1  | 
     | 
     | 
    /*	$OpenBSD: e_powl.c,v 1.7 2017/01/21 08:29:13 krw Exp $	*/  | 
    
    
    2  | 
     | 
     | 
     | 
    
    
    3  | 
     | 
     | 
    /*  | 
    
    
    4  | 
     | 
     | 
     * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>  | 
    
    
    5  | 
     | 
     | 
     *  | 
    
    
    6  | 
     | 
     | 
     * Permission to use, copy, modify, and distribute this software for any  | 
    
    
    7  | 
     | 
     | 
     * purpose with or without fee is hereby granted, provided that the above  | 
    
    
    8  | 
     | 
     | 
     * copyright notice and this permission notice appear in all copies.  | 
    
    
    9  | 
     | 
     | 
     *  | 
    
    
    10  | 
     | 
     | 
     * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES  | 
    
    
    11  | 
     | 
     | 
     * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF  | 
    
    
    12  | 
     | 
     | 
     * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR  | 
    
    
    13  | 
     | 
     | 
     * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES  | 
    
    
    14  | 
     | 
     | 
     * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN  | 
    
    
    15  | 
     | 
     | 
     * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF  | 
    
    
    16  | 
     | 
     | 
     * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.  | 
    
    
    17  | 
     | 
     | 
     */  | 
    
    
    18  | 
     | 
     | 
     | 
    
    
    19  | 
     | 
     | 
    /*							powl.c  | 
    
    
    20  | 
     | 
     | 
     *  | 
    
    
    21  | 
     | 
     | 
     *	Power function, long double precision  | 
    
    
    22  | 
     | 
     | 
     *  | 
    
    
    23  | 
     | 
     | 
     *  | 
    
    
    24  | 
     | 
     | 
     *  | 
    
    
    25  | 
     | 
     | 
     * SYNOPSIS:  | 
    
    
    26  | 
     | 
     | 
     *  | 
    
    
    27  | 
     | 
     | 
     * long double x, y, z, powl();  | 
    
    
    28  | 
     | 
     | 
     *  | 
    
    
    29  | 
     | 
     | 
     * z = powl( x, y );  | 
    
    
    30  | 
     | 
     | 
     *  | 
    
    
    31  | 
     | 
     | 
     *  | 
    
    
    32  | 
     | 
     | 
     *  | 
    
    
    33  | 
     | 
     | 
     * DESCRIPTION:  | 
    
    
    34  | 
     | 
     | 
     *  | 
    
    
    35  | 
     | 
     | 
     * Computes x raised to the yth power.  Analytically,  | 
    
    
    36  | 
     | 
     | 
     *  | 
    
    
    37  | 
     | 
     | 
     *      x**y  =  exp( y log(x) ).  | 
    
    
    38  | 
     | 
     | 
     *  | 
    
    
    39  | 
     | 
     | 
     * Following Cody and Waite, this program uses a lookup table  | 
    
    
    40  | 
     | 
     | 
     * of 2**-i/32 and pseudo extended precision arithmetic to  | 
    
    
    41  | 
     | 
     | 
     * obtain several extra bits of accuracy in both the logarithm  | 
    
    
    42  | 
     | 
     | 
     * and the exponential.  | 
    
    
    43  | 
     | 
     | 
     *  | 
    
    
    44  | 
     | 
     | 
     *  | 
    
    
    45  | 
     | 
     | 
     *  | 
    
    
    46  | 
     | 
     | 
     * ACCURACY:  | 
    
    
    47  | 
     | 
     | 
     *  | 
    
    
    48  | 
     | 
     | 
     * The relative error of pow(x,y) can be estimated  | 
    
    
    49  | 
     | 
     | 
     * by   y dl ln(2),   where dl is the absolute error of  | 
    
    
    50  | 
     | 
     | 
     * the internally computed base 2 logarithm.  At the ends  | 
    
    
    51  | 
     | 
     | 
     * of the approximation interval the logarithm equal 1/32  | 
    
    
    52  | 
     | 
     | 
     * and its relative error is about 1 lsb = 1.1e-19.  Hence  | 
    
    
    53  | 
     | 
     | 
     * the predicted relative error in the result is 2.3e-21 y .  | 
    
    
    54  | 
     | 
     | 
     *  | 
    
    
    55  | 
     | 
     | 
     *                      Relative error:  | 
    
    
    56  | 
     | 
     | 
     * arithmetic   domain     # trials      peak         rms  | 
    
    
    57  | 
     | 
     | 
     *  | 
    
    
    58  | 
     | 
     | 
     *    IEEE     +-1000       40000      2.8e-18      3.7e-19  | 
    
    
    59  | 
     | 
     | 
     * .001 < x < 1000, with log(x) uniformly distributed.  | 
    
    
    60  | 
     | 
     | 
     * -1000 < y < 1000, y uniformly distributed.  | 
    
    
    61  | 
     | 
     | 
     *  | 
    
    
    62  | 
     | 
     | 
     *    IEEE     0,8700       60000      6.5e-18      1.0e-18  | 
    
    
    63  | 
     | 
     | 
     * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.  | 
    
