GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libcrypto/sha/sha256.c Lines: 14 30 46.7 %
Date: 2017-11-07 Branches: 0 4 0.0 %

Line Branch Exec Source
1
/* $OpenBSD: sha256.c,v 1.9 2015/09/10 15:56:26 jsing Exp $ */
2
/* ====================================================================
3
 * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
4
 * according to the OpenSSL license [found in ../../LICENSE].
5
 * ====================================================================
6
 */
7
8
#include <openssl/opensslconf.h>
9
10
#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
11
12
#include <machine/endian.h>
13
14
#include <stdlib.h>
15
#include <string.h>
16
17
#include <openssl/crypto.h>
18
#include <openssl/sha.h>
19
#include <openssl/opensslv.h>
20
21
int SHA224_Init(SHA256_CTX *c)
22
	{
23
110
	memset (c,0,sizeof(*c));
24
55
	c->h[0]=0xc1059ed8UL;	c->h[1]=0x367cd507UL;
25
55
	c->h[2]=0x3070dd17UL;	c->h[3]=0xf70e5939UL;
26
55
	c->h[4]=0xffc00b31UL;	c->h[5]=0x68581511UL;
27
55
	c->h[6]=0x64f98fa7UL;	c->h[7]=0xbefa4fa4UL;
28
55
	c->md_len=SHA224_DIGEST_LENGTH;
29
55
	return 1;
30
	}
31
32
int SHA256_Init(SHA256_CTX *c)
33
	{
34
16786
	memset (c,0,sizeof(*c));
35
8393
	c->h[0]=0x6a09e667UL;	c->h[1]=0xbb67ae85UL;
36
8393
	c->h[2]=0x3c6ef372UL;	c->h[3]=0xa54ff53aUL;
37
8393
	c->h[4]=0x510e527fUL;	c->h[5]=0x9b05688cUL;
38
8393
	c->h[6]=0x1f83d9abUL;	c->h[7]=0x5be0cd19UL;
39
8393
	c->md_len=SHA256_DIGEST_LENGTH;
40
8393
	return 1;
41
	}
42
43
unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
44
	{
45
	SHA256_CTX c;
46
	static unsigned char m[SHA224_DIGEST_LENGTH];
47
48
	if (md == NULL) md=m;
49
	SHA224_Init(&c);
50
	SHA256_Update(&c,d,n);
51
	SHA256_Final(md,&c);
52
	explicit_bzero(&c,sizeof(c));
53
	return(md);
54
	}
55
56
unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
57
	{
58
	SHA256_CTX c;
59
	static unsigned char m[SHA256_DIGEST_LENGTH];
60
61
	if (md == NULL) md=m;
62
	SHA256_Init(&c);
63
	SHA256_Update(&c,d,n);
64
	SHA256_Final(md,&c);
65
	explicit_bzero(&c,sizeof(c));
66
	return(md);
67
	}
68
69
int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
70
{   return SHA256_Update (c,data,len);   }
71
int SHA224_Final (unsigned char *md, SHA256_CTX *c)
72
{   return SHA256_Final (md,c);   }
73
74
#define	DATA_ORDER_IS_BIG_ENDIAN
75
76
#define	HASH_LONG		SHA_LONG
77
#define	HASH_CTX		SHA256_CTX
78
#define	HASH_CBLOCK		SHA_CBLOCK
79
/*
80
 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
81
 * default: case below covers for it. It's not clear however if it's
82
 * permitted to truncate to amount of bytes not divisible by 4. I bet not,
83
 * but if it is, then default: case shall be extended. For reference.
84
 * Idea behind separate cases for pre-defined lenghts is to let the
85
 * compiler decide if it's appropriate to unroll small loops.
86
 */
87
#define	HASH_MAKE_STRING(c,s)	do {	\
88
	unsigned long ll;		\
89
	unsigned int  nn;		\
90
	switch ((c)->md_len)		\
91
	{   case SHA224_DIGEST_LENGTH:	\
92
		for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++)	\
93
		{   ll=(c)->h[nn]; HOST_l2c(ll,(s));   }	\
94
		break;			\
95
	    case SHA256_DIGEST_LENGTH:	\
96
		for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++)	\
97
		{   ll=(c)->h[nn]; HOST_l2c(ll,(s));   }	\
98
		break;			\
99
	    default:			\
100
		if ((c)->md_len > SHA256_DIGEST_LENGTH)	\
101
		    return 0;				\
102
		for (nn=0;nn<(c)->md_len/4;nn++)		\
103
		{   ll=(c)->h[nn]; HOST_l2c(ll,(s));   }	\
104
		break;			\
105
	}				\
106
	} while (0)
107
108
#define	HASH_UPDATE		SHA256_Update
109
#define	HASH_TRANSFORM		SHA256_Transform
110
#define	HASH_FINAL		SHA256_Final
111
#define	HASH_BLOCK_DATA_ORDER	sha256_block_data_order
112
#ifndef SHA256_ASM
113
static
114
#endif
115
void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
116
117
#include "md32_common.h"
118
119
#ifndef SHA256_ASM
120
static const SHA_LONG K256[64] = {
121
	0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
122
	0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
123
	0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
124
	0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
125
	0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
126
	0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
127
	0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
128
	0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
129
	0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
130
	0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
131
	0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
132
	0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
133
	0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
134
	0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
135
	0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
136
	0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
137
138
/*
139
 * FIPS specification refers to right rotations, while our ROTATE macro
140
 * is left one. This is why you might notice that rotation coefficients
141
 * differ from those observed in FIPS document by 32-N...
