 'numblocks' parts */ |
||
532 |
pp = tmp_wNAF; |
||
533 |
108 |
tmp_points = pre_comp->points; |
|
534 |
|||
535 |
✓✓ | 9540 |
for (i = num; i < totalnum; i++) { |
536 |
✓✓ | 4662 |
if (i < totalnum - 1) { |
537 |
4554 |
wNAF_len[i] = blocksize; |
|
538 |
✗✓ | 4554 |
if (tmp_len < blocksize) { |
539 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
540 |
goto err; |
||
541 |
} |
||
542 |
4554 |
tmp_len -= blocksize; |
|
543 |
4554 |
} else |
|
544 |
/* |
||
545 |
* last block gets whatever |
||
546 |
* is left (this could be |
||
547 |
* more or less than |
||
548 |
* 'blocksize'!) |
||
549 |
*/ |
||
550 |
108 |
wNAF_len[i] = tmp_len; |
|
551 |
|||
552 |
4662 |
wNAF[i + 1] = NULL; |
|
553 |
4662 |
wNAF[i] = malloc(wNAF_len[i]); |
|
554 |
✗✓ | 4662 |
if (wNAF[i] == NULL) { |
555 |
ECerror(ERR_R_MALLOC_FAILURE); |
||
556 |
goto err; |
||
557 |
} |
||
558 |
4662 |
memcpy(wNAF[i], pp, wNAF_len[i]); |
|
559 |
✓✓ | 4662 |
if (wNAF_len[i] > max_len) |
560 |
120 |
max_len = wNAF_len[i]; |
|
561 |
|||
562 |
✗✓ | 4662 |
if (*tmp_points == NULL) { |
563 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
564 |
goto err; |
||
565 |
} |
||
566 |
4662 |
val_sub[i] = tmp_points; |
|
567 |
4662 |
tmp_points += pre_points_per_block; |
|
568 |
4662 |
pp += blocksize; |
|
569 |
} |
||
570 |
✓✗ | 108 |
} |
571 |
✓✗✗ | 216 |
} |
572 |
} |
||
573 |
/* |
||
574 |
* All points we precompute now go into a single array 'val'. |
||
575 |
* 'val_sub[i]' is a pointer to the subarray for the i-th point, or |
||
576 |
* to a subarray of 'pre_comp->points' if we already have |
||
577 |
* precomputation. |
||
578 |
*/ |
||
579 |
6010 |
val = reallocarray(NULL, (num_val + 1), sizeof val[0]); |
|
580 |
✗✓ | 6010 |
if (val == NULL) { |
581 |
ECerror(ERR_R_MALLOC_FAILURE); |
||
582 |
goto err; |
||
583 |
} |
||
584 |
6010 |
val[num_val] = NULL; /* pivot element */ |
|
585 |
|||
586 |
/* allocate points for precomputation */ |
||
587 |
v = val; |
||
588 |
✓✓ | 26476 |
for (i = 0; i < num + num_scalar; i++) { |
589 |
7228 |
val_sub[i] = v; |
|
590 |
✓✓ | 83988 |
for (j = 0; j < ((size_t) 1 << (wsize[i] - 1)); j++) { |
591 |
34766 |
*v = EC_POINT_new(group); |
|
592 |
✓✗ | 34766 |
if (*v == NULL) |
593 |
goto err; |
||
594 |
34766 |
v++; |
|
595 |
} |
||
596 |
} |
||
597 |
✗✓ | 6010 |
if (!(v == val + num_val)) { |
598 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
599 |
goto err; |
||
600 |
} |
||
601 |
✓✗ | 6010 |
if (!(tmp = EC_POINT_new(group))) |
602 |
goto err; |
||
603 |
|||
604 |
/* |
||
605 |
* prepare precomputed values: val_sub[i][0] := points[i] |
||
606 |
* val_sub[i][1] := 3 * points[i] val_sub[i][2] := 5 * points[i] ... |
||
607 |
*/ |
||
608 |
✓✓ | 26476 |
for (i = 0; i < num + num_scalar; i++) { |
609 |
✓✓ | 7228 |
if (i < num) { |
610 |
✓✗ | 3144 |
if (!EC_POINT_copy(val_sub[i][0], points[i])) |
611 |
goto err; |
||
612 |
} else { |
||
613 |
✓✗ | 4084 |
if (!EC_POINT_copy(val_sub[i][0], generator)) |
614 |
goto err; |
||
615 |
} |
||
616 |
|||
617 |
✓✓ | 7228 |
if (wsize[i] > 1) { |
618 |
✓✗ | 7222 |