    
    64  | 
     | 
     | 
     *  | 
    
    
    65  | 
     | 
     | 
     *  | 
    
    
    66  | 
     | 
     | 
     * ERROR MESSAGES:  | 
    
    
    67  | 
     | 
     | 
     *  | 
    
    
    68  | 
     | 
     | 
     *   message         condition      value returned  | 
    
    
    69  | 
     | 
     | 
     * pow overflow     x**y > MAXNUM      INFINITY  | 
    
    
    70  | 
     | 
     | 
     * pow underflow   x**y < 1/MAXNUM       0.0  | 
    
    
    71  | 
     | 
     | 
     * pow domain      x<0 and y noninteger  0.0  | 
    
    
    72  | 
     | 
     | 
     *  | 
    
    
    73  | 
     | 
     | 
     */  | 
    
    
    74  | 
     | 
     | 
     | 
    
    
    75  | 
     | 
     | 
    #include <float.h>  | 
    
    
    76  | 
     | 
     | 
    #include <math.h>  | 
    
    
    77  | 
     | 
     | 
     | 
    
    
    78  | 
     | 
     | 
    #include "math_private.h"  | 
    
    
    79  | 
     | 
     | 
     | 
    
    
    80  | 
     | 
     | 
    /* Table size */  | 
    
    
    81  | 
     | 
     | 
    #define NXT 32  | 
    
    
    82  | 
     | 
     | 
    /* log2(Table size) */  | 
    
    
    83  | 
     | 
     | 
    #define LNXT 5  | 
    
    
    84  | 
     | 
     | 
     | 
    
    
    85  | 
     | 
     | 
    /* log(1+x) =  x - .5x^2 + x^3 *  P(z)/Q(z)  | 
    
    
    86  | 
     | 
     | 
     * on the domain  2^(-1/32) - 1  <=  x  <=  2^(1/32) - 1  | 
    
    
    87  | 
     | 
     | 
     */  | 
    
    
    88  | 
     | 
     | 
    static long double P[] = { | 
    
    
    89  | 
     | 
     | 
     8.3319510773868690346226E-4L,  | 
    
    
    90  | 
     | 
     | 
     4.9000050881978028599627E-1L,  | 
    
    
    91  | 
     | 
     | 
     1.7500123722550302671919E0L,  | 
    
    
    92  | 
     | 
     | 
     1.4000100839971580279335E0L,  | 
    
    
    93  | 
     | 
     | 
    };  | 
    
    
    94  | 
     | 
     | 
    static long double Q[] = { | 
    
    
    95  | 
     | 
     | 
    /* 1.0000000000000000000000E0L,*/  | 
    
    
    96  | 
     | 
     | 
     5.2500282295834889175431E0L,  | 
    
    
    97  | 
     | 
     | 
     8.4000598057587009834666E0L,  | 
    
    
    98  | 
     | 
     | 
     4.2000302519914740834728E0L,  | 
    
    
    99  | 
     | 
     | 
    };  | 
    
    
    100  | 
     | 
     | 
    /* A[i] = 2^(-i/32), rounded to IEEE long double precision.  | 
    
    
    101  | 
     | 
     | 
     * If i is even, A[i] + B[i/2] gives additional accuracy.  | 
    
