1 |
|
|
/* @(#)e_jn.c 5.1 93/09/24 */ |
2 |
|
|
/* |
3 |
|
|
* ==================================================== |
4 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
5 |
|
|
* |
6 |
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business. |
7 |
|
|
* Permission to use, copy, modify, and distribute this |
8 |
|
|
* software is freely granted, provided that this notice |
9 |
|
|
* is preserved. |
10 |
|
|
* ==================================================== |
11 |
|
|
*/ |
12 |
|
|
|
13 |
|
|
/* |
14 |
|
|
* jn(n, x), yn(n, x) |
15 |
|
|
* floating point Bessel's function of the 1st and 2nd kind |
16 |
|
|
* of order n |
17 |
|
|
* |
18 |
|
|
* Special cases: |
19 |
|
|
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; |
20 |
|
|
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. |
21 |
|
|
* Note 2. About jn(n,x), yn(n,x) |
22 |
|
|
* For n=0, j0(x) is called, |
23 |
|
|
* for n=1, j1(x) is called, |
24 |
|
|
* for n<x, forward recursion us used starting |
25 |
|
|
* from values of j0(x) and j1(x). |
26 |
|
|
* for n>x, a continued fraction approximation to |
27 |
|
|
* j(n,x)/j(n-1,x) is evaluated and then backward |
28 |
|
|
* recursion is used starting from a supposed value |
29 |
|
|
* for j(n,x). The resulting value of j(0,x) is |
30 |
|
|
* compared with the actual value to correct the |
31 |
|
|
* supposed value of j(n,x). |
32 |
|
|
* |
33 |
|
|
* yn(n,x) is similar in all respects, except |
34 |
|
|
* that forward recursion is used for all |
35 |
|
|
* values of n>1. |
36 |
|
|
* |
37 |
|
|
*/ |
38 |
|
|
|
39 |
|
|
#include "math.h" |
40 |
|
|
#include "math_private.h" |
41 |
|
|
|
42 |
|
|
static const double |
43 |
|
|
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ |
44 |
|
|
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ |
45 |
|
|
one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */ |
46 |
|
|
|
47 |
|
|
static const double zero = 0.00000000000000000000e+00; |
48 |
|
|
|
49 |
|
|
double |
50 |
|
|
jn(int n, double x) |
51 |
|
|
{ |
52 |
|
|
int32_t i,hx,ix,lx, sgn; |
53 |
|
|
double a, b, temp, di; |
54 |
|
|
double z, w; |
55 |
|
|
|
56 |
|
|
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
57 |
|
|
* Thus, J(-n,x) = J(n,-x) |
58 |
|
|
*/ |
59 |
|
|
EXTRACT_WORDS(hx,lx,x); |
60 |
|
|
ix = 0x7fffffff&hx; |
61 |
|
|
/* if J(n,NaN) is NaN */ |
62 |
|
|
if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; |
63 |
|
|
if(n<0){ |
64 |
|
|
n = -n; |
65 |
|
|
x = -x; |
66 |
|
|
hx ^= 0x80000000; |
67 |
|
|
} |
68 |
|
|
if(n==0) return(j0(x)); |
69 |
|
|
if(n==1) return(j1(x)); |
70 |
|
|
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ |
71 |
|
|
x = fabs(x); |
72 |
|
|
if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */ |
73 |
|
|
b = zero; |
74 |
|
|
else if((double)n<=x) { |
75 |
|
|
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
76 |
|
|
if(ix>=0x52D00000) { /* x > 2**302 */ |
77 |
|
|
/* (x >> n**2) |
78 |
|
|
