| 1 |  |  | /* e_lgammaf_r.c -- float version of e_lgamma_r.c. | 
    
    | 2 |  |  |  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. | 
    
    | 3 |  |  |  */ | 
    
    | 4 |  |  |  | 
    
    | 5 |  |  | /* | 
    
    | 6 |  |  |  * ==================================================== | 
    
    | 7 |  |  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
    
    | 8 |  |  |  * | 
    
    | 9 |  |  |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
    
    | 10 |  |  |  * Permission to use, copy, modify, and distribute this | 
    
    | 11 |  |  |  * software is freely granted, provided that this notice | 
    
    | 12 |  |  |  * is preserved. | 
    
    | 13 |  |  |  * ==================================================== | 
    
    | 14 |  |  |  */ | 
    
    | 15 |  |  |  | 
    
    | 16 |  |  | #include "math.h" | 
    
    | 17 |  |  | #include "math_private.h" | 
    
    | 18 |  |  |  | 
    
    | 19 |  |  | static const float | 
    
    | 20 |  |  | two23=  8.3886080000e+06, /* 0x4b000000 */ | 
    
    | 21 |  |  | half=  5.0000000000e-01, /* 0x3f000000 */ | 
    
    | 22 |  |  | one =  1.0000000000e+00, /* 0x3f800000 */ | 
    
    | 23 |  |  | pi  =  3.1415927410e+00, /* 0x40490fdb */ | 
    
    | 24 |  |  | a0  =  7.7215664089e-02, /* 0x3d9e233f */ | 
    
    | 25 |  |  | a1  =  3.2246702909e-01, /* 0x3ea51a66 */ | 
    
    | 26 |  |  | a2  =  6.7352302372e-02, /* 0x3d89f001 */ | 
    
    | 27 |  |  | a3  =  2.0580807701e-02, /* 0x3ca89915 */ | 
    
    | 28 |  |  | a4  =  7.3855509982e-03, /* 0x3bf2027e */ | 
    
    | 29 |  |  | a5  =  2.8905137442e-03, /* 0x3b3d6ec6 */ | 
    
    | 30 |  |  | a6  =  1.1927076848e-03, /* 0x3a9c54a1 */ | 
    
    | 31 |  |  | a7  =  5.1006977446e-04, /* 0x3a05b634 */ | 
    
    | 32 |  |  | a8  =  2.2086278477e-04, /* 0x39679767 */ | 
    
    | 33 |  |  | a9  =  1.0801156895e-04, /* 0x38e28445 */ | 
    
    | 34 |  |  | a10 =  2.5214456400e-05, /* 0x37d383a2 */ | 
    
    | 35 |  |  | a11 =  4.4864096708e-05, /* 0x383c2c75 */ | 
    
    | 36 |  |  | tc  =  1.4616321325e+00, /* 0x3fbb16c3 */ | 
    
    | 37 |  |  | tf  = -1.2148628384e-01, /* 0xbdf8cdcd */ | 
    
    | 38 |  |  | /* tt = -(tail of tf) */ | 
    
    | 39 |  |  | tt  =  6.6971006518e-09, /* 0x31e61c52 */ | 
    
    | 40 |  |  | t0  =  4.8383611441e-01, /* 0x3ef7b95e */ | 
    
    | 41 |  |  | t1  = -1.4758771658e-01, /* 0xbe17213c */ | 
    
    | 42 |  |  | t2  =  6.4624942839e-02, /* 0x3d845a15 */ | 
    
    | 43 |  |  | t3  = -3.2788541168e-02, /* 0xbd064d47 */ | 
    
    | 44 |  |  | t4  =  1.7970675603e-02, /* 0x3c93373d */ | 
    
    | 45 |  |  | t5  = -1.0314224288e-02, /* 0xbc28fcfe */ | 
    
    | 46 |  |  | t6  =  6.1005386524e-03, /* 0x3bc7e707 */ | 
    
    | 47 |  |  | t7  = -3.6845202558e-03, /* 0xbb7177fe */ | 
    
    | 48 |  |  | t8  =  2.2596477065e-03, /* 0x3b141699 */ | 
    
    | 49 |  |  | t9  = -1.4034647029e-03, /* 0xbab7f476 */ | 
    
    | 50 |  |  | t10 =  8.8108185446e-04, /* 0x3a66f867 */ | 
    
