GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libm/src/e_j1f.c Lines: 0 69 0.0 %
Date: 2017-11-07 Branches: 0 48 0.0 %

Line Branch Exec Source
1
/* e_j1f.c -- float version of e_j1.c.
2
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3
 */
4
5
/*
6
 * ====================================================
7
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8
 *
9
 * Developed at SunPro, a Sun Microsystems, Inc. business.
10
 * Permission to use, copy, modify, and distribute this
11
 * software is freely granted, provided that this notice
12
 * is preserved.
13
 * ====================================================
14
 */
15
16
#include "math.h"
17
#include "math_private.h"
18
19
static float ponef(float), qonef(float);
20
21
static const float
22
huge    = 1e30,
23
one	= 1.0,
24
invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
25
tpi      =  6.3661974669e-01, /* 0x3f22f983 */
26
	/* R0/S0 on [0,2] */
27
r00  = -6.2500000000e-02, /* 0xbd800000 */
28
r01  =  1.4070566976e-03, /* 0x3ab86cfd */
29
r02  = -1.5995563444e-05, /* 0xb7862e36 */
30
r03  =  4.9672799207e-08, /* 0x335557d2 */
31
s01  =  1.9153760746e-02, /* 0x3c9ce859 */
32
s02  =  1.8594678841e-04, /* 0x3942fab6 */
33
s03  =  1.1771846857e-06, /* 0x359dffc2 */
34
s04  =  5.0463624390e-09, /* 0x31ad6446 */
35
s05  =  1.2354227016e-11; /* 0x2d59567e */
36
37
static const float zero    = 0.0;
38
39
float
40
j1f(float x)
41
{
42
	float z, s,c,ss,cc,r,u,v,y;
43
	int32_t hx,ix;
44
45
	GET_FLOAT_WORD(hx,x);
46
	ix = hx&0x7fffffff;
47
	if(ix>=0x7f800000) return one/x;
48
	y = fabsf(x);
49
	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
50
		s = sinf(y);
51
		c = cosf(y);
52
		ss = -s-c;
53
		cc = s-c;
54
		if(ix<0x7f000000) {  /* make sure y+y not overflow */
55
		    z = cosf(y+y);
56
		    if ((s*c)>zero) cc = z/ss;
57
		    else 	    ss = z/cc;
58
		}
59
	/*
60
	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
61
	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
62
	 */
63
		if(ix>0x80000000U) z = (invsqrtpi*cc)/sqrtf(y);
64
		else {
65
		    u = ponef(y); v = qonef(y);
66
		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
67
		}
68
		if(hx<0) return -z;
69
		else  	 return  z;
70
	}
71
	if(ix<0x32000000) {	/* |x|<2**-27 */
72
	    if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
73
	}
74
	z = x*x;
75
	r =  z*(r00+z*(r01+z*(r02+z*r03)));
76
	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
77
	r *= x;
78
	return(x*(float)0.5+r/s);
79
}
80
DEF_NONSTD(j1f);
81
82
static const float U0[5] = {
83
 -1.9605709612e-01, /* 0xbe48c331 */
84
  5.0443872809e-02, /* 0x3d4e9e3c */
85
 -1.9125689287e-03, /* 0xbafaaf2a */
86
  2.3525259166e-05, /* 0x37c5581c */
87
 -9.1909917899e-08, /* 0xb3c56003 */
88
};
89
static const float V0[5] = {
90
  1.9916731864e-02, /* 0x3ca3286a */
91
  2.0255257550e-04, /* 0x3954644b */
92
  1.3560879779e-06, /* 0x35b602d4 */
93
  6.2274145840e-09, /* 0x31d5f8eb */
94
  1.6655924903e-11, /* 0x2d9281cf */
95
};
96
97
float
98
y1f(float x)
99
{
100
	float z, s,c,ss,cc,u,v;
101
	int32_t hx,ix;
102
103
	GET_FLOAT_WORD(hx,x);
104
        ix = 0x7fffffff&hx;
105
    /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
106
	if(ix>=0x7f800000) return  one/(x+x*x);
107
        if(ix==0) return -one/zero;
108
        if(hx<0) return zero/zero;
109
        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
110
                s = sinf(x);
111
                c = cosf(x);
112
                ss = -s-c;
113
                cc = s-c;
114
                if(ix<0x7f000000) {  /* make sure x+x not overflow */
115
                    z = cosf(x+x);
116
                    if ((s*c)>zero) cc = z/ss;
117
                    else            ss = z/cc;
118
                }
119
        /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
120
         * where x0 = x-3pi/4
121
         *      Better formula:
122
         *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
123
         *                      =  1/sqrt(2) * (sin(x) - cos(x))
124
         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
125
         *                      = -1/sqrt(2) * (cos(x) + sin(x))
126
         * To avoid cancellation, use
127
         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
128
         * to compute the worse one.
