GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libm/src/e_j0f.c Lines: 0 72 0.0 %
Date: 2017-11-07 Branches: 0 50 0.0 %

Line Branch Exec Source
1
/* e_j0f.c -- float version of e_j0.c.
2
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3
 */
4
5
/*
6
 * ====================================================
7
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8
 *
9
 * Developed at SunPro, a Sun Microsystems, Inc. business.
10
 * Permission to use, copy, modify, and distribute this
11
 * software is freely granted, provided that this notice
12
 * is preserved.
13
 * ====================================================
14
 */
15
16
#include "math.h"
17
#include "math_private.h"
18
19
static float pzerof(float), qzerof(float);
20
21
static const float
22
huge 	= 1e30,
23
one	= 1.0,
24
invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
25
tpi      =  6.3661974669e-01, /* 0x3f22f983 */
26
 		/* R0/S0 on [0, 2.00] */
27
R02  =  1.5625000000e-02, /* 0x3c800000 */
28
R03  = -1.8997929874e-04, /* 0xb947352e */
29
R04  =  1.8295404516e-06, /* 0x35f58e88 */
30
R05  = -4.6183270541e-09, /* 0xb19eaf3c */
31
S01  =  1.5619102865e-02, /* 0x3c7fe744 */
32
S02  =  1.1692678527e-04, /* 0x38f53697 */
33
S03  =  5.1354652442e-07, /* 0x3509daa6 */
34
S04  =  1.1661400734e-09; /* 0x30a045e8 */
35
36
static const float zero = 0.0;
37
38
float
39
j0f(float x)
40
{
41
	float z, s,c,ss,cc,r,u,v;
42
	int32_t hx,ix;
43
44
	GET_FLOAT_WORD(hx,x);
45
	ix = hx&0x7fffffff;
46
	if(ix>=0x7f800000) return one/(x*x);
47
	x = fabsf(x);
48
	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
49
		s = sinf(x);
50
		c = cosf(x);
51
		ss = s-c;
52
		cc = s+c;
53
		if(ix<0x7f000000) {  /* make sure x+x not overflow */
54
		    z = -cosf(x+x);
55
		    if ((s*c)<zero) cc = z/ss;
56
		    else 	    ss = z/cc;
57
		}
58
	/*
59
	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
60
	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
61
	 */
62
		if(ix>0x80000000U) z = (invsqrtpi*cc)/sqrtf(x);
63
		else {
64
		    u = pzerof(x); v = qzerof(x);
65
		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
66
		}
67
		return z;
68
	}
69
	if(ix<0x39000000) {	/* |x| < 2**-13 */
70
	    if(huge+x>one) {	/* raise inexact if x != 0 */
71
	        if(ix<0x32000000) return one;	/* |x|<2**-27 */
72
	        else 	      return one - (float)0.25*x*x;
73
	    }
74
	}
75
	z = x*x;
76
	r =  z*(R02+z*(R03+z*(R04+z*R05)));
77
	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
78
	if(ix < 0x3F800000) {	/* |x| < 1.00 */
79
	    return one + z*((float)-0.25+(r/s));
80
	} else {
81
	    u = (float)0.5*x;
82
	    return((one+u)*(one-u)+z*(r/s));
83
	}
84
}
85
DEF_NONSTD(j0f);
86
87
static const float
88
u00  = -7.3804296553e-02, /* 0xbd9726b5 */
89
u01  =  1.7666645348e-01, /* 0x3e34e80d */
90
u02  = -1.3818567619e-02, /* 0xbc626746 */
91
u03  =  3.4745343146e-04, /* 0x39b62a69 */
92
u04  = -3.8140706238e-06, /* 0xb67ff53c */
93
u05  =  1.9559013964e-08, /* 0x32a802ba */
94
u06  = -3.9820518410e-11, /* 0xae2f21eb */
95
v01  =  1.2730483897e-02, /* 0x3c509385 */
96
v02  =  7.6006865129e-05, /* 0x389f65e0 */
97
v03  =  2.5915085189e-07, /* 0x348b216c */
98
v04  =  4.4111031494e-10; /* 0x2ff280c2 */
99
100
float
101
y0f(float x)
102
{
103
	float z, s,c,ss,cc,u,v;
104
	int32_t hx,ix;
105
106
	GET_FLOAT_WORD(hx,x);
107
        ix = 0x7fffffff&hx;
108
    /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
109
	if(ix>=0x7f800000) return  one/(x+x*x);
110
        if(ix==0) return -one/zero;
111
        if(hx<0) return zero/zero;
112
        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
113
        /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
114
         * where x0 = x-pi/4
115
         *      Better formula:
116
         *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
117
         *                      =  1/sqrt(2) * (sin(x) + cos(x))
118
         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
119
         *                      =  1/sqrt(2) * (sin(x) - cos(x))
120
         * To avoid cancellation, use
121
         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
122
         * to compute the worse one.