    
    102  | 
     | 
     | 
     */  | 
    
    
    103  | 
     | 
     | 
    static long double A[33] = { | 
    
    
    104  | 
     | 
     | 
     1.0000000000000000000000E0L,  | 
    
    
    105  | 
     | 
     | 
     9.7857206208770013448287E-1L,  | 
    
    
    106  | 
     | 
     | 
     9.5760328069857364691013E-1L,  | 
    
    
    107  | 
     | 
     | 
     9.3708381705514995065011E-1L,  | 
    
    
    108  | 
     | 
     | 
     9.1700404320467123175367E-1L,  | 
    
    
    109  | 
     | 
     | 
     8.9735453750155359320742E-1L,  | 
    
    
    110  | 
     | 
     | 
     8.7812608018664974155474E-1L,  | 
    
    
    111  | 
     | 
     | 
     8.5930964906123895780165E-1L,  | 
    
    
    112  | 
     | 
     | 
     8.4089641525371454301892E-1L,  | 
    
    
    113  | 
     | 
     | 
     8.2287773907698242225554E-1L,  | 
    
    
    114  | 
     | 
     | 
     8.0524516597462715409607E-1L,  | 
    
    
    115  | 
     | 
     | 
     7.8799042255394324325455E-1L,  | 
    
    
    116  | 
     | 
     | 
     7.7110541270397041179298E-1L,  | 
    
    
    117  | 
     | 
     | 
     7.5458221379671136985669E-1L,  | 
    
    
    118  | 
     | 
     | 
     7.3841307296974965571198E-1L,  | 
    
    
    119  | 
     | 
     | 
     7.2259040348852331001267E-1L,  | 
    
    
    120  | 
     | 
     | 
     7.0710678118654752438189E-1L,  | 
    
    
    121  | 
     | 
     | 
     6.9195494098191597746178E-1L,  | 
    
    
    122  | 
     | 
     | 
     6.7712777346844636413344E-1L,  | 
    
    
    123  | 
     | 
     | 
     6.6261832157987064729696E-1L,  | 
    
    
    124  | 
     | 
     | 
     6.4841977732550483296079E-1L,  | 
    
    
    125  | 
     | 
     | 
     6.3452547859586661129850E-1L,  | 
    
    
    126  | 
     | 
     | 
     6.2092890603674202431705E-1L,  | 
    
    
    127  | 
     | 
     | 
     6.0762367999023443907803E-1L,  | 
    
    
    128  | 
     | 
     | 
     5.9460355750136053334378E-1L,  | 
    
    
    129  | 
     | 
     | 
     5.8186242938878875689693E-1L,  | 
    
    
    130  | 
     | 
     | 
     5.6939431737834582684856E-1L,  | 
    
    
    131  | 
     | 
     | 
     5.5719337129794626814472E-1L,  | 
    
    
    132  | 
     | 
     | 
     5.4525386633262882960438E-1L,  | 
    
    
    133  | 
     | 
     | 
     5.3357020033841180906486E-1L,  | 
    
    
    134  | 
     | 
     | 
     5.2213689121370692017331E-1L,  | 
    
    
    135  | 
     | 
     | 
     5.1094857432705833910408E-1L,  | 
    
    
    136  | 
     | 
     | 
     5.0000000000000000000000E-1L,  | 
    
    
    137  | 
     | 
     | 
    };  | 
    
    
    138  | 
     | 
     | 
    static long double B[17] = { | 
    
    
    139  | 
     | 
     | 
     0.0000000000000000000000E0L,  | 
    
    
    140  | 
     | 
     | 
     2.6176170809902549338711E-20L,  | 
    
    
    141  | 
     | 
     | 
    -1.0126791927256478897086E-20L,  | 
    
    
    142  | 
     | 
     | 
     1.3438228172316276937655E-21L,  | 
    
    
    143  | 
     | 
     | 
     1.2207982955417546912101E-20L,  | 
    
    
    144  | 
     | 
     | 
    -6.3084814358060867200133E-21L,  | 
    
    
    145  | 
     | 
     | 
     1.3164426894366316434230E-20L,  | 
    
    
    146  | 
     | 
     | 
    -1.8527916071632873716786E-20L,  | 
    
    
    147  | 
     | 
     | 
     1.8950325588932570796551E-20L,  | 
    
    
    148  | 
     | 
     | 
     1.5564775779538780478155E-20L,  | 
    
    
    149  | 
     | 
     | 
     6.0859793637556860974380E-21L,  | 
    
    
    150  | 
     | 
     | 
    -2.0208749253662532228949E-20L,  | 
    
    
    151  | 
     | 
     | 
     1.4966292219224761844552E-20L,  | 
    
    
    152  | 
     | 
     | 
     3.3540909728056476875639E-21L,  | 
    
    
    153  | 
     | 
     | 
    -8.6987564101742849540743E-22L,  | 
    
    
    154  | 
     | 
     | 
    -1.2327176863327626135542E-20L,  | 
    
    
    155  | 
     | 
     | 
     0.0000000000000000000000E0L,  | 
    
    
    156  | 
     | 
     | 
    };  | 
    
    
    157  | 
     | 
     | 
     | 
    
    
    158  | 
     | 
     | 
    /* 2^x = 1 + x P(x),  | 
    
    
    159  | 
     | 
     | 
     * on the interval -1/32 <= x <= 0  | 
    
    
    160  | 
     | 
     | 
     */  | 
    
    
    161  | 
     | 
     | 
    static long double R[] = { | 
    
    
    162  | 
     | 
     | 
     1.5089970579127659901157E-5L,  | 
    
    
    163  | 
     | 
     | 
     1.5402715328927013076125E-4L,  | 
    
    
    164  | 
     | 
     | 
     1.3333556028915671091390E-3L,  | 
    
    
    165  | 
     | 
     | 
     9.6181291046036762031786E-3L,  | 
    
    
    166  | 
     | 
     | 
     5.5504108664798463044015E-2L,  | 
    
    
    167  | 
     | 
     | 
     2.4022650695910062854352E-1L,  | 
    
    
    168  | 
     | 
     | 
     6.9314718055994530931447E-1L,  | 
    
    
    169  | 
     | 
     | 
    };  | 
    
    
    170  | 
     | 
     | 
     | 
    
    
    171  | 
     | 
     | 
    #define douba(k) A[k]  | 
    
    
    172  | 
     | 
     | 
    #define doubb(k) B[k]  | 
    
    
    173  | 
     | 
     | 
    #define MEXP (NXT*16384.0L)  | 
    
    
    174  | 
     | 
     | 
    /* The following if denormal numbers are supported, else -MEXP: */  | 
    