    | 51 |  |  | t11 = -5.3859531181e-04, /* 0xba0d3085 */ | 
    
    | 52 |  |  | t12 =  3.1563205994e-04, /* 0x39a57b6b */ | 
    
    | 53 |  |  | t13 = -3.1275415677e-04, /* 0xb9a3f927 */ | 
    
    | 54 |  |  | t14 =  3.3552918467e-04, /* 0x39afe9f7 */ | 
    
    | 55 |  |  | u0  = -7.7215664089e-02, /* 0xbd9e233f */ | 
    
    | 56 |  |  | u1  =  6.3282704353e-01, /* 0x3f2200f4 */ | 
    
    | 57 |  |  | u2  =  1.4549225569e+00, /* 0x3fba3ae7 */ | 
    
    | 58 |  |  | u3  =  9.7771751881e-01, /* 0x3f7a4bb2 */ | 
    
    | 59 |  |  | u4  =  2.2896373272e-01, /* 0x3e6a7578 */ | 
    
    | 60 |  |  | u5  =  1.3381091878e-02, /* 0x3c5b3c5e */ | 
    
    | 61 |  |  | v1  =  2.4559779167e+00, /* 0x401d2ebe */ | 
    
    | 62 |  |  | v2  =  2.1284897327e+00, /* 0x4008392d */ | 
    
    | 63 |  |  | v3  =  7.6928514242e-01, /* 0x3f44efdf */ | 
    
    | 64 |  |  | v4  =  1.0422264785e-01, /* 0x3dd572af */ | 
    
    | 65 |  |  | v5  =  3.2170924824e-03, /* 0x3b52d5db */ | 
    
    | 66 |  |  | s0  = -7.7215664089e-02, /* 0xbd9e233f */ | 
    
    | 67 |  |  | s1  =  2.1498242021e-01, /* 0x3e5c245a */ | 
    
    | 68 |  |  | s2  =  3.2577878237e-01, /* 0x3ea6cc7a */ | 
    
    | 69 |  |  | s3  =  1.4635047317e-01, /* 0x3e15dce6 */ | 
    
    | 70 |  |  | s4  =  2.6642270386e-02, /* 0x3cda40e4 */ | 
    
    | 71 |  |  | s5  =  1.8402845599e-03, /* 0x3af135b4 */ | 
    
    | 72 |  |  | s6  =  3.1947532989e-05, /* 0x3805ff67 */ | 
    
    | 73 |  |  | r1  =  1.3920053244e+00, /* 0x3fb22d3b */ | 
    
    | 74 |  |  | r2  =  7.2193557024e-01, /* 0x3f38d0c5 */ | 
    
    | 75 |  |  | r3  =  1.7193385959e-01, /* 0x3e300f6e */ | 
    
    | 76 |  |  | r4  =  1.8645919859e-02, /* 0x3c98bf54 */ | 
    
    | 77 |  |  | r5  =  7.7794247773e-04, /* 0x3a4beed6 */ | 
    
    | 78 |  |  | r6  =  7.3266842264e-06, /* 0x36f5d7bd */ | 
    
    | 79 |  |  | w0  =  4.1893854737e-01, /* 0x3ed67f1d */ | 
    
    | 80 |  |  | w1  =  8.3333335817e-02, /* 0x3daaaaab */ | 
    
    | 81 |  |  | w2  = -2.7777778450e-03, /* 0xbb360b61 */ | 
    
    | 82 |  |  | w3  =  7.9365057172e-04, /* 0x3a500cfd */ | 
    
    | 83 |  |  | w4  = -5.9518753551e-04, /* 0xba1c065c */ | 
    
    | 84 |  |  | w5  =  8.3633989561e-04, /* 0x3a5b3dd2 */ | 
    
    | 85 |  |  | w6  = -1.6309292987e-03; /* 0xbad5c4e8 */ | 
    
    | 86 |  |  |  | 
    
    | 87 |  |  | static const float zero=  0.0000000000e+00; | 
    
    | 88 |  |  |  | 
    
    | 89 |  |  | static float | 
    
    | 90 |  |  | sin_pif(float x) | 
    
    | 91 |  |  | { | 
    
    | 92 |  |  | 	float y,z; | 
    
    | 93 |  |  | 	int n,ix; | 
    
    | 94 |  |  |  | 
    
    | 95 |  |  | 	GET_FLOAT_WORD(ix,x); | 
    
    | 96 |  |  | 	ix &= 0x7fffffff; | 
    
    | 97 |  |  |  | 
    
    | 98 |  |  | 	if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0); | 
    
    | 99 |  |  | 	y = -x;		/* x is assume negative */ | 
    
    | 100 |  |  |  | 
    
    | 101 |  |  |     /* | 
    
    | 102 |  |  |      * argument reduction, make sure inexact flag not raised if input | 
    
