GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libm/src/e_j0.c Lines: 73 74 98.6 %
Date: 2017-11-07 Branches: 38 50 76.0 %

Line Branch Exec Source
1
/* @(#)e_j0.c 5.1 93/09/24 */
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
13
/* j0(x), y0(x)
14
 * Bessel function of the first and second kinds of order zero.
15
 * Method -- j0(x):
16
 *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
17
 *	2. Reduce x to |x| since j0(x)=j0(-x),  and
18
 *	   for x in (0,2)
19
 *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
20
 *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
21
 *	   for x in (2,inf)
22
 * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
23
 * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
24
 *	   as follow:
25
 *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
26
 *			= 1/sqrt(2) * (cos(x) + sin(x))
27
 *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
28
 *			= 1/sqrt(2) * (sin(x) - cos(x))
29
 * 	   (To avoid cancellation, use
30
 *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
31
 * 	    to compute the worse one.)
32
 *
33
 *	3 Special cases
34
 *		j0(nan)= nan
35
 *		j0(0) = 1
36
 *		j0(inf) = 0
37
 *
38
 * Method -- y0(x):
39
 *	1. For x<2.
40
 *	   Since
41
 *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
42
 *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
43
 *	   We use the following function to approximate y0,
44
 *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
45
 *	   where
46
 *		U(z) = u00 + u01*z + ... + u06*z^6
47
 *		V(z) = 1  + v01*z + ... + v04*z^4
48
 *	   with absolute approximation error bounded by 2**-72.
49
 *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
50
 *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
51
 *	2. For x>=2.
52
 * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
53
 * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
54
 *	   by the method mentioned above.
55
 *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
56
 */
57
58
#include "math.h"
59
#include "math_private.h"
60
61
static double pzero(double), qzero(double);
62
63
static const double
64
huge 	= 1e300,
65
one	= 1.0,
66
invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
67
tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
68
 		/* R0/S0 on [0, 2.00] */
69
R02  =  1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
70
R03  = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
71
R04  =  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
72
R05  = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
73
S01  =  1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
74
S02  =  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
75
S03  =  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
76
S04  =  1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
77
78
static const double zero = 0.0;
79
80
double
81
j0(double x)
82
{
83
	double z, s,c,ss,cc,r,u,v;
84
	int32_t hx,ix;
85
86
27740
	GET_HIGH_WORD(hx,x);
87
13870
	ix = hx&0x7fffffff;
88
13870
	if(ix>=0x7ff00000) return one/(x*x);
89
13870
	x = fabs(x);
90
13870
	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
91
7320
		s = sin(x);
92
7320
		c = cos(x);
93
7320
		ss = s-c;
94
7320
		cc = s+c;
95
7320
		if(ix<0x7fe00000) {  /* make sure x+x not overflow */
96
7320
		    z = -cos(x+x);
97
12140
		    if ((s*c)<zero) cc = z/ss;
98
2500
		    else 	    ss = z/cc;
99
		}
100
	/*
101
	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
102
	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
103
	 */
104
7320
		if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);
105
		else {
106
7320
		    u = pzero(x); v = qzero(x);
107
7320
		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
108
		}
109
7320
		return z;
110
	}
111
6550
	if(ix<0x3f200000) {	/* |x| < 2**-13 */
112
50
	    if(huge+x>one) {	/* raise inexact if x != 0 */
113
100
	        if(ix<0x3e400000) return one;	/* |x|<2**-27 */
114
	        else 	      return one - 0.25*x*x;
115
	    }
116
	}
117
6500
	z = x*x;
118
6500
	r =  z*(R02+z*(R03+z*(R04+z*R05)));
119
6500
	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
120
6500
	if(ix < 0x3FF00000) {	/* |x| < 1.00 */
121
5350
	    return one + z*(-0.25+(r/s));
122
	} else {
123
1150
	    u = 0.5*x;
124
1150
	    return((one+u)*(one-u)+z*(r/s));
125
	}
126
13870
}
127
DEF_NONSTD(j0);
128
129
static const double
130
u00  = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
131
u01  =  1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
132
u02  = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
133
u03  =  3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
134
u04  = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
135
u05  =  1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
136
u06  = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
137
v01  =  1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
138
v02  =  7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
139
v03  =  2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
140
v04  =  4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
141
142
double
143
y0(double x)
144
{
145
	double z, s,c,ss,cc,u,v;
146
	int32_t hx,ix,lx;
147
148
19520
	EXTRACT_WORDS(hx,lx,x);
149
9760
        ix = 0x7fffffff&hx;
150
    /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
151
9760
	if(ix>=0x7ff00000) return  one/(x+x*x);
152
9760
        if((ix|lx)==0) return -one/zero;
153
9760
        if(hx<0) return zero/zero;
154
9760
        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
155
        /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
156
         * where x0 = x-pi/4
157
         *      Better formula:
158
         *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
159
         *                      =  1/sqrt(2) * (sin(x) + cos(x))
160
         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
161
         *                      =  1/sqrt(2) * (sin(x) - cos(x))
162
         * To avoid cancellation, use
163
         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
164
         * to compute the worse one.