    
    175  | 
     | 
     | 
    #define MNEXP (-NXT*(16384.0L+64.0L))  | 
    
    
    176  | 
     | 
     | 
    /* log2(e) - 1 */  | 
    
    
    177  | 
     | 
     | 
    #define LOG2EA 0.44269504088896340735992L  | 
    
    
    178  | 
     | 
     | 
     | 
    
    
    179  | 
     | 
     | 
    #define F W  | 
    
    
    180  | 
     | 
     | 
    #define Fa Wa  | 
    
    
    181  | 
     | 
     | 
    #define Fb Wb  | 
    
    
    182  | 
     | 
     | 
    #define G W  | 
    
    
    183  | 
     | 
     | 
    #define Ga Wa  | 
    
    
    184  | 
     | 
     | 
    #define Gb u  | 
    
    
    185  | 
     | 
     | 
    #define H W  | 
    
    
    186  | 
     | 
     | 
    #define Ha Wb  | 
    
    
    187  | 
     | 
     | 
    #define Hb Wb  | 
    
    
    188  | 
     | 
     | 
     | 
    
    
    189  | 
     | 
     | 
    static const long double MAXLOGL = 1.1356523406294143949492E4L;  | 
    
    
    190  | 
     | 
     | 
    static const long double MINLOGL = -1.13994985314888605586758E4L;  | 
    
    
    191  | 
     | 
     | 
    static const long double LOGE2L = 6.9314718055994530941723E-1L;  | 
    
    
    192  | 
     | 
     | 
    static volatile long double z;  | 
    
    
    193  | 
     | 
     | 
    static long double w, W, Wa, Wb, ya, yb, u;  | 
    
    
    194  | 
     | 
     | 
    static const long double huge = 0x1p10000L;  | 
    
    
    195  | 
     | 
     | 
    #if 0 /* XXX Prevent gcc from erroneously constant folding this. */  | 
    
    
    196  | 
     | 
     | 
    static const long double twom10000 = 0x1p-10000L;  | 
    
    
    197  | 
     | 
     | 
    #else  | 
    
    
    198  | 
     | 
     | 
    static volatile long double twom10000 = 0x1p-10000L;  | 
    
    
    199  | 
     | 
     | 
    #endif  | 
    
    
    200  | 
     | 
     | 
     | 
    
    
    201  | 
     | 
     | 
    static long double reducl( long double );  | 
    
    
    202  | 
     | 
     | 
    static long double powil ( long double, int );  | 
    
    
    203  | 
     | 
     | 
     | 
    
    
    204  | 
     | 
     | 
    long double  | 
    
    
    205  | 
     | 
     | 
    powl(long double x, long double y)  | 
    
    
    206  | 
     | 
     | 
    { | 
    
    
    207  | 
     | 
     | 
    /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */  | 
    