123
         */
124
                s = sinf(x);
125
                c = cosf(x);
126
                ss = s-c;
127
                cc = s+c;
128
	/*
129
	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
130
	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
131
	 */
132
                if(ix<0x7f000000) {  /* make sure x+x not overflow */
133
                    z = -cosf(x+x);
134
                    if ((s*c)<zero) cc = z/ss;
135
                    else            ss = z/cc;
136
                }
137
                if(ix>0x80000000U) z = (invsqrtpi*ss)/sqrtf(x);
138
                else {
139
                    u = pzerof(x); v = qzerof(x);
140
                    z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
141
                }
142
                return z;
143
	}
144
	if(ix<=0x32000000) {	/* x < 2**-27 */
145
	    return(u00 + tpi*logf(x));
146
	}
147
	z = x*x;
148
	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
149
	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
150
	return(u/v + tpi*(j0f(x)*logf(x)));
151
}
152
DEF_NONSTD(y0f);
153
154
/* The asymptotic expansions of pzero is
155
 *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
156
 * For x >= 2, We approximate pzero by
157
 * 	pzero(x) = 1 + (R/S)
158
 * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
159
 * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
160
 * and
161
 *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
162
 */
163
static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
164
  0.0000000000e+00, /* 0x00000000 */
165
 -7.0312500000e-02, /* 0xbd900000 */
166
 -8.0816707611e+00, /* 0xc1014e86 */
167
 -2.5706311035e+02, /* 0xc3808814 */
168
 -2.4852163086e+03, /* 0xc51b5376 */
169
 -5.2530439453e+03, /* 0xc5a4285a */
170
};
171
static const float pS8[5] = {
172
  1.1653436279e+02, /* 0x42e91198 */
173
  3.8337448730e+03, /* 0x456f9beb */
174
  4.0597855469e+04, /* 0x471e95db */
175
  1.1675296875e+05, /* 0x47e4087c */
176
  4.7627726562e+04, /* 0x473a0bba */
177
};
178
static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
179
 -1.1412546255e-11, /* 0xad48c58a */
180
 -7.0312492549e-02, /* 0xbd8fffff */
181
 -4.1596107483e+00, /* 0xc0851b88 */
182
 -6.7674766541e+01, /* 0xc287597b */
183
 -3.3123129272e+02, /* 0xc3a59d9b */
184
 -3.4643338013e+02, /* 0xc3ad3779 */
185
};
186
static const float pS5[5] = {
187
  6.0753936768e+01, /* 0x42730408 */
188
  1.0512523193e+03, /* 0x44836813 */
189
  5.9789707031e+03, /* 0x45bad7c4 */
190
  9.6254453125e+03, /* 0x461665c8 */
191
  2.4060581055e+03, /* 0x451660ee */
192
};
193
194
static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
195
 -2.5470459075e-09, /* 0xb12f081b */
196
 -7.0311963558e-02, /* 0xbd8fffb8 */
197
 -2.4090321064e+00, /* 0xc01a2d95 */
198
 -2.1965976715e+01, /* 0xc1afba52 */
199
 -5.8079170227e+01, /* 0xc2685112 */
200
 -3.1447946548e+01, /* 0xc1fb9565 */
201
};
202
static const float pS3[5] = {
203
  3.5856033325e+01, /* 0x420f6c94 */
204
  3.6151397705e+02, /* 0x43b4c1ca */
205
  1.1936077881e+03, /* 0x44953373 */
206
  1.1279968262e+03, /* 0x448cffe6 */
207
  1.7358093262e+02, /* 0x432d94b8 */
208
};
209
210
static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
211
 -8.8753431271e-08, /* 0xb3be98b7 */
212
 -7.0303097367e-02, /* 0xbd8ffb12 */
213
 -1.4507384300e+00, /* 0xbfb9b1cc */
214
 -7.6356959343e+00, /* 0xc0f4579f */
215
 -1.1193166733e+01, /* 0xc1331736 */
216
 -3.2336456776e+00, /* 0xc04ef40d */
217
};
218
static const float pS2[5] = {
219
  2.2220300674e+01, /* 0x41b1c32d */
220
  1.3620678711e+02, /* 0x430834f0 */
221
  2.7047027588e+02, /* 0x43873c32 */
222
  1.5387539673e+02, /* 0x4319e01a */
223
  1.4657617569e+01, /* 0x416a859a */
224
};
225
226
static float
227
pzerof(float x)
228
{
229
	const float *p,*q;