if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) |
619 |
goto err; |
||
620 |
✓✓ | 69520 |
for (j = 1; j < ((size_t) 1 << (wsize[i] - 1)); j++) { |
621 |
✓✗ | 27538 |
if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) |
622 |
goto err; |
||
623 |
} |
||
624 |
} |
||
625 |
} |
||
626 |
|||
627 |
✓✗ | 6010 |
if (!EC_POINTs_make_affine(group, num_val, val, ctx)) |
628 |
goto err; |
||
629 |
|||
630 |
r_is_at_infinity = 1; |
||
631 |
|||
632 |
✓✓ | 3247236 |
for (k = max_len - 1; k >= 0; k--) { |
633 |
✓✓ | 1617608 |
if (!r_is_at_infinity) { |
634 |
✓✗ | 1611598 |
if (!EC_POINT_dbl(group, r, r, ctx)) |
635 |
goto err; |
||
636 |
} |
||
637 |
✓✓ | 8169532 |
for (i = 0; i < totalnum; i++) { |
638 |
✓✓ | 2467158 |
if (wNAF_len[i] > (size_t) k) { |
639 |
2014196 |
int digit = wNAF[i][k]; |
|
640 |
int is_neg; |
||
641 |
|||
642 |
✓✓ | 2014196 |
if (digit) { |
643 |
365148 |
is_neg = digit < 0; |
|
644 |
|||
645 |
✓✓ | 365148 |
if (is_neg) |
646 |
178210 |
digit = -digit; |
|
647 |
|||
648 |
✓✓ | 365148 |
if (is_neg != r_is_inverted) { |
649 |
✓✓ | 179317 |
if (!r_is_at_infinity) { |
650 |
✗✓ | 179189 |
if (!EC_POINT_invert(group, r, ctx)) |
651 |
goto err; |
||
652 |
} |
||
653 |
179317 |
r_is_inverted = !r_is_inverted; |
|
654 |
179317 |
} |
|
655 |
/* digit > 0 */ |
||
656 |
|||
657 |
✓✓ | 365148 |
if (r_is_at_infinity) { |
658 |
✗✓ | 6010 |
if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) |
659 |
goto err; |
||
660 |
r_is_at_infinity = 0; |
||
661 |
6010 |
} else { |
|
662 |
✗✓ | 359138 |
if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) |
663 |
goto err; |
||
664 |
} |
||
665 |
} |
||
666 |
✓✓✓ | 2014196 |
} |
667 |
} |
||
668 |
} |
||
669 |
|||
670 |
✗✓ | 6010 |
if (r_is_at_infinity) { |
671 |
if (!EC_POINT_set_to_infinity(group, r)) |
||
672 |
goto err; |
||
673 |
} else { |
||
674 |
✓✓ | 6010 |
if (r_is_inverted) |
675 |
✓✗ | 2877 |
if (!EC_POINT_invert(group, r, ctx)) |
676 |
goto err; |
||
677 |
} |
||
678 |
|||
679 |
6010 |
ret = 1; |
|
680 |
|||
681 |
err: |
||
682 |
6010 |
BN_CTX_free(new_ctx); |
|
683 |
6010 |
EC_POINT_free(tmp); |
|
684 |
6010 |
free(wsize); |
|
685 |
6010 |
free(wNAF_len); |
|
686 |
6010 |
free(tmp_wNAF); |
|
687 |
✓✗ | 6010 |
if (wNAF != NULL) { |
688 |
signed char **w; |
||
689 |
|||
690 |
✓✓ | 35800 |
for (w = wNAF; *w != NULL; w++) |
691 |
11890 |
free(*w); |
|
692 |
|||
693 |
6010 |
free(wNAF); |
|
694 |
6010 |
} |
|
695 |
✓✗ | 6010 |
if (val != NULL) { |
696 |
✓✓ | 81552 |
for (v = val; *v != NULL; v++) |
697 |
34766 |
EC_POINT_clear_free(*v); |
|
698 |
6010 |
free(val); |
|
699 |
6010 |
} |
|
700 |
6010 |
free(val_sub); |
|
701 |
6010 |
return ret; |
|
702 |
6010 |
} |
|
703 |
|||
704 |
|||
705 |
/* ec_wNAF_precompute_mult() |
||
706 |
* creates an EC_PRE_COMP object with preprecomputed multiples of the generator |
||
707 |
* for use with wNAF splitting as implemented in ec_wNAF_mul(). |
||
708 |
* |
||
709 |
* 'pre_comp->points' is an array of multiples of the generator |
||
710 |
* of the following form: |
||
711 |
* points[0] = generator; |