    
    208  | 
     | 
     | 
    int i, nflg, iyflg, yoddint;  | 
    
    
    209  | 
     | 
     | 
    long e;  | 
    
    
    210  | 
     | 
     | 
     | 
    
    
    211  | 
     | 
     | 
    if( y == 0.0L )  | 
    
    
    212  | 
     | 
     | 
    	return( 1.0L );  | 
    
    
    213  | 
     | 
     | 
     | 
    
    
    214  | 
     | 
     | 
    if( x == 1.0L )  | 
    
    
    215  | 
     | 
     | 
    	return( 1.0L );  | 
    
    
    216  | 
     | 
     | 
     | 
    
    
    217  | 
     | 
     | 
    if( isnan(x) )  | 
    
    
    218  | 
     | 
     | 
    	return( x );  | 
    
    
    219  | 
     | 
     | 
    if( isnan(y) )  | 
    
    
    220  | 
     | 
     | 
    	return( y );  | 
    
    
    221  | 
     | 
     | 
     | 
    
    
    222  | 
     | 
     | 
    if( y == 1.0L )  | 
    
    
    223  | 
     | 
     | 
    	return( x );  | 
    
    
    224  | 
     | 
     | 
     | 
    
    
    225  | 
     | 
     | 
    if( !isfinite(y) && x == -1.0L )  | 
    
    
    226  | 
     | 
     | 
    	return( 1.0L );  | 
    
    
    227  | 
     | 
     | 
     | 
    
    
    228  | 
     | 
     | 
    if( y >= LDBL_MAX )  | 
    
    
    229  | 
     | 
     | 
    	{ | 
    
    
    230  | 
     | 
     | 
    	if( x > 1.0L )  | 
    
    
    231  | 
     | 
     | 
    		return( INFINITY );  | 
    
    
    232  | 
     | 
     | 
    	if( x > 0.0L && x < 1.0L )  | 
    
    
    233  | 
     | 
     | 
    		return( 0.0L );  | 
    
    
    234  | 
     | 
     | 
    	if( x < -1.0L )  | 
    
    
    235  | 
     | 
     | 
    		return( INFINITY );  | 
    
    
    236  | 
     | 
     | 
    	if( x > -1.0L && x < 0.0L )  | 
    
    
    237  | 
     | 
     | 
    		return( 0.0L );  | 
    
    
    238  | 
     | 
     | 
    	}  | 
    
    
    239  | 
     | 
     | 
    if( y <= -LDBL_MAX )  | 
    
    
    240  | 
     | 
     | 
    	{ | 
    
    
    241  | 
     | 
     | 
    	if( x > 1.0L )  | 
    
    
    242  | 
     | 
     | 
    		return( 0.0L );  | 
    
    
    243  | 
     | 
     | 
    	if( x > 0.0L && x < 1.0L )  | 
    
    
    244  | 
     | 
     | 
    		return( INFINITY );  | 
    
    
    245  | 
     | 
     | 
    	if( x < -1.0L )  | 
    
    
    246  | 
     | 
     | 
    		return( 0.0L );  | 
    
    
    247  | 
     | 
     | 
    	if( x > -1.0L && x < 0.0L )  | 
    
    
    248  | 
     | 
     | 
    		return( INFINITY );  | 
    
    
    249  | 
     | 
     | 
    	}  | 
    
    
    250  | 
     | 
     | 
    if( x >= LDBL_MAX )  | 
    
    
    251  | 
     | 
     | 
    	{ | 
    
    
    252  | 
     | 
     | 
    	if( y > 0.0L )  | 
    
    
    253  | 
     | 
     | 
    		return( INFINITY );  | 
    
    
    254  | 
     | 
     | 
    	return( 0.0L );  | 
    
    
    255  | 
     | 
     | 
    	}  | 
    
    
    256  | 
     | 
     | 
     | 
    
    
    257  | 
     | 
     | 
    w = floorl(y);  | 
    
    
    258  | 
     | 
     | 
    /* Set iyflg to 1 if y is an integer.  */  | 
    
    
    259  | 
     | 
     | 
    iyflg = 0;  | 
    
    
    260  | 
     | 
     | 
    if( w == y )  | 
    
    
    261  | 
     | 
     | 
    	iyflg = 1;  | 
    
    
    262  | 
     | 
     | 
     | 
    
    
    263  | 
     | 
     | 
    /* Test for odd integer y.  */  | 
    
    
    264  | 
     | 
     | 
    yoddint = 0;  | 
    
    
    265  | 
     | 
     | 
    if( iyflg )  | 
    
    
    266  | 
     | 
     | 
    	{ | 
    
    
    267  | 
     | 
     | 
    	ya = fabsl(y);  | 
    
    
    268  | 
     | 
     | 
    	ya = floorl(0.5L * ya);  | 
    
    
    269  | 
     | 
     | 
    	yb = 0.5L * fabsl(w);  | 
    
    
    270  | 
     | 
     | 
    	if( ya != yb )  | 
    
    
    271  | 
     | 
     | 
    		yoddint = 1;  | 
    
    
    272  | 
     | 
     | 
    	}  | 
    
    
    273  | 
     | 
     | 
     | 
    
    
    274  | 
     | 
     | 
    if( x <= -LDBL_MAX )  | 
    
    
    275  | 
     | 
     | 
    	{ | 
    
    
    276  | 
     | 
     | 
    	if( y > 0.0L )  | 
    
    
    277  | 
     | 
     | 
    		{ | 
    
    
    278  | 
     | 
     | 
    		if( yoddint )  | 
    
    
    279  | 
     | 
     | 
    			return( -INFINITY );  | 
    
    
    280  | 
     | 
     | 
    		return( INFINITY );  | 
    
    
    281  | 
     | 
     | 
    		}  | 
    
    
    282  | 
     | 
     | 
    	if( y < 0.0L )  | 
    
    
    283  | 
     | 
     | 
    		{ | 
    
    
    284  | 
     | 
     | 
    		if( yoddint )  | 
    
    
    285  | 
     | 
     | 
    			return( -0.0L );  | 
    
    
    286  | 
     | 
     | 
    		return( 0.0 );  | 
    
    
    287  | 
     | 
     | 
    		}  | 
    
    
    288  | 
     | 
     | 
    	}  | 
    
    
    289  | 
     | 
     | 
     | 
    
    
    290  | 
     | 
     | 
     | 
    
    
    291  | 
     | 
     | 
    nflg = 0;	/* flag = 1 if x<0 raised to integer power */  | 
    
    
    292  | 
     | 
     | 
    if( x <= 0.0L )  | 
    
    
    293  | 
     | 
     | 
    	{ | 
    
    
    294  | 
     | 
     | 
    	if( x == 0.0L )  | 
    
    
    295  | 
     | 
     | 
    		{ | 
    
    
    296  | 
     | 
     | 
    		if( y < 0.0 )  | 
    
    
    297  | 
     | 
     | 
    			{ | 
    
    
    298  | 
     | 
     | 
    			if( signbit(x) && yoddint )  | 
    
    
    299  | 
     | 
     | 
    				return( -INFINITY );  | 
    
    
    300  | 
     | 
     | 
    			return( INFINITY );  | 
    
    
    301  | 
     | 
     | 
    			}  | 
    
    
    302  | 
     | 
     | 
    		if( y > 0.0 )  | 
    
    
    303  | 
     | 
     | 
    			{ | 
    
    
    304  | 
     | 
     | 
    			if( signbit(x) && yoddint )  | 
    
    
    305  | 
     | 
     | 
    				return( -0.0L );  | 
    
    
    306  | 
     | 
     | 
    			return( 0.0 );  | 
    
    
    307  | 
     | 
     | 
    			}  | 
    
    
    308  | 
     | 
     | 
    		if( y == 0.0L )  | 
    
    
    309  | 
     | 
     | 
    			return( 1.0L );  /*   0**0   */  | 
    
    
    310  | 
     | 
     | 
    		else  | 
    
    
    311  | 
     | 
     | 
    			return( 0.0L );  /*   0**y   */  | 
    
    
    312  | 
     | 
     | 
    		}  | 
    
    
    313  | 
     | 
     | 
    	else  | 
    
    
    314  | 
     | 
     | 
    		{ | 
    
    
    315  | 
     | 
     | 
    		if( iyflg == 0 )  | 
    
    
    316  | 
     | 
     | 
    			return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */  | 
    