    | 103 |  |  |      * is an integer | 
    
    | 104 |  |  |      */ | 
    
    | 105 |  |  | 	z = floorf(y); | 
    
    | 106 |  |  | 	if(z!=y) {				/* inexact anyway */ | 
    
    | 107 |  |  | 	    y  *= (float)0.5; | 
    
    | 108 |  |  | 	    y   = (float)2.0*(y - floorf(y));	/* y = |x| mod 2.0 */ | 
    
    | 109 |  |  | 	    n   = (int) (y*(float)4.0); | 
    
    | 110 |  |  | 	} else { | 
    
    | 111 |  |  |             if(ix>=0x4b800000) { | 
    
    | 112 |  |  |                 y = zero; n = 0;                 /* y must be even */ | 
    
    | 113 |  |  |             } else { | 
    
    | 114 |  |  |                 if(ix<0x4b000000) z = y+two23;	/* exact */ | 
    
    | 115 |  |  | 		GET_FLOAT_WORD(n,z); | 
    
    | 116 |  |  | 		n &= 1; | 
    
    | 117 |  |  |                 y  = n; | 
    
    | 118 |  |  |                 n<<= 2; | 
    
    | 119 |  |  |             } | 
    
    | 120 |  |  |         } | 
    
    | 121 |  |  | 	switch (n) { | 
    
    | 122 |  |  | 	    case 0:   y =  __kernel_sinf(pi*y,zero,0); break; | 
    
    | 123 |  |  | 	    case 1: | 
    
    | 124 |  |  | 	    case 2:   y =  __kernel_cosf(pi*((float)0.5-y),zero); break; | 
    
    | 125 |  |  | 	    case 3: | 
    
    | 126 |  |  | 	    case 4:   y =  __kernel_sinf(pi*(one-y),zero,0); break; | 
    
    | 127 |  |  | 	    case 5: | 
    
    | 128 |  |  | 	    case 6:   y = -__kernel_cosf(pi*(y-(float)1.5),zero); break; | 
    
    | 129 |  |  | 	    default:  y =  __kernel_sinf(pi*(y-(float)2.0),zero,0); break; | 
    