129
         */
130
                if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
131
                else {
132
                    u = ponef(x); v = qonef(x);
133
                    z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
134
                }
135
                return z;
136
        }
137
        if(ix<=0x24800000) {    /* x < 2**-54 */
138
            return(-tpi/x);
139
        }
140
        z = x*x;
141
        u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
142
        v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
143
        return(x*(u/v) + tpi*(j1f(x)*logf(x)-one/x));
144
}
145
DEF_NONSTD(y1f);
146
147
/* For x >= 8, the asymptotic expansions of pone is
148
 *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
149
 * We approximate pone by
150
 * 	pone(x) = 1 + (R/S)
151
 * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
152
 * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
153
 * and
154
 *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
155
 */
156
157
static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
158
  0.0000000000e+00, /* 0x00000000 */
159
  1.1718750000e-01, /* 0x3df00000 */
160
  1.3239480972e+01, /* 0x4153d4ea */
161
  4.1205184937e+02, /* 0x43ce06a3 */
162
  3.8747453613e+03, /* 0x45722bed */
163
  7.9144794922e+03, /* 0x45f753d6 */
164
};
165
static const float ps8[5] = {
166
  1.1420736694e+02, /* 0x42e46a2c */
167
  3.6509309082e+03, /* 0x45642ee5 */
168
  3.6956207031e+04, /* 0x47105c35 */
169
  9.7602796875e+04, /* 0x47bea166 */
170
  3.0804271484e+04, /* 0x46f0a88b */
171
};
172
173
static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
174
  1.3199052094e-11, /* 0x2d68333f */
175
  1.1718749255e-01, /* 0x3defffff */
176
  6.8027510643e+00, /* 0x40d9b023 */
177
  1.0830818176e+02, /* 0x42d89dca */
178
  5.1763616943e+02, /* 0x440168b7 */
179
  5.2871520996e+02, /* 0x44042dc6 */
180
};
181
static const float ps5[5] = {
182
  5.9280597687e+01, /* 0x426d1f55 */
183
  9.9140142822e+02, /* 0x4477d9b1 */
184
  5.3532670898e+03, /* 0x45a74a23 */
185
  7.8446904297e+03, /* 0x45f52586 */
186
  1.5040468750e+03, /* 0x44bc0180 */
187
};
188
189
static const float pr3[6] = {
190
  3.0250391081e-09, /* 0x314fe10d */
191
  1.1718686670e-01, /* 0x3defffab */
192
  3.9329774380e+00, /* 0x407bb5e7 */
193
  3.5119403839e+01, /* 0x420c7a45 */
194
  9.1055007935e+01, /* 0x42b61c2a */
195
  4.8559066772e+01, /* 0x42423c7c */
196
};
197
static const float ps3[5] = {
198
  3.4791309357e+01, /* 0x420b2a4d */
199
  3.3676245117e+02, /* 0x43a86198 */
200
  1.0468714600e+03, /* 0x4482dbe3 */
201
  8.9081134033e+02, /* 0x445eb3ed */
202
  1.0378793335e+02, /* 0x42cf936c */
203
};
204
205
static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
206
  1.0771083225e-07, /* 0x33e74ea8 */
207
  1.1717621982e-01, /* 0x3deffa16 */
208
  2.3685150146e+00, /* 0x401795c0 */
209
  1.2242610931e+01, /* 0x4143e1bc */
210
  1.7693971634e+01, /* 0x418d8d41 */
211
  5.0735230446e+00, /* 0x40a25a4d */
212
};
213
static const float ps2[5] = {
214
  2.1436485291e+01, /* 0x41ab7dec */
215
  1.2529022980e+02, /* 0x42fa9499 */
216
  2.3227647400e+02, /* 0x436846c7 */
217
  1.1767937469e+02, /* 0x42eb5bd7 */
218
  8.3646392822e+00, /* 0x4105d590 */
219
};
220
221
static float
222
ponef(float x)
223
{
224
	const float *p,*q;
225
	float z,r,s;
226
        int32_t ix;
227
	GET_FLOAT_WORD(ix,x);
228
	ix &= 0x7fffffff;
229
        if(ix>=0x41000000)     {p = pr8; q= ps8;}
230
        else if(ix>=0x40f71c58){p = pr5; q= ps5;}
231
        else if(ix>=0x4036db68){p = pr3; q= ps3;}