||
712 |
* points[1] = 3 * generator; |
||
713 |
* ... |
||
714 |
* points[2^(w-1)-1] = (2^(w-1)-1) * generator; |
||
715 |
* points[2^(w-1)] = 2^blocksize * generator; |
||
716 |
* points[2^(w-1)+1] = 3 * 2^blocksize * generator; |
||
717 |
* ... |
||
718 |
* points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator |
||
719 |
* points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator |
||
720 |
* ... |
||
721 |
* points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator |
||
722 |
* points[2^(w-1)*numblocks] = NULL |
||
723 |
*/ |
||
724 |
int |
||
725 |
ec_wNAF_precompute_mult(EC_GROUP * group, BN_CTX * ctx) |
||
726 |
{ |
||
727 |
const EC_POINT *generator; |
||
728 |
EC_POINT *tmp_point = NULL, *base = NULL, **var; |
||
729 |
BN_CTX *new_ctx = NULL; |
||
730 |
BIGNUM *order; |
||
731 |
size_t i, bits, w, pre_points_per_block, blocksize, numblocks, |
||
732 |
num; |
||
733 |
EC_POINT **points = NULL; |
||
734 |
EC_PRE_COMP *pre_comp; |
||
735 |
int ret = 0; |
||
736 |
|||
737 |
/* if there is an old EC_PRE_COMP object, throw it away */ |
||
738 |
192 |
EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free); |
|
739 |
|||
740 |
✗✓ | 96 |
if ((pre_comp = ec_pre_comp_new(group)) == NULL) |
741 |
return 0; |
||
742 |
|||
743 |
96 |
generator = EC_GROUP_get0_generator(group); |
|
744 |
✗✓ | 96 |
if (generator == NULL) { |
745 |
ECerror(EC_R_UNDEFINED_GENERATOR); |
||
746 |
goto err; |
||
747 |
} |
||
748 |
✗✓ | 96 |
if (ctx == NULL) { |
749 |
ctx = new_ctx = BN_CTX_new(); |
||
750 |
if (ctx == NULL) |
||
751 |
goto err; |
||
752 |
} |
||
753 |
96 |
BN_CTX_start(ctx); |
|
754 |
✓✗ | 96 |
if ((order = BN_CTX_get(ctx)) == NULL) |
755 |
goto err; |
||
756 |
|||
757 |
✓✗ | 96 |
if (!EC_GROUP_get_order(group, order, ctx)) |
758 |
goto err; |
||
759 |
✗✓ | 96 |
if (BN_is_zero(order)) { |
760 |
ECerror(EC_R_UNKNOWN_ORDER); |
||
761 |
goto err; |
||
762 |
} |
||
763 |
96 |
bits = BN_num_bits(order); |
|
764 |
/* |
||
765 |
* The following parameters mean we precompute (approximately) one |
||
766 |
* point per bit. |
||
767 |
* |
||
768 |
* TBD: The combination 8, 4 is perfect for 160 bits; for other bit |
||
769 |
* lengths, other parameter combinations might provide better |
||
770 |
* efficiency. |
||
771 |
*/ |
||
772 |
blocksize = 8; |
||
773 |
w = 4; |
||
774 |
✓✗✓✗ ✓✓✗✓ ✗✓ |
444 |
if (EC_window_bits_for_scalar_size(bits) > w) { |
775 |
/* let's not make the window too small ... */ |
||
776 |
w = EC_window_bits_for_scalar_size(bits); |
||
777 |
} |
||
778 |
96 |
numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks |
|
779 |
* to use for wNAF |
||
780 |
* splitting */ |
||
781 |
|||
782 |
96 |
pre_points_per_block = (size_t) 1 << (w - 1); |
|
783 |
96 |
num = pre_points_per_block * numblocks; /* number of points to |
|
784 |
* compute and store */ |
||
785 |
|||
786 |
96 |
points = reallocarray(NULL, (num + 1), sizeof(EC_POINT *)); |
|
787 |
✗✓ | 96 |
if (!points) { |
788 |
ECerror(ERR_R_MALLOC_FAILURE); |
||
789 |
goto err; |
||
790 |
} |
||
791 |
var = points; |
||
792 |
