1  | 
     | 
     | 
    /* @(#)e_hypot.c 5.1 93/09/24 */  | 
    
    
    2  | 
     | 
     | 
    /*  | 
    
    
    3  | 
     | 
     | 
     * ====================================================  | 
    
    
    4  | 
     | 
     | 
     * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.  | 
    
    
    5  | 
     | 
     | 
     *  | 
    
    
    6  | 
     | 
     | 
     * Developed at SunPro, a Sun Microsystems, Inc. business.  | 
    
    
    7  | 
     | 
     | 
     * Permission to use, copy, modify, and distribute this  | 
    
    
    8  | 
     | 
     | 
     * software is freely granted, provided that this notice  | 
    
    
    9  | 
     | 
     | 
     * is preserved.  | 
    
    
    10  | 
     | 
     | 
     * ====================================================  | 
    
    
    11  | 
     | 
     | 
     */  | 
    
    
    12  | 
     | 
     | 
     | 
    
    
    13  | 
     | 
     | 
    /* hypotl(x,y)  | 
    
    
    14  | 
     | 
     | 
     *  | 
    
    
    15  | 
     | 
     | 
     * Method :  | 
    
    
    16  | 
     | 
     | 
     *	If (assume round-to-nearest) z=x*x+y*y  | 
    
    
    17  | 
     | 
     | 
     *	has error less than sqrt(2)/2 ulp, than  | 
    
    
    18  | 
     | 
     | 
     *	sqrt(z) has error less than 1 ulp (exercise).  | 
    
    
    19  | 
     | 
     | 
     *  | 
    
    
    20  | 
     | 
     | 
     *	So, compute sqrt(x*x+y*y) with some care as  | 
    
    
    21  | 
     | 
     | 
     *	follows to get the error below 1 ulp:  | 
    
    
    22  | 
     | 
     | 
     *  | 
    
    
    23  | 
     | 
     | 
     *	Assume x>y>0;  | 
    
    
    24  | 
     | 
     | 
     *	(if possible, set rounding to round-to-nearest)  | 
    
    
    25  | 
     | 
     | 
     *	1. if x > 2y  use  | 
    
    
    26  | 
     | 
     | 
     *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y  | 
    
    
    27  | 
     | 
     | 
     *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else  | 
    
    
    28  | 
     | 
     | 
     *	2. if x <= 2y use  | 
    
    
    29  | 
     | 
     | 
     *		t1*yy1+((x-y)*(x-y)+(t1*y2+t2*y))  | 
    
    
    30  | 
     | 
     | 
     *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,  | 
    
    
    31  | 
     | 
     | 
     *	yy1= y with lower 32 bits chopped, y2 = y-yy1.  | 
    
    
    32  | 
     | 
     | 
     *  | 
    
    
    33  | 
     | 
     | 
     *	NOTE: scaling may be necessary if some argument is too  | 
    
    
    34  | 
     | 
     | 
     *	      large or too tiny  | 
    
    
    35  | 
     | 
     | 
     *  | 
    
    
    36  | 
     | 
     | 
     * Special cases:  | 
    
    
    37  | 
     | 
     | 
     *	hypot(x,y) is INF if x or y is +INF or -INF; else  | 
    
    
    38  | 
     | 
     | 
     *	hypot(x,y) is NAN if x or y is NAN.  | 
    
    
    39  | 
     | 
     | 
     *  | 
    
    
    40  | 
     | 
     | 
     * Accuracy:  | 
    
    
    41  | 
     | 
     | 
     *	hypot(x,y) returns sqrt(x^2+y^2) with error less  | 
    
    
    42  | 
     | 
     | 
     *	than 1 ulps (units in the last place)  | 
    
    
    43  | 
     | 
     | 
     */  | 
    
    
    44  | 
     | 
     | 
     | 
    
    
    45  | 
     | 
     | 
    #include <math.h>  | 
    
    
    46  | 
     | 
     | 
     | 
    
    
    47  | 
     | 
     | 
    #include "math_private.h"  | 
    
    
    48  | 
     | 
     | 
     | 
    
    
    49  | 
     | 
     | 
    long double  | 
    
    
    50  | 
     | 
     | 
    hypotl(long double x, long double y)  | 
    
    
    51  | 
     | 
     | 
    { | 
    
    
    52  | 
     | 
     | 
    	long double a,b,t1,t2,yy1,y2,w;  | 
    
    
    53  | 
     | 
     | 
    	u_int32_t j,k,ea,eb;  | 
    
    
    54  | 
     | 
     | 
     | 
    
    
    55  | 
     | 
     | 
    	GET_LDOUBLE_EXP(ea,x);  | 
    
    
    56  | 
     | 
     | 
    	ea &= 0x7fff;  | 
    
    
    57  | 
     | 
     | 
    	GET_LDOUBLE_EXP(eb,y);  | 
    
    
    58  | 
     | 
     | 
    	eb &= 0x7fff;  | 
    
    
    59  | 
     | 
     | 
    	if(eb > ea) {a=y;b=x;j=ea; ea=eb;eb=j;} else {a=x;b=y;} | 
    