230
	float z,r,s;
231
	int32_t ix;
232
	GET_FLOAT_WORD(ix,x);
233
	ix &= 0x7fffffff;
234
	if(ix>=0x41000000)     {p = pR8; q= pS8;}
235
	else if(ix>=0x40f71c58){p = pR5; q= pS5;}
236
	else if(ix>=0x4036db68){p = pR3; q= pS3;}
237
	else if(ix>=0x40000000){p = pR2; q= pS2;}
238
	z = one/(x*x);
239
	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
240
	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
241
	return one+ r/s;
242
}
243
244
245
/* For x >= 8, the asymptotic expansions of qzero is
246
 *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
247
 * We approximate pzero by
248
 * 	qzero(x) = s*(-1.25 + (R/S))
249
 * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
250
 * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
251
 * and
252
 *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
253
 */
254
static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
255
  0.0000000000e+00, /* 0x00000000 */
256
  7.3242187500e-02, /* 0x3d960000 */
257
  1.1768206596e+01, /* 0x413c4a93 */
258
  5.5767340088e+02, /* 0x440b6b19 */
259
  8.8591972656e+03, /* 0x460a6cca */
260
  3.7014625000e+04, /* 0x471096a0 */
261
};
262
static const float qS8[6] = {
263
  1.6377603149e+02, /* 0x4323c6aa */
264
  8.0983447266e+03, /* 0x45fd12c2 */
265
  1.4253829688e+05, /* 0x480b3293 */
266
  8.0330925000e+05, /* 0x49441ed4 */
267
  8.4050156250e+05, /* 0x494d3359 */
268
 -3.4389928125e+05, /* 0xc8a7eb69 */
269
};
270
271
static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
272
  1.8408595828e-11, /* 0x2da1ec79 */
273
  7.3242180049e-02, /* 0x3d95ffff */
274
  5.8356351852e+00, /* 0x40babd86 */
275
  1.3511157227e+02, /* 0x43071c90 */
276
  1.0272437744e+03, /* 0x448067cd */
277
  1.9899779053e+03, /* 0x44f8bf4b */
278
};
279
static const float qS5[6] = {
280
  8.2776611328e+01, /* 0x42a58da0 */
281
  2.0778142090e+03, /* 0x4501dd07 */
282
  1.8847289062e+04, /* 0x46933e94 */
283
  5.6751113281e+04, /* 0x475daf1d */
284
  3.5976753906e+04, /* 0x470c88c1 */
285
 -5.3543427734e+03, /* 0xc5a752be */
286
};
287
288
static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
289
  4.3774099900e-09, /* 0x3196681b */
290
  7.3241114616e-02, /* 0x3d95ff70 */
291
  3.3442313671e+00, /* 0x405607e3 */
292
  4.2621845245e+01, /* 0x422a7cc5 */
293
  1.7080809021e+02, /* 0x432acedf */
294
  1.6673394775e+02, /* 0x4326bbe4 */
295
};
296
static const float qS3[6] = {
297
  4.8758872986e+01, /* 0x42430916 */
298
  7.0968920898e+02, /* 0x44316c1c */
299
  3.7041481934e+03, /* 0x4567825f */
300
  6.4604252930e+03, /* 0x45c9e367 */
301
  2.5163337402e+03, /* 0x451d4557 */
302
 -1.4924745178e+02, /* 0xc3153f59 */
303
};
304
305
static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
306
  1.5044444979e-07, /* 0x342189db */
307
  7.3223426938e-02, /* 0x3d95f62a */
308
  1.9981917143e+00, /* 0x3fffc4bf */
309
  1.4495602608e+01, /* 0x4167edfd */
310
  3.1666231155e+01, /* 0x41fd5471 */
311
  1.6252708435e+01, /* 0x4182058c */
312
};
313
static const float qS2[6] = {
314
  3.0365585327e+01, /* 0x41f2ecb8 */
315
  2.6934811401e+02, /* 0x4386ac8f */
316
  8.4478375244e+02, /* 0x44533229 */
317
  8.8293585205e+02, /* 0x445cbbe5 */
318
  2.1266638184e+02, /* 0x4354aa98 */
319
 -5.3109550476e+00, /* 0xc0a9f358 */
320
};
321
322
static float
323
qzerof(float x)
324
{
325
	const float *p,*q;
326
	float s,r,z;
327
	int32_t ix;
328
	GET_FLOAT_WORD(ix,x);
329
	ix &= 0x7fffffff;
330
	if(ix>=0x41000000)     {p = qR8; q= qS8;}
331
	else if(ix>=0x40f71c58){p = qR5; q= qS5;}
332
	else if(ix>=0x4036db68){p = qR3; q= qS3;}
333
	else if(ix>=0x40000000){p = qR2; q= qS2;}
334
	z = one/(x*x);
335
	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
336
	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
337
	return (-(float).125 + r/s)/x;
338
}