    | 130 |  |  | 	    } | 
    
    | 131 |  |  | 	return -y; | 
    
    | 132 |  |  | } | 
    
    | 133 |  |  |  | 
    
    | 134 |  |  |  | 
    
    | 135 |  |  | float | 
    
    | 136 |  |  | lgammaf_r(float x, int *signgamp) | 
    
    | 137 |  |  | { | 
    
    | 138 |  |  | 	float t,y,z,nadj,p,p1,p2,p3,q,r,w; | 
    
    | 139 |  |  | 	int i,hx,ix; | 
    
    | 140 |  |  |  | 
    
    | 141 |  | 70 | 	GET_FLOAT_WORD(hx,x); | 
    
    | 142 |  |  |  | 
    
    | 143 |  |  |     /* purge off +-inf, NaN, +-0, and negative arguments */ | 
    
    | 144 |  | 35 | 	*signgamp = 1; | 
    
    | 145 |  | 35 | 	ix = hx&0x7fffffff; | 
    
    | 146 | ✓✓ | 50 | 	if(ix>=0x7f800000) return x*x; | 
    
    | 147 | ✓✓ | 20 | 	if(ix==0) { | 
    
    | 148 | ✓✓ | 10 | 	    if(hx<0) | 
    
    | 149 |  | 5 | 		*signgamp = -1; | 
    
    | 150 |  | 10 | 	    return one/zero; | 
    
    | 151 |  |  | 	} | 
    
    | 152 | ✗✓ | 10 | 	if(ix<0x1c800000) {	/* |x|<2**-70, return -log(|x|) */ | 
    
    | 153 |  |  | 	    if(hx<0) { | 
    
    | 154 |  |  | 	        *signgamp = -1; | 
    
    | 155 |  |  | 	        return - logf(-x); | 
    
    | 156 |  |  | 	    } else return - logf(x); | 
    
    | 157 |  |  | 	} | 
    
    | 158 | ✗✓ | 10 | 	if(hx<0) { | 
    
    | 159 |  |  | 	    if(ix>=0x4b000000) 	/* |x|>=2**23, must be -integer */ | 
    
    | 160 |  |  | 		return one/zero; | 
    
    | 161 |  |  | 	    t = sin_pif(x); | 
    
    | 162 |  |  | 	    if(t==zero) return one/zero; /* -integer */ | 
    
    | 163 |  |  | 	    nadj = logf(pi/fabsf(t*x)); | 
    
    | 164 |  |  | 	    if(t<zero) *signgamp = -1; | 
    
    | 165 |  |  | 	    x = -x; | 
    
    | 166 |  |  | 	} | 
    
    | 167 |  |  |  | 
    
    | 168 |  |  |     /* purge off 1 and 2 */ | 
    
    | 169 | ✓✓ | 15 | 	if (ix==0x3f800000||ix==0x40000000) r = 0; | 
    
    | 170 |  |  |     /* for x < 2.0 */ | 
    
    | 171 | ✗✓ | 5 | 	else if(ix<0x40000000) { | 
    
    | 172 |  |  | 	    if(ix<=0x3f666666) { 	/* lgamma(x) = lgamma(x+1)-log(x) */ | 
    
    | 173 |  |  | 		r = - logf(x); | 
    
    | 174 |  |  | 		if(ix>=0x3f3b4a20) {y = one-x; i= 0;} | 
    
    | 175 |  |  | 		else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;} | 
    
    | 176 |  |  | 	  	else {y = x; i=2;} | 
    
    | 177 |  |  | 	    } else { | 
    
    | 178 |  |  | 	  	r = zero; | 
    
    | 179 |  |  | 	        if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */ | 
    
    | 180 |  |  | 	        else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */ | 
    
    | 181 |  |  | 		else {y=x-one;i=2;} | 
    
    | 182 |  |  | 	    } | 
    
    | 183 |  |  | 	    switch(i) { | 
    
    | 184 |  |  | 	      case 0: | 
    
    | 185 |  |  | 		z = y*y; | 
    
    | 186 |  |  | 		p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); | 
    
    | 187 |  |  | 		p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); | 
    
    | 188 |  |  | 		p  = y*p1+p2; | 
    
    | 189 |  |  | 		r  += (p-(float)0.5*y); break; | 
    
    | 190 |  |  | 	      case 1: | 
    
    | 191 |  |  | 		z = y*y; | 
    
    | 192 |  |  | 		w = z*y; | 
    
    | 193 |  |  | 		p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));	/* parallel comp */ | 
    
    | 194 |  |  | 		p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); | 
    
    | 195 |  |  | 		p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); | 
    
    | 196 |  |  | 		p  = z*p1-(tt-w*(p2+y*p3)); | 
    
    | 197 |  |  | 		r += (tf + p); break; | 
    
    | 198 |  |  | 	      case 2: | 
    
    | 199 |  |  | 		p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); | 
    
    | 200 |  |  | 		p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); | 
    
    | 201 |  |  | 		r += (-(float)0.5*y + p1/p2); | 
    
    | 202 |  |  | 	    } | 
    
    | 203 |  |  | 	} | 
    
    | 204 | ✓✗ | 5 | 	else if(ix<0x41000000) { 			/* x < 8.0 */ | 
    
    | 205 |  | 10 | 	    i = (int)x; | 
    
    | 206 |  |  | 	    t = zero; | 
    
    | 207 |  | 10 | 	    y = x-(float)i; | 
    
    | 208 |  | 10 | 	    p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); | 
    
    | 209 |  | 10 | 	    q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); | 
    
    | 210 |  | 10 | 	    r = half*y+p/q; | 
    
    | 211 |  |  | 	    z = one;	/* lgamma(1+s) = log(s) + lgamma(s) */ | 
    
    | 212 | ✗✗✗✗ ✓✓
 | 10 | 	    switch(i) { | 
    
    | 213 |  |  | 	    case 7: z *= (y+(float)6.0);	/* FALLTHRU */ | 
    
    | 214 |  |  | 	    case 6: z *= (y+(float)5.0);	/* FALLTHRU */ | 
    
    | 215 |  |  | 	    case 5: z *= (y+(float)4.0);	/* FALLTHRU */ | 
    
    | 216 |  |  | 	    case 4: z *= (y+(float)3.0);	/* FALLTHRU */ | 
    
    | 217 |  | 5 | 	    case 3: z *= (y+(float)2.0);	/* FALLTHRU */ | 
    
    | 218 |  | 5 | 		    r += logf(z); break; | 
    
    | 219 |  |  | 	    } | 
    
    | 220 |  |  |     /* 8.0 <= x < 2**58 */ | 
    
    | 221 |  |  | 	} else if (ix < 0x5c800000) { | 
    
    | 222 |  |  | 	    t = logf(x); | 
    
    | 223 |  |  | 	    z = one/x; | 
    
    | 224 |  |  | 	    y = z*z; | 
    
    | 225 |  |  | 	    w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); | 
    
    | 226 |  |  | 	    r = (x-half)*(t-one)+w; | 
    
    | 227 |  |  | 	} else | 
    
    | 228 |  |  |     /* 2**58 <= x <= inf */ | 
    
    | 229 |  |  | 	    r =  x*(logf(x)-one); | 
    
    | 230 | ✗✓ | 10 | 	if(hx<0) r = nadj - r; | 
    
    | 231 |  | 10 | 	return r; | 
    
    | 232 |  | 35 | } | 
    
    | 233 |  |  | DEF_NONSTD(lgammaf_r); |