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
79 |
|
|
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
80 |
|
|
* Let s=sin(x), c=cos(x), |
81 |
|
|
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
82 |
|
|
* |
83 |
|
|
* n sin(xn)*sqt2 cos(xn)*sqt2 |
84 |
|
|
* ---------------------------------- |
85 |
|
|
* 0 s-c c+s |
86 |
|
|
* 1 -s-c -c+s |
87 |
|
|
* 2 -s+c -c-s |
88 |
|
|
* 3 s+c c-s |
89 |
|
|
*/ |
90 |
|
|
switch(n&3) { |
91 |
|
|
case 0: temp = cos(x)+sin(x); break; |
92 |
|
|
case 1: temp = -cos(x)+sin(x); break; |
93 |
|
|
case 2: temp = -cos(x)-sin(x); break; |
94 |
|
|
case 3: temp = cos(x)-sin(x); break; |
95 |
|
|
} |
96 |
|
|
b = invsqrtpi*temp/sqrt(x); |
97 |
|
|
} else { |
98 |
|
|
a = j0(x); |
99 |
|
|
b = j1(x); |
100 |
|
|
for(i=1;i<n;i++){ |
101 |
|
|
temp = b; |
102 |
|
|
b = b*((double)(i+i)/x) - a; /* avoid underflow */ |
103 |
|
|
a = temp; |
104 |
|
|
} |
105 |
|
|
} |
106 |
|
|
} else { |
107 |
|
|
if(ix<0x3e100000) { /* x < 2**-29 */ |
108 |
|
|
/* x is tiny, return the first Taylor expansion of J(n,x) |
109 |
|
|
* J(n,x) = 1/n!*(x/2)^n - ... |
110 |
|
|
*/ |
111 |
|
|
if(n>33) /* underflow */ |
112 |
|
|
b = zero; |
113 |
|
|
else { |
114 |
|
|
temp = x*0.5; b = temp; |
115 |
|
|
for (a=one,i=2;i<=n;i++) { |
116 |
|
|
a *= (double)i; /* a = n! */ |
117 |
|
|
b *= temp; /* b = (x/2)^n */ |
118 |
|
|
} |
119 |
|
|
b = b/a; |
120 |
|
|
} |
121 |
|
|
} else { |
122 |
|
|
/* use backward recurrence */ |
123 |
|
|
/* x x^2 x^2 |
124 |
|
|
* J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
125 |
|
|
* 2n - 2(n+1) - 2(n+2) |
126 |
|
|
* |
127 |
|
|
* 1 1 1 |
128 |
|
|
* (for large x) = ---- ------ ------ ..... |
129 |
|
|
* 2n 2(n+1) 2(n+2) |
130 |
|
|
* -- - ------ - ------ - |
131 |
|
|
* x x x |
132 |
|
|
* |
133 |
|
|
* Let w = 2n/x and h=2/x, then the above quotient |
134 |
|
|
* is equal to the continued fraction: |
135 |
|
|
* 1 |
136 |
|
|
* = ----------------------- |
137 |
|
|
* 1 |
138 |
|
|
* w - ----------------- |
139 |
|
|
* 1 |
140 |
|
|
* w+h - --------- |
141 |
|
|
* w+2h - ... |
142 |
|
|
* |
143 |
|
|
* To determine how many terms needed, let |
144 |
|
|
* Q(0) = w, Q(1) = w(w+h) - 1, |
145 |
|
|
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
146 |
|
|
* When Q(k) > 1e4 good for single |
147 |
|
|
* When Q(k) > 1e9 good for double |
148 |
|
|
* When Q(k) > 1e17 good for quadruple |
149 |
|
|
*/ |
150 |
|
|
/* determine k */ |
151 |
|
|
double t,v; |
152 |
|
|
double q0,q1,h,tmp; int32_t k,m; |
153 |
|
|
w = (n+n)/(double)x; h = 2.0/(double)x; |
154 |
|
|
q0 = w; z = w+h; q1 = w*z - 1.0; k=1; |
155 |
|
|
while(q1<1.0e9) { |
156 |
|
|
k += 1; z += h; |
157 |
|
|
tmp = z*q1 - q0; |
158 |
|
|
q0 = q1; |
159 |
|
|
q1 = tmp; |
160 |
|
|
} |
161 |
|
|
m = n+n; |
162 |
|
|
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); |
163 |
|
|
a = t; |
164 |
|
|
b = one; |
165 |
|
|
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
166 |
|
|
* Hence, if n*(log(2n/x)) > ... |