    
    317  | 
     | 
     | 
    		nflg = 1;  | 
    
    
    318  | 
     | 
     | 
    		}  | 
    
    
    319  | 
     | 
     | 
    	}  | 
    
    
    320  | 
     | 
     | 
     | 
    
    
    321  | 
     | 
     | 
    /* Integer power of an integer.  */  | 
    
    
    322  | 
     | 
     | 
     | 
    
    
    323  | 
     | 
     | 
    if( iyflg )  | 
    
    
    324  | 
     | 
     | 
    	{ | 
    
    
    325  | 
     | 
     | 
    	i = w;  | 
    
    
    326  | 
     | 
     | 
    	w = floorl(x);  | 
    
    
    327  | 
     | 
     | 
    	if( (w == x) && (fabsl(y) < 32768.0) )  | 
    
    
    328  | 
     | 
     | 
    		{ | 
    
    
    329  | 
     | 
     | 
    		w = powil( x, (int) y );  | 
    
    
    330  | 
     | 
     | 
    		return( w );  | 
    
    
    331  | 
     | 
     | 
    		}  | 
    
    
    332  | 
     | 
     | 
    	}  | 
    
    
    333  | 
     | 
     | 
     | 
    
    
    334  | 
     | 
     | 
     | 
    
    
    335  | 
     | 
     | 
    if( nflg )  | 
    
    
    336  | 
     | 
     | 
    	x = fabsl(x);  | 
    
    
    337  | 
     | 
     | 
     | 
    
    
    338  | 
     | 
     | 
    /* separate significand from exponent */  | 
    
    
    339  | 
     | 
     | 
    x = frexpl( x, &i );  | 
    
    
    340  | 
     | 
     | 
    e = i;  | 
    
    
    341  | 
     | 
     | 
     | 
    
    
    342  | 
     | 
     | 
    /* find significand in antilog table A[] */  | 
    
    
    343  | 
     | 
     | 
    i = 1;  | 
    
    
    344  | 
     | 
     | 
    if( x <= douba(17) )  | 
    
    
    345  | 
     | 
     | 
    	i = 17;  | 
    
    
    346  | 
     | 
     | 
    if( x <= douba(i+8) )  | 
    
    
    347  | 
     | 
     | 
    	i += 8;  | 
    
    
    348  | 
     | 
     | 
    if( x <= douba(i+4) )  | 
    
    
    349  | 
     | 
     | 
    	i += 4;  | 
    
    
    350  | 
     | 
     | 
    if( x <= douba(i+2) )  | 
    
    
    351  | 
     | 
     | 
    	i += 2;  | 
    
    
    352  | 
     | 
     | 
    if( x >= douba(1) )  | 
    
    
    353  | 
     | 
     | 
    	i = -1;  | 
    
    
    354  | 
     | 
     | 
    i += 1;  | 
    
    
    355  | 
     | 
     | 
     | 
    
    
    356  | 
     | 
     | 
     | 
    
    
    357  | 
     | 
     | 
    /* Find (x - A[i])/A[i]  | 
    
    
    358  | 
     | 
     | 
     * in order to compute log(x/A[i]):  | 
    
    
    359  | 
     | 
     | 
     *  | 
    
    
    360  | 
     | 
     | 
     * log(x) = log( a x/a ) = log(a) + log(x/a)  | 
    
    
    361  | 
     | 
     | 
     *  | 
    
    
    362  | 
     | 
     | 
     * log(x/a) = log(1+v),  v = x/a - 1 = (x-a)/a  | 
    
    
    363  | 
     | 
     | 
     */  | 
    
    
    364  | 
     | 
     | 
    x -= douba(i);  | 
    
    
    365  | 
     | 
     | 
    x -= doubb(i/2);  | 
    
    
    366  | 
     | 
     | 
    x /= douba(i);  | 
    
    
    367  | 
     | 
     | 
     | 
    
    
    368  | 
     | 
     | 
     | 
    
    
    369  | 
     | 
     | 
    /* rational approximation for log(1+v):  | 
    
    
    370  | 
     | 
     | 
     *  | 
    
    
    371  | 
     | 
     | 
     * log(1+v)  =  v  -  v**2/2  +  v**3 P(v) / Q(v)  | 
    
    
    372  | 
     | 
     | 
     */  | 
    
    
    373  | 
     | 
     | 
    z = x*x;  | 
    
    
    374  | 
     | 
     | 
    w = x * ( z * __polevll( x, P, 3 ) / __p1evll( x, Q, 3 ) );  | 
    