232
        else if(ix>=0x40000000){p = pr2; q= ps2;}
233
        z = one/(x*x);
234
        r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
235
        s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
236
        return one+ r/s;
237
}
238
239
240
/* For x >= 8, the asymptotic expansions of qone is
241
 *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
242
 * We approximate pone by
243
 * 	qone(x) = s*(0.375 + (R/S))
244
 * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
245
 * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
246
 * and
247
 *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
248
 */
249
250
static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
251
  0.0000000000e+00, /* 0x00000000 */
252
 -1.0253906250e-01, /* 0xbdd20000 */
253
 -1.6271753311e+01, /* 0xc1822c8d */
254
 -7.5960174561e+02, /* 0xc43de683 */
255
 -1.1849806641e+04, /* 0xc639273a */
256
 -4.8438511719e+04, /* 0xc73d3683 */
257
};
258
static const float qs8[6] = {
259
  1.6139537048e+02, /* 0x43216537 */
260
  7.8253862305e+03, /* 0x45f48b17 */
261
  1.3387534375e+05, /* 0x4802bcd6 */
262
  7.1965775000e+05, /* 0x492fb29c */
263
  6.6660125000e+05, /* 0x4922be94 */
264
 -2.9449025000e+05, /* 0xc88fcb48 */
265
};
266
267
static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
268
 -2.0897993405e-11, /* 0xadb7d219 */
269
 -1.0253904760e-01, /* 0xbdd1fffe */
270
 -8.0564479828e+00, /* 0xc100e736 */
271
 -1.8366960144e+02, /* 0xc337ab6b */
272
 -1.3731937256e+03, /* 0xc4aba633 */
273
 -2.6124443359e+03, /* 0xc523471c */
274
};
275
static const float qs5[6] = {
276
  8.1276550293e+01, /* 0x42a28d98 */
277
  1.9917987061e+03, /* 0x44f8f98f */
278
  1.7468484375e+04, /* 0x468878f8 */
279
  4.9851425781e+04, /* 0x4742bb6d */
280
  2.7948074219e+04, /* 0x46da5826 */
281
 -4.7191835938e+03, /* 0xc5937978 */
282
};
283
284
static const float qr3[6] = {
285
 -5.0783124372e-09, /* 0xb1ae7d4f */
286
 -1.0253783315e-01, /* 0xbdd1ff5b */
287
 -4.6101160049e+00, /* 0xc0938612 */
288
 -5.7847221375e+01, /* 0xc267638e */
289
 -2.2824453735e+02, /* 0xc3643e9a */
290
 -2.1921012878e+02, /* 0xc35b35cb */
291
};
292
static const float qs3[6] = {
293
  4.7665153503e+01, /* 0x423ea91e */
294
  6.7386511230e+02, /* 0x4428775e */
295
  3.3801528320e+03, /* 0x45534272 */
296
  5.5477290039e+03, /* 0x45ad5dd5 */
297
  1.9031191406e+03, /* 0x44ede3d0 */
298
 -1.3520118713e+02, /* 0xc3073381 */
299
};
300
301
static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
302
 -1.7838172539e-07, /* 0xb43f8932 */
303
 -1.0251704603e-01, /* 0xbdd1f475 */
304
 -2.7522056103e+00, /* 0xc0302423 */
305
 -1.9663616180e+01, /* 0xc19d4f16 */
306
 -4.2325313568e+01, /* 0xc2294d1f */
307
 -2.1371921539e+01, /* 0xc1aaf9b2 */
308
};
309
static const float qs2[6] = {
310
  2.9533363342e+01, /* 0x41ec4454 */
311
  2.5298155212e+02, /* 0x437cfb47 */
312
  7.5750280762e+02, /* 0x443d602e */
313
  7.3939318848e+02, /* 0x4438d92a */
314
  1.5594900513e+02, /* 0x431bf2f2 */
315
 -4.9594988823e+00, /* 0xc09eb437 */
316
};
317
318
static float
319
qonef(float x)
320
{
321
	const float *p,*q;
322
	float  s,r,z;
323
	int32_t ix;
324
	GET_FLOAT_WORD(ix,x);
325
	ix &= 0x7fffffff;
326
	if(ix>=0x40200000)     {p = qr8; q= qs8;}
327
	else if(ix>=0x40f71c58){p = qr5; q= qs5;}
328
	else if(ix>=0x4036db68){p = qr3; q= qs3;}
329
	else if(ix>=0x40000000){p = qr2; q= qs2;}
330
	z = one/(x*x);
331
	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
332
	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
333
	return ((float).375 + r/s)/x;
334
}