167 |
|
|
* single 8.8722839355e+01 |
168 |
|
|
* double 7.09782712893383973096e+02 |
169 |
|
|
* long double 1.1356523406294143949491931077970765006170e+04 |
170 |
|
|
* then recurrent value may overflow and the result is |
171 |
|
|
* likely underflow to zero |
172 |
|
|
*/ |
173 |
|
|
tmp = n; |
174 |
|
|
v = two/x; |
175 |
|
|
tmp = tmp*log(fabs(v*tmp)); |
176 |
|
|
if(tmp<7.09782712893383973096e+02) { |
177 |
|
|
for(i=n-1,di=(double)(i+i);i>0;i--){ |
178 |
|
|
temp = b; |
179 |
|
|
b *= di; |
180 |
|
|
b = b/x - a; |
181 |
|
|
a = temp; |
182 |
|
|
di -= two; |
183 |
|
|
} |
184 |
|
|
} else { |
185 |
|
|
for(i=n-1,di=(double)(i+i);i>0;i--){ |
186 |
|
|
temp = b; |
187 |
|
|
b *= di; |
188 |
|
|
b = b/x - a; |
189 |
|
|
a = temp; |
190 |
|
|
di -= two; |
191 |
|
|
/* scale b to avoid spurious overflow */ |
192 |
|
|
if(b>1e100) { |
193 |
|
|
a /= b; |
194 |
|
|
t /= b; |
195 |
|
|
b = one; |
196 |
|
|
} |
197 |
|
|
} |
198 |
|
|
} |
199 |
|
|
b = (t*j0(x)/b); |
200 |
|
|
} |
201 |
|
|
} |
202 |
|
|
if(sgn==1) return -b; else return b; |
203 |
|
|
} |
204 |
|
|
|
205 |
|
|
double |
206 |
|
|
yn(int n, double x) |
207 |
|
|
{ |
208 |
|
|
int32_t i,hx,ix,lx; |
209 |
|
|
int32_t sign; |
210 |
|
|
double a, b, temp; |
211 |
|
|
|
212 |
|
|
EXTRACT_WORDS(hx,lx,x); |
213 |
|
|
ix = 0x7fffffff&hx; |
214 |
|
|
/* if Y(n,NaN) is NaN */ |
215 |
|
|
if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; |
216 |
|
|
if((ix|lx)==0) return -one/zero; |
217 |
|
|
if(hx<0) return zero/zero; |
218 |
|
|
sign = 1; |
219 |
|
|
if(n<0){ |
220 |
|
|
n = -n; |
221 |
|
|
sign = 1 - ((n&1)<<1); |
222 |
|
|
} |
223 |
|
|
if(n==0) return(y0(x)); |
224 |
|
|
if(n==1) return(sign*y1(x)); |
225 |
|
|
if(ix==0x7ff00000) return zero; |
226 |
|
|
if(ix>=0x52D00000) { /* x > 2**302 */ |
227 |
|
|
/* (x >> n**2) |
228 |
|
|
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
229 |
|
|
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
230 |
|
|
* Let s=sin(x), c=cos(x), |
231 |
|
|
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
232 |
|
|
* |
233 |
|
|
* n sin(xn)*sqt2 cos(xn)*sqt2 |
234 |
|
|
* ---------------------------------- |
235 |
|
|
* 0 s-c c+s |
236 |
|
|
* 1 -s-c -c+s |
237 |
|
|
* 2 -s+c -c-s |
238 |
|
|
* 3 s+c c-s |
239 |
|
|
*/ |
240 |
|
|
switch(n&3) { |
241 |
|
|
case 0: temp = sin(x)-cos(x); break; |
242 |
|
|
case 1: temp = -sin(x)-cos(x); break; |
243 |
|
|
case 2: temp = -sin(x)+cos(x); break; |
244 |
|
|
case 3: temp = sin(x)+cos(x); break; |
245 |
|
|
} |
246 |
|
|
b = invsqrtpi*temp/sqrt(x); |
247 |
|
|
} else { |
248 |
|
|
u_int32_t high; |
249 |
|
|
a = y0(x); |
250 |
|
|
b = y1(x); |
251 |
|
|
/* quit if b is -inf */ |
252 |
|
|
GET_HIGH_WORD(high,b); |
253 |
|
|
for(i=1;i<n&&high!=0xfff00000;i++){ |
254 |
|
|
temp = b; |
255 |
|
|
b = ((double)(i+i)/x)*b - a; |
256 |
|
|
GET_HIGH_WORD(high,b); |
257 |
|
|
a = temp; |
258 |
|
|
} |
259 |
|
|
} |
260 |
|
|
if(sign>0) return b; else return -b; |
261 |
|
|
} |