    
    375  | 
     | 
     | 
    w = w - ldexpl( z, -1 );   /*  w - 0.5 * z  */  | 
    
    
    376  | 
     | 
     | 
     | 
    
    
    377  | 
     | 
     | 
    /* Convert to base 2 logarithm:  | 
    
    
    378  | 
     | 
     | 
     * multiply by log2(e) = 1 + LOG2EA  | 
    
    
    379  | 
     | 
     | 
     */  | 
    
    
    380  | 
     | 
     | 
    z = LOG2EA * w;  | 
    
    
    381  | 
     | 
     | 
    z += w;  | 
    
    
    382  | 
     | 
     | 
    z += LOG2EA * x;  | 
    
    
    383  | 
     | 
     | 
    z += x;  | 
    
    
    384  | 
     | 
     | 
     | 
    
    
    385  | 
     | 
     | 
    /* Compute exponent term of the base 2 logarithm. */  | 
    
    
    386  | 
     | 
     | 
    w = -i;  | 
    
    
    387  | 
     | 
     | 
    w = ldexpl( w, -LNXT );	/* divide by NXT */  | 
    
    
    388  | 
     | 
     | 
    w += e;  | 
    
    
    389  | 
     | 
     | 
    /* Now base 2 log of x is w + z. */  | 
    
    
    390  | 
     | 
     | 
     | 
    
    
    391  | 
     | 
     | 
    /* Multiply base 2 log by y, in extended precision. */  | 
    
    
    392  | 
     | 
     | 
     | 
    
    
    393  | 
     | 
     | 
    /* separate y into large part ya  | 
    
    
    394  | 
     | 
     | 
     * and small part yb less than 1/NXT  | 
    
    
    395  | 
     | 
     | 
     */  | 
    
    
    396  | 
     | 
     | 
    ya = reducl(y);  | 
    
    
    397  | 
     | 
     | 
    yb = y - ya;  | 
    
    
    398  | 
     | 
     | 
     | 
    
    
    399  | 
     | 
     | 
    /* (w+z)(ya+yb)  | 
    
    
    400  | 
     | 
     | 
     * = w*ya + w*yb + z*y  | 
    
    
    401  | 
     | 
     | 
     */  | 
    
    
    402  | 
     | 
     | 
    F = z * y  +  w * yb;  | 
    
    
    403  | 
     | 
     | 
    Fa = reducl(F);  | 
    
    
    404  | 
     | 
     | 
    Fb = F - Fa;  | 
    
    
    405  | 
     | 
     | 
     | 
    
    
    406  | 
     | 
     | 
    G = Fa + w * ya;  | 
    
    
    407  | 
     | 
     | 
    Ga = reducl(G);  | 
    
    
    408  | 
     | 
     | 
    Gb = G - Ga;  | 
    
    
    409  | 
     | 
     | 
     | 
    
    
    410  | 
     | 
     | 
    H = Fb + Gb;  | 
    
    
    411  | 
     | 
     | 
    Ha = reducl(H);  | 
    
    
    412  | 
     | 
     | 
    w = ldexpl( Ga+Ha, LNXT );  | 
    
    
    413  | 
     | 
     | 
     | 
    
    
    414  | 
     | 
     | 
    /* Test the power of 2 for overflow */  | 
    
    
    415  | 
     | 
     | 
    if( w > MEXP )  | 
    
    
    416  | 
     | 
     | 
    	return (huge * huge);		/* overflow */  | 
    
    
    417  | 
     | 
     | 
     | 
    
    
    418  | 
     | 
     | 
    if( w < MNEXP )  | 
    
    
    419  | 
     | 
     | 
    	return (twom10000 * twom10000);	/* underflow */  | 
    
    
    420  | 
     | 
     | 
     | 
    
    
    421  | 
     | 
     | 
    e = w;  | 
    
    
    422  | 
     | 
     | 
    Hb = H - Ha;  | 
    
    
    423  | 
     | 
     | 
     | 
    
    
    424  | 
     | 
     | 
    if( Hb > 0.0L )  | 
    
    
    425  | 
     | 
     | 
    	{ | 
    
    
    426  | 
     | 
     | 
    	e += 1;  | 
    
    
    427  | 
     | 
     | 
    	Hb -= (1.0L/NXT);  /*0.0625L;*/  | 
    
    
    428  | 
     | 
     | 
    	}  | 
    
    
    429  | 
     | 
     | 
     | 
    
    
    430  | 
     | 
     | 
    /* Now the product y * log2(x)  =  Hb + e/NXT.  | 
    
    
    431  | 
     | 
     | 
     *  | 
    
    
    432  | 
     | 
     | 
     * Compute base 2 exponential of Hb,  | 
    
    
    433  | 
     | 
     | 
     * where -0.0625 <= Hb <= 0.  | 
    
    
    434  | 
     | 
     | 
     */  | 
    
    
    435  | 
     | 
     | 
    z = Hb * __polevll( Hb, R, 6 );  /*    z  =  2**Hb - 1    */  | 
    
    
    436  | 
     | 
     | 
     | 
    
    
    437  | 
     | 
     | 
    /* Express e/NXT as an integer plus a negative number of (1/NXT)ths.  | 
    
    
    438  | 
     | 
     | 
     * Find lookup table entry for the fractional power of 2.  | 
    