142
 */
143
#define Sigma0(x)	(ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
144
#define Sigma1(x)	(ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
145
#define sigma0(x)	(ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
146
#define sigma1(x)	(ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
147
148
#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
149
#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
150
151
#ifdef OPENSSL_SMALL_FOOTPRINT
152
153
static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
154
	{
155
	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
156
	SHA_LONG	X[16],l;
157
	int i;
158
	const unsigned char *data=in;
159
160
			while (num--) {
161
162
	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
163
	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
164
165
	for (i=0;i<16;i++)
166
		{
167
		HOST_c2l(data,l); T1 = X[i] = l;
168
		T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
169
		T2 = Sigma0(a) + Maj(a,b,c);
170
		h = g;	g = f;	f = e;	e = d + T1;
171
		d = c;	c = b;	b = a;	a = T1 + T2;
172
		}
173
174
	for (;i<64;i++)
175
		{
176
		s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);
177
		s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);
178
179
		T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
180
		T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
181
		T2 = Sigma0(a) + Maj(a,b,c);
182
		h = g;	g = f;	f = e;	e = d + T1;
183
		d = c;	c = b;	b = a;	a = T1 + T2;
184
		}
185
186
	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
187
	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
188
189
			}
190
}
191
192
#else
193
194
#define	ROUND_00_15(i,a,b,c,d,e,f,g,h)		do {	\
195
	T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];	\
196
	h = Sigma0(a) + Maj(a,b,c);			\
197
	d += T1;	h += T1;		} while (0)
198
199
#define	ROUND_16_63(i,a,b,c,d,e,f,g,h,X)	do {	\
200
	s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);	\
201
	s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);	\
202
	T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];	\
203
	ROUND_00_15(i,a,b,c,d,e,f,g,h);		} while (0)
204
205
static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
206
	{
207
	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
208
	SHA_LONG	X[16];
209
	int i;
210
	const unsigned char *data=in;
211
212
			while (num--) {
213
214
	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
215
	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
216
217
	if (BYTE_ORDER != LITTLE_ENDIAN &&
218
	    sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
219
		{
220
		const SHA_LONG *W=(const SHA_LONG *)data;
221
222
		T1 = X[0] = W[0];	ROUND_00_15(0,a,b,c,d,e,f,g,h);
223
		T1 = X[1] = W[1];	ROUND_00_15(1,h,a,b,c,d,e,f,g);
224
		T1 = X[2] = W[2];	ROUND_00_15(2,g,h,a,b,c,d,e,f);
225
		T1 = X[3] = W[3];	ROUND_00_15(3,f,g,h,a,b,c,d,e);
226
		T1 = X[4] = W[4];	ROUND_00_15(4,e,f,g,h,a,b,c,d);
227
		T1 = X[5] = W[5];	ROUND_00_15(5,d,e,f,g,h,a,b,c);
228
		T1 = X[6] = W[6];	ROUND_00_15(6,c,d,e,f,g,h,a,b);
229
		T1 = X[7] = W[7];	ROUND_00_15(7,b,c,d,e,f,g,h,a);
230
		T1 = X[8] = W[8];	ROUND_00_15(8,a,b,c,d,e,f,g,h);
231
		T1 = X[9] = W[9];	ROUND_00_15(9,h,a,b,c,d,e,f,g);
232
		T1 = X[10] = W[10];	ROUND_00_15(10,g,h,a,b,c,d,e,f);
233
		T1 = X[11] = W[11];	ROUND_00_15(11,f,g,h,a,b,c,d,e);
234
		T1 = X[12] = W[12];	ROUND_00_15(12,e,f,g,h,a,b,c,d);
235
		T1 = X[13] = W[13];	ROUND_00_15(13,d,e,f,g,h,a,b,c);
236
		T1 = X[14] = W[14];	ROUND_00_15(14,c,d,e,f,g,h,a,b);
237
		T1 = X[15] = W[15];	ROUND_00_15(15,b,c,d,e,f,g,h,a);
238
239
		data += SHA256_CBLOCK;
240
		}
241
	else
242
		{
243
		SHA_LONG l;
244
245
		HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h);
246
		HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g);
247
		HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f);
248
		HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e);
249
		HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d);
250
		HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c);
251
		HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b);
252
		HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a);
253
		HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h);
254
		HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g);
255
		HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
256
		HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
257
		HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
258
		HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
259
		HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
260
		HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
261
		}
262
263
	for (i=16;i<64;i+=8)
264
		{
265
		ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
266
		ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
267
		ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
268
		ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
269
		ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
270
		ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
271
		ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
272
		ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
273
		}
274
275
	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
276
	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
277
278
			}
279
	}
280
281
#endif
282
#endif /* SHA256_ASM */
283
284
#endif /* OPENSSL_NO_SHA256 */