1 |
|
|
/* e_lgammaf_r.c -- float version of e_lgamma_r.c. |
2 |
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
3 |
|
|
*/ |
4 |
|
|
|
5 |
|
|
/* |
6 |
|
|
* ==================================================== |
7 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
8 |
|
|
* |
9 |
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business. |
10 |
|
|
* Permission to use, copy, modify, and distribute this |
11 |
|
|
* software is freely granted, provided that this notice |
12 |
|
|
* is preserved. |
13 |
|
|
* ==================================================== |
14 |
|
|
*/ |
15 |
|
|
|
16 |
|
|
#include "math.h" |
17 |
|
|
#include "math_private.h" |
18 |
|
|
|
19 |
|
|
static const float |
20 |
|
|
two23= 8.3886080000e+06, /* 0x4b000000 */ |
21 |
|
|
half= 5.0000000000e-01, /* 0x3f000000 */ |
22 |
|
|
one = 1.0000000000e+00, /* 0x3f800000 */ |
23 |
|
|
pi = 3.1415927410e+00, /* 0x40490fdb */ |
24 |
|
|
a0 = 7.7215664089e-02, /* 0x3d9e233f */ |
25 |
|
|
a1 = 3.2246702909e-01, /* 0x3ea51a66 */ |
26 |
|
|
a2 = 6.7352302372e-02, /* 0x3d89f001 */ |
27 |
|
|
a3 = 2.0580807701e-02, /* 0x3ca89915 */ |
28 |
|
|
a4 = 7.3855509982e-03, /* 0x3bf2027e */ |
29 |
|
|
a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */ |
30 |
|
|
a6 = 1.1927076848e-03, /* 0x3a9c54a1 */ |
31 |
|
|
a7 = 5.1006977446e-04, /* 0x3a05b634 */ |
32 |
|
|
a8 = 2.2086278477e-04, /* 0x39679767 */ |
33 |
|
|
a9 = 1.0801156895e-04, /* 0x38e28445 */ |
34 |
|
|
a10 = 2.5214456400e-05, /* 0x37d383a2 */ |
35 |
|
|
a11 = 4.4864096708e-05, /* 0x383c2c75 */ |
36 |
|
|
tc = 1.4616321325e+00, /* 0x3fbb16c3 */ |
37 |
|
|
tf = -1.2148628384e-01, /* 0xbdf8cdcd */ |
38 |
|
|
/* tt = -(tail of tf) */ |
39 |
|
|
tt = 6.6971006518e-09, /* 0x31e61c52 */ |
40 |
|
|
t0 = 4.8383611441e-01, /* 0x3ef7b95e */ |
41 |
|
|
t1 = -1.4758771658e-01, /* 0xbe17213c */ |
42 |
|
|
t2 = 6.4624942839e-02, /* 0x3d845a15 */ |
43 |
|
|
t3 = -3.2788541168e-02, /* 0xbd064d47 */ |
44 |
|
|
t4 = 1.7970675603e-02, /* 0x3c93373d */ |
45 |
|
|
t5 = -1.0314224288e-02, /* 0xbc28fcfe */ |
46 |
|
|
t6 = 6.1005386524e-03, /* 0x3bc7e707 */ |
47 |
|
|
t7 = -3.6845202558e-03, /* 0xbb7177fe */ |
48 |
|
|
t8 = 2.2596477065e-03, /* 0x3b141699 */ |
49 |
|
|
t9 = -1.4034647029e-03, /* 0xbab7f476 */ |
50 |
|
|
t10 = 8.8108185446e-04, /* 0x3a66f867 */ |
51 |
|
|
t11 = -5.3859531181e-04, /* 0xba0d3085 */ |
52 |
|
|
t12 = 3.1563205994e-04, /* 0x39a57b6b */ |
53 |
|
|
t13 = -3.1275415677e-04, /* 0xb9a3f927 */ |
54 |
|
|
t14 = 3.3552918467e-04, /* 0x39afe9f7 */ |
55 |
|
|
u0 = -7.7215664089e-02, /* 0xbd9e233f */ |
56 |
|
|
u1 = 6.3282704353e-01, /* 0x3f2200f4 */ |
57 |
|
|
u2 = 1.4549225569e+00, /* 0x3fba3ae7 */ |
58 |
|
|
u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */ |
59 |
|
|
u4 = 2.2896373272e-01, /* 0x3e6a7578 */ |
60 |
|
|
u5 = 1.3381091878e-02, /* 0x3c5b3c5e */ |
61 |
|
|
v1 = 2.4559779167e+00, /* 0x401d2ebe */ |
62 |
|
|
v2 = 2.1284897327e+00, /* 0x4008392d */ |
63 |
|
|
v3 = 7.6928514242e-01, /* 0x3f44efdf */ |
64 |
|
|
v4 = 1.0422264785e-01, /* 0x3dd572af */ |
65 |
|
|
v5 = 3.2170924824e-03, /* 0x3b52d5db */ |
66 |
|
|
s0 = -7.7215664089e-02, /* 0xbd9e233f */ |