    
    60  | 
     | 
     | 
    	SET_LDOUBLE_EXP(a,ea);	/* a <- |a| */  | 
    
    
    61  | 
     | 
     | 
    	SET_LDOUBLE_EXP(b,eb);	/* b <- |b| */  | 
    
    
    62  | 
     | 
     | 
    	if((ea-eb)>0x46) {return a+b;} /* x/y > 2**70 */ | 
    
    
    63  | 
     | 
     | 
    	k=0;  | 
    
    
    64  | 
     | 
     | 
    	if(ea > 0x5f3f) {	/* a>2**8000 */ | 
    
    
    65  | 
     | 
     | 
    	   if(ea == 0x7fff) {	/* Inf or NaN */ | 
    
    
    66  | 
     | 
     | 
    	       u_int32_t es,high,low;  | 
    
    
    67  | 
     | 
     | 
    	       w = a+b;			/* for sNaN */  | 
    
    
    68  | 
     | 
     | 
    	       GET_LDOUBLE_WORDS(es,high,low,a);  | 
    
    
    69  | 
     | 
     | 
    	       if(((high&0x7fffffff)|low)==0) w = a;  | 
    
    
    70  | 
     | 
     | 
    	       GET_LDOUBLE_WORDS(es,high,low,b);  | 
    
    
    71  | 
     | 
     | 
    	       if(((eb^0x7fff)|(high&0x7fffffff)|low)==0) w = b;  | 
    
    
    72  | 
     | 
     | 
    	       return w;  | 
    
    
    73  | 
     | 
     | 
    	   }  | 
    
    
    74  | 
     | 
     | 
    	   /* scale a and b by 2**-9600 */  | 
    
    
    75  | 
     | 
     | 
    	   ea -= 0x2580; eb -= 0x2580;	k += 9600;  | 
    
    
    76  | 
     | 
     | 
    	   SET_LDOUBLE_EXP(a,ea);  | 
    
    
    77  | 
     | 
     | 
    	   SET_LDOUBLE_EXP(b,eb);  | 
    
    
    78  | 
     | 
     | 
    	}  | 
    
    
    79  | 
     | 
     | 
    	if(eb < 0x20bf) {	/* b < 2**-8000 */ | 
    
    
    80  | 
     | 
     | 
    	    if(eb == 0) {	/* subnormal b or 0 */ | 
    
    
    81  | 
     | 
     | 
    		u_int32_t es,high,low;  | 
    
    
    82  | 
     | 
     | 
    		GET_LDOUBLE_WORDS(es,high,low,b);  | 
    
    
    83  | 
     | 
     | 
    		if((high|low)==0) return a;  | 
    
    
    84  | 
     | 
     | 
    		SET_LDOUBLE_WORDS(t1, 0x7ffd, 0, 0);	/* t1=2^16382 */  | 
    
    
    85  | 
     | 
     | 
    		b *= t1;  | 
    
    
    86  | 
     | 
     | 
    		a *= t1;  | 
    
    
    87  | 
     | 
     | 
    		k -= 16382;  | 
    
    
    88  | 
     | 
     | 
    	    } else {		/* scale a and b by 2^9600 */ | 
    
    
    89  | 
     | 
     | 
    		ea += 0x2580;	/* a *= 2^9600 */  | 
    
    
    90  | 
     | 
     | 
    		eb += 0x2580;	/* b *= 2^9600 */  | 
    
    
    91  | 
     | 
     | 
    		k -= 9600;  | 
    
    
    92  | 
     | 
     | 
    		SET_LDOUBLE_EXP(a,ea);  | 
    
    
    93  | 
     | 
     | 
    		SET_LDOUBLE_EXP(b,eb);  | 
    
    
    94  | 
     | 
     | 
    	    }  | 
    
    
    95  | 
     | 
     | 
    	}  | 
    
    
    96  | 
     | 
     | 
        /* medium size a and b */  | 
    
    
    97  | 
     | 
     | 
    	w = a-b;  | 
    
    
    98  | 
     | 
     | 
    	if (w>b) { | 
    
    
    99  | 
     | 
     | 
    	    u_int32_t high;  | 
    
    
    100  | 
     | 
     | 
    	    GET_LDOUBLE_MSW(high,a);  | 
    
    
    101  | 
     | 
     | 
    	    SET_LDOUBLE_WORDS(t1,ea,high,0);  | 
    
    
    102  | 
     | 
     | 
    	    t2 = a-t1;  | 
    
    
    103  | 
     | 
     | 
    	    w  = sqrtl(t1*t1-(b*(-b)-t2*(a+t1)));  | 
    
    
    104  | 
     | 
     | 
    	} else { | 
    
    
    105  | 
     | 
     | 
    	    u_int32_t high;  | 
    
    
    106  | 
     | 
     | 
    	    GET_LDOUBLE_MSW(high,b);  | 
    
    
    107  | 
     | 
     | 
    	    a  = a+a;  | 
    
    
    108  | 
     | 
     | 
    	    SET_LDOUBLE_WORDS(yy1,eb,high,0);  | 
    
    
    109  | 
     | 
     | 
    	    y2 = b - yy1;  | 
    
    
    110  | 
     | 
     | 
    	    GET_LDOUBLE_MSW(high,a);  | 
    
    
    111  | 
     | 
     | 
    	    SET_LDOUBLE_WORDS(t1,ea+1,high,0);  | 
    
    
    112  | 
     | 
     | 
    	    t2 = a - t1;  | 
    
    
    113  | 
     | 
     | 
    	    w  = sqrtl(t1*yy1-(w*(-w)-(t1*y2+t2*b)));  | 
    
    
    114  | 
     | 
     | 
    	}  | 
    
    
    115  | 
     | 
     | 
    	if(k!=0) { | 
    
    
    116  | 
     | 
     | 
    	    u_int32_t es;  | 
    
    
    117  | 
     | 
     | 
    	    t1 = 1.0;  | 
    
    
    118  | 
     | 
     | 
    	    GET_LDOUBLE_EXP(es,t1);  | 
    
    
    119  | 
     | 
     | 
    	    SET_LDOUBLE_EXP(t1,es+k);  | 
    
    
    120  | 
     | 
     | 
    	    return t1*w;  | 
    
    
    121  | 
     | 
     | 
    	} else return w;  | 
    
    
    122  | 
     | 
     | 
    }  | 
    
    
    123  | 
     | 
     | 
    DEF_STD(hypotl);  |