165
         */
166
6370
                s = sin(x);
167
6370
                c = cos(x);
168
6370
                ss = s-c;
169
6370
                cc = s+c;
170
	/*
171
	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
172
	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
173
	 */
174
6370
                if(ix<0x7fe00000) {  /* make sure x+x not overflow */
175
6370
                    z = -cos(x+x);
176
8580
                    if ((s*c)<zero) cc = z/ss;
177
4160
                    else            ss = z/cc;
178
                }
179
6370
                if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
180
                else {
181
6370
                    u = pzero(x); v = qzero(x);
182
6370
                    z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
183
                }
184
6370
                return z;
185
	}
186
3390
	if(ix<=0x3e400000) {	/* x < 2**-27 */
187
50
	    return(u00 + tpi*log(x));
188
	}
189
3340
	z = x*x;
190
3340
	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
191
3340
	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
192
3340
	return(u/v + tpi*(j0(x)*log(x)));
193
9760
}
194
DEF_NONSTD(y0);
195
196
/* The asymptotic expansions of pzero is
197
 *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
198
 * For x >= 2, We approximate pzero by
199
 * 	pzero(x) = 1 + (R/S)
200
 * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
201
 * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
202
 * and
203
 *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
204
 */
205
static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
206
  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
207
 -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
208
 -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
209
 -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
210
 -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
211
 -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
212
};
213
static const double pS8[5] = {
214
  1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
215
  3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
216
  4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
217
  1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
218
  4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
219
};
220
221
static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
222
 -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
223
 -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
224
 -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
225
 -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
226
 -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
227
 -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
228
};
229
static const double pS5[5] = {
230
  6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
231
  1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
232
  5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
233
  9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
234
  2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
235
};
236
237
static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
238
 -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
239
 -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
240
 -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
241
 -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
242
 -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
243
 -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
244
};
245
static const double pS3[5] = {
246
  3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
247
  3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
248
  1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
249
  1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
250
  1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
251
};
252
253
static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
254
 -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
255
 -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
256
 -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
257
 -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
258
 -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
259
 -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
260
};
261
static const double pS2[5] = {
262
  2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
263
  1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
264
  2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
265
  1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
266
  1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
267
};
268
269
static double
270
pzero(double x)
271
{
272
	const double *p,*q;
273
	double z,r,s;
274
	int32_t ix;
275
27380
	GET_HIGH_WORD(ix,x);
276
13690
	ix &= 0x7fffffff;
277
23190
	if(ix>=0x40200000)     {p = pR8; q= pS8;}
278
6180
	else if(ix>=0x40122E8B){p = pR5; q= pS5;}
279
3440
	else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
280
1920
	else if(ix>=0x40000000){p = pR2; q= pS2;}
281
13690
	z = one/(x*x);
282
13690
	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
283
13690
	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
284
13690
	return one+ r/s;
285
}
286
287
288
/* For x >= 8, the asymptotic expansions of qzero is
289
 *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
290
 * We approximate pzero by
291
 * 	qzero(x) = s*(-1.25 + (R/S))
292
 * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
293
 * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
294
 * and
295
 *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
296
 */
297
static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
298
  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
299
  7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
300
  1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
301
  5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
302
  8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
303
  3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
304
};
305
static const double qS8[6] = {
306
  1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
307
  8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
308
  1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
309
  8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
310
  8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
311
 -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
312
};
313
314
static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
315
  1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
316
  7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
317
  5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
318
  1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
319
  1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
320
  1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
321
};
322
static const double qS5[6] = {
323
  8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
324
  2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
325
  1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
326
  5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
327
  3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
328
 -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
329
};
330
331
static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
332
  4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
333
  7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
334
  3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
335
  4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
336
  1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
337
  1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
338
};
339
static const double qS3[6] = {
340
  4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
341
  7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
342
  3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
343
  6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
344
  2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
345
 -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
346
};
347
348
static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
349
  1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
350
  7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
351
  1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
352
  1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
353
  3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
354
  1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
355
};
356
static const double qS2[6] = {
357
  3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
358
  2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
359
  8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
360
  8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
361
  2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
362
 -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
363
};
364
365
static double
366
qzero(double x)
367
{
368
	const double *p,*q;
369
	double s,r,z;
370
	int32_t ix;
371
27380
	GET_HIGH_WORD(ix,x);
372
13690
	ix &= 0x7fffffff;
373
23190
	if(ix>=0x40200000)     {p = qR8; q= qS8;}
374
6180
	else if(ix>=0x40122E8B){p = qR5; q= qS5;}
375
3440
	else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
376
1920
	else if(ix>=0x40000000){p = qR2; q= qS2;}
377
13690
	z = one/(x*x);
378
13690
	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
379
13690
	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
380
13690
	return (-.125 + r/s)/x;
381
}