67 |
|
|
s1 = 2.1498242021e-01, /* 0x3e5c245a */ |
68 |
|
|
s2 = 3.2577878237e-01, /* 0x3ea6cc7a */ |
69 |
|
|
s3 = 1.4635047317e-01, /* 0x3e15dce6 */ |
70 |
|
|
s4 = 2.6642270386e-02, /* 0x3cda40e4 */ |
71 |
|
|
s5 = 1.8402845599e-03, /* 0x3af135b4 */ |
72 |
|
|
s6 = 3.1947532989e-05, /* 0x3805ff67 */ |
73 |
|
|
r1 = 1.3920053244e+00, /* 0x3fb22d3b */ |
74 |
|
|
r2 = 7.2193557024e-01, /* 0x3f38d0c5 */ |
75 |
|
|
r3 = 1.7193385959e-01, /* 0x3e300f6e */ |
76 |
|
|
r4 = 1.8645919859e-02, /* 0x3c98bf54 */ |
77 |
|
|
r5 = 7.7794247773e-04, /* 0x3a4beed6 */ |
78 |
|
|
r6 = 7.3266842264e-06, /* 0x36f5d7bd */ |
79 |
|
|
w0 = 4.1893854737e-01, /* 0x3ed67f1d */ |
80 |
|
|
w1 = 8.3333335817e-02, /* 0x3daaaaab */ |
81 |
|
|
w2 = -2.7777778450e-03, /* 0xbb360b61 */ |
82 |
|
|
w3 = 7.9365057172e-04, /* 0x3a500cfd */ |
83 |
|
|
w4 = -5.9518753551e-04, /* 0xba1c065c */ |
84 |
|
|
w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */ |
85 |
|
|
w6 = -1.6309292987e-03; /* 0xbad5c4e8 */ |
86 |
|
|
|
87 |
|
|
static const float zero= 0.0000000000e+00; |
88 |
|
|
|
89 |
|
|
static float |
90 |
|
|
sin_pif(float x) |
91 |
|
|
{ |
92 |
|
|
float y,z; |
93 |
|
|
int n,ix; |
94 |
|
|
|
95 |
|
|
GET_FLOAT_WORD(ix,x); |
96 |
|
|
ix &= 0x7fffffff; |
97 |
|
|
|
98 |
|
|
if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0); |
99 |
|
|
y = -x; /* x is assume negative */ |
100 |
|
|
|
101 |
|
|
/* |
102 |
|
|
* argument reduction, make sure inexact flag not raised if input |
103 |
|
|
* is an integer |
104 |
|
|
*/ |
105 |
|
|
z = floorf(y); |
106 |
|
|
if(z!=y) { /* inexact anyway */ |
107 |
|
|
y *= (float)0.5; |
108 |
|
|
y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */ |
109 |
|
|
n = (int) (y*(float)4.0); |
110 |
|
|
} else { |
111 |
|
|
if(ix>=0x4b800000) { |
112 |
|
|
y = zero; n = 0; /* y must be even */ |
113 |
|
|
} else { |
114 |
|
|
if(ix<0x4b000000) z = y+two23; /* exact */ |
115 |
|
|
GET_FLOAT_WORD(n,z); |
116 |
|
|
n &= 1; |
117 |
|
|
y = n; |
118 |
|
|
n<<= 2; |
119 |
|
|
} |
120 |
|
|
} |
121 |
|
|
switch (n) { |
122 |
|
|
case 0: y = __kernel_sinf(pi*y,zero,0); break; |
123 |
|
|
case 1: |
124 |
|
|
case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break; |
125 |
|
|
case 3: |
126 |
|
|
case 4: y = __kernel_sinf(pi*(one-y),zero,0); break; |
127 |
|
|
case 5: |
128 |
|
|
case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break; |
129 |
|
|
default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break; |
130 |
|
|
} |
131 |
|
|
return -y; |
132 |
|
|
} |
133 |
|
|
|
134 |
|
|
|
135 |
|
|
float |
136 |
|
|
lgammaf_r(float x, int *signgamp) |
137 |
|
|
{ |
138 |
|
|
float t,y,z,nadj,p,p1,p2,p3,q,r,w; |
139 |
|
|
int i,hx,ix; |
140 |
|
|
|
141 |
|
70 |
GET_FLOAT_WORD(hx,x); |
142 |
|
|
|
143 |
|
|
/* purge off +-inf, NaN, +-0, and negative arguments */ |
144 |
|
35 |
*signgamp = 1; |
145 |
|
35 |
ix = hx&0x7fffffff; |
146 |
✓✓ |
50 |
if(ix>=0x7f800000) return x*x; |
147 |
✓✓ |
20 |
if(ix==0) { |
148 |
✓✓ |
10 |
if(hx<0) |
149 |
|
5 |
*signgamp = -1; |
150 |
|
10 |
return one/zero; |
151 |
|
|
} |
152 |
✗✓ |
10 |
if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */ |
153 |
|
|
if(hx<0) { |
154 |
|
|
*signgamp = -1; |
155 |
|
|
return - logf(-x); |
156 |
|
|
} else return - logf(x); |
157 |
|
|
} |
158 |
✗✓ |
10 |
if(hx<0) { |
159 |
|
|
if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */ |
160 |
|
|
return one/zero; |
161 |
|
|
t = sin_pif(x); |
162 |
|
|
if(t==zero) return one/zero; /* -integer */ |
163 |
|
|
nadj = logf(pi/fabsf(t*x)); |
164 |
|
|
if(t<zero) *signgamp = -1; |
165 |
|
|
x = -x; |
166 |
|
|
} |
167 |
|
|
|
168 |
|
|
/* purge off 1 and 2 */ |
169 |
✓✓ |
15 |
if (ix==0x3f800000||ix==0x40000000) r = 0; |
170 |
|
|
/* for x < 2.0 */ |
171 |
✗✓ |
5 |
else if(ix<0x40000000) { |
172 |
|
|
if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
173 |
|
|
r = - logf(x); |
174 |
|
|
if(ix>=0x3f3b4a20) {y = one-x; i= 0;} |
175 |
|
|
else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;} |
176 |
|
|
else {y = x; i=2;} |
177 |
|
|
} else { |
178 |
|
|
r = zero; |
179 |
|
|
if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */ |
180 |
|
|
else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */ |
181 |
|
|
else {y=x-one;i=2;} |
182 |
|
|
} |
183 |
|
|
switch(i) { |
184 |
|
|
case 0: |
185 |
|
|
z = y*y; |
186 |
|
|
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
187 |
|
|
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
188 |
|
|
p = y*p1+p2; |
189 |
|
|
r += (p-(float)0.5*y); break; |
190 |
|
|
case 1: |
191 |
|
|
z = y*y; |
192 |
|
|
w = z*y; |
193 |
|
|
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ |
194 |
|
|
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
195 |
|
|
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
196 |
|
|
p = z*p1-(tt-w*(p2+y*p3)); |
197 |
|
|
r += (tf + p); break; |
198 |
|
|
case 2: |
199 |
|
|
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
200 |
|
|
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
201 |
|
|
r += (-(float)0.5*y + p1/p2); |
202 |
|
|
} |
203 |
|
|
} |
204 |
✓✗ |
5 |
else if(ix<0x41000000) { /* x < 8.0 */ |
205 |
|
10 |
i = (int)x; |
206 |
|
|
t = zero; |
207 |
|
10 |
y = x-(float)i; |
208 |
|
10 |
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
209 |
|
10 |
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
210 |
|
10 |
r = half*y+p/q; |
211 |
|
|
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ |
212 |
✗✗✗✗ ✓✓ |
10 |
switch(i) { |
213 |
|
|
case 7: z *= (y+(float)6.0); /* FALLTHRU */ |
214 |
|
|
case 6: z *= (y+(float)5.0); /* FALLTHRU */ |
215 |
|
|
case 5: z *= (y+(float)4.0); /* FALLTHRU */ |
216 |
|
|
case 4: z *= (y+(float)3.0); /* FALLTHRU */ |
217 |
|
5 |
case 3: z *= (y+(float)2.0); /* FALLTHRU */ |
218 |
|
5 |
r += logf(z); break; |
219 |
|
|
} |
220 |
|
|
/* 8.0 <= x < 2**58 */ |
221 |
|
|
} else if (ix < 0x5c800000) { |
222 |
|
|
t = logf(x); |
223 |
|
|
z = one/x; |
224 |
|
|
y = z*z; |
225 |
|
|
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
226 |
|
|
r = (x-half)*(t-one)+w; |
227 |
|
|
} else |
228 |
|
|
/* 2**58 <= x <= inf */ |
229 |
|
|
r = x*(logf(x)-one); |
230 |
✗✓ |
10 |
if(hx<0) r = nadj - r; |
231 |
|
10 |
return r; |
232 |
|
35 |
} |
233 |
|
|
DEF_NONSTD(lgammaf_r); |