96 |
var[num] = NULL; /* pivot */ |
|
793 |
✓✓ | 92304 |
for (i = 0; i < num; i++) { |
794 |
✗✓ | 61440 |
if ((var[i] = EC_POINT_new(group)) == NULL) { |
795 |
ECerror(ERR_R_MALLOC_FAILURE); |
||
796 |
goto err; |
||
797 |
} |
||
798 |
} |
||
799 |
|||
800 |
✓✗✗✓ |
192 |
if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) { |
801 |
ECerror(ERR_R_MALLOC_FAILURE); |
||
802 |
goto err; |
||
803 |
} |
||
804 |
✓✗ | 96 |
if (!EC_POINT_copy(base, generator)) |
805 |
goto err; |
||
806 |
|||
807 |
/* do the precomputation */ |
||
808 |
✓✓ | 7860 |
for (i = 0; i < numblocks; i++) { |
809 |
size_t j; |
||
810 |
|||
811 |
✗✓ | 3834 |
if (!EC_POINT_dbl(group, tmp_point, base, ctx)) |
812 |
goto err; |
||
813 |
|||
814 |
✗✓ | 3834 |
if (!EC_POINT_copy(*var++, base)) |
815 |
goto err; |
||
816 |
|||
817 |
✓✓ | 61344 |
for (j = 1; j < pre_points_per_block; j++, var++) { |
818 |
/* calculate odd multiples of the current base point */ |
||
819 |
✗✓ | 26838 |
if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) |
820 |
goto err; |
||
821 |
} |
||
822 |
|||
823 |
✓✓ | 3834 |
if (i < numblocks - 1) { |
824 |
/* |
||
825 |
* get the next base (multiply current one by |
||
826 |
* 2^blocksize) |
||
827 |
*/ |
||
828 |
size_t k; |
||
829 |
|||
830 |
✗✓ | 3738 |
if (blocksize <= 2) { |
831 |
ECerror(ERR_R_INTERNAL_ERROR); |
||
832 |
goto err; |
||
833 |
} |
||
834 |
✗✓ | 3738 |
if (!EC_POINT_dbl(group, base, tmp_point, ctx)) |
835 |
goto err; |
||
836 |
✓✓ | 52332 |
for (k = 2; k < blocksize; k++) { |
837 |
✗✓ | 22428 |
if (!EC_POINT_dbl(group, base, base, ctx)) |
838 |
goto err; |
||
839 |
} |
||
840 |
✓✗ | 3738 |
} |
841 |
✓✓✓ | 3834 |
} |
842 |
|||
843 |
✓✗ | 96 |
if (!EC_POINTs_make_affine(group, num, points, ctx)) |
844 |
goto err; |
||
845 |
|||
846 |
96 |
pre_comp->group = group; |
|
847 |
96 |
pre_comp->blocksize = blocksize; |
|
848 |
96 |
pre_comp->numblocks = numblocks; |
|
849 |
96 |
pre_comp->w = w; |
|
850 |
96 |
pre_comp->points = points; |
|
851 |
points = NULL; |
||
852 |
96 |
pre_comp->num = num; |
|
853 |
|||
854 |
✓✗ | 96 |
if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp, |
855 |
ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free)) |
||
856 |
goto err; |
||
857 |
pre_comp = NULL; |
||
858 |
|||
859 |
96 |
ret = 1; |
|
860 |
err: |
||
861 |
✓✗ | 96 |
if (ctx != NULL) |
862 |
96 |
BN_CTX_end(ctx); |
|
863 |
96 |
BN_CTX_free(new_ctx); |
|
864 |
96 |
ec_pre_comp_free(pre_comp); |
|
865 |
✗✓ | 96 |
if (points) { |
866 |
EC_POINT **p; |
||
867 |
|||
868 |
for (p = points; *p != NULL; p++) |
||
869 |
EC_POINT_free(*p); |
||
870 |
free(points); |
||
871 |
} |
||
872 |
96 |
EC_POINT_free(tmp_point); |
|
873 |
96 |
EC_POINT_free(base); |
|
874 |
96 |
return ret; |
|
875 |
96 |
} |
|
876 |
|||
877 |
|||
878 |
int |
||
879 |
ec_wNAF_have_precompute_mult(const EC_GROUP * group) |
||
880 |
{ |
||
881 |
✓✓ | 2864 |
if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL) |
882 |
114 |
return 1; |
|
883 |
else |
||
884 |
1318 |
return 0; |
|
885 |
1432 |
} |
Generated by: GCOVR (Version 3.3) |