    
    439  | 
     | 
     | 
     */  | 
    
    
    440  | 
     | 
     | 
    if( e < 0 )  | 
    
    
    441  | 
     | 
     | 
    	i = 0;  | 
    
    
    442  | 
     | 
     | 
    else  | 
    
    
    443  | 
     | 
     | 
    	i = 1;  | 
    
    
    444  | 
     | 
     | 
    i = e/NXT + i;  | 
    
    
    445  | 
     | 
     | 
    e = NXT*i - e;  | 
    
    
    446  | 
     | 
     | 
    w = douba( e );  | 
    
    
    447  | 
     | 
     | 
    z = w * z;      /*    2**-e * ( 1 + (2**Hb-1) )    */  | 
    
    
    448  | 
     | 
     | 
    z = z + w;  | 
    
    
    449  | 
     | 
     | 
    z = ldexpl( z, i );  /* multiply by integer power of 2 */  | 
    
    
    450  | 
     | 
     | 
     | 
    
    
    451  | 
     | 
     | 
    if( nflg )  | 
    
    
    452  | 
     | 
     | 
    	{ | 
    
    
    453  | 
     | 
     | 
    /* For negative x,  | 
    
    
    454  | 
     | 
     | 
     * find out if the integer exponent  | 
    
    
    455  | 
     | 
     | 
     * is odd or even.  | 
    
    
    456  | 
     | 
     | 
     */  | 
    
    
    457  | 
     | 
     | 
    	w = ldexpl( y, -1 );  | 
    
    
    458  | 
     | 
     | 
    	w = floorl(w);  | 
    
    
    459  | 
     | 
     | 
    	w = ldexpl( w, 1 );  | 
    
    
    460  | 
     | 
     | 
    	if( w != y )  | 
    
    
    461  | 
     | 
     | 
    		z = -z; /* odd exponent */  | 
    
    
    462  | 
     | 
     | 
    	}  | 
    
    
    463  | 
     | 
     | 
     | 
    
    
    464  | 
     | 
     | 
    return( z );  | 
    
    
    465  | 
     | 
     | 
    }  | 
    
    
    466  | 
     | 
     | 
    DEF_STD(powl);  | 
    
    
    467  | 
     | 
     | 
     | 
    
    
    468  | 
     | 
     | 
     | 
    
    
    469  | 
     | 
     | 
    /* Find a multiple of 1/NXT that is within 1/NXT of x. */  | 
    
    
    470  | 
     | 
     | 
    static long double  | 
    
    
    471  | 
     | 
     | 
    reducl(long double x)  | 
    
    
    472  | 
     | 
     | 
    { | 
    
    
    473  | 
     | 
     | 
    long double t;  | 
    
    
    474  | 
     | 
     | 
     | 
    
    
    475  | 
     | 
     | 
    t = ldexpl( x, LNXT );  | 
    
    
    476  | 
     | 
     | 
    t = floorl( t );  | 
    
    
    477  | 
     | 
     | 
    t = ldexpl( t, -LNXT );  | 
    
    
    478  | 
     | 
     | 
    return(t);  | 
    
    
    479  | 
     | 
     | 
    }  | 
    
    
    480  | 
     | 
     | 
     | 
    
    
    481  | 
     | 
     | 
    /*							powil.c  | 
    
    
    482  | 
     | 
     | 
     *  | 
    
    
    483  | 
     | 
     | 
     *	Real raised to integer power, long double precision  | 
    
    
    484  | 
     | 
     | 
     *  | 
    
    
    485  | 
     | 
     | 
     *  | 
    
    
    486  | 
     | 
     | 
     *  | 
    
    
    487  | 
     | 
     | 
     * SYNOPSIS:  | 
    
    
    488  | 
     | 
     | 
     *  | 
    
    
    489  | 
     | 
     | 
     * long double x, y, powil();  | 
    
    
    490  | 
     | 
     | 
     * int n;  | 
    
    
    491  | 
     | 
     | 
     *  | 
    
    
    492  | 
     | 
     | 
     * y = powil( x, n );  | 
    
    
    493  | 
     | 
     | 
     *  | 
    
    
    494  | 
     | 
     | 
     *  | 
    
    
    495  | 
     | 
     | 
     *  | 
    
    
    496  | 
     | 
     | 
     * DESCRIPTION:  | 
    
    
    497  | 
     | 
     | 
     *  | 
    
    
    498  | 
     | 
     | 
     * Returns argument x raised to the nth power.  | 
    
    
    499  | 
     | 
     | 
     * The routine efficiently decomposes n as a sum of powers of  | 
    
    
    500  | 
     | 
     | 
     * two. The desired power is a product of two-to-the-kth  | 
    
    
    501  | 
     | 
     | 
     * powers of x.  Thus to compute the 32767 power of x requires  | 
    
    
    502  | 
     | 
     | 
     * 28 multiplications instead of 32767 multiplications.  | 
    
    
    503  | 
     | 
     | 
     *  | 
    
    
    504  | 
     | 
     | 
     *  | 
    
    
    505  | 
     | 
     | 
     *  | 
    
    
    506  | 
     | 
     | 
     * ACCURACY:  | 
    
    
    507  | 
     | 
     | 
     *  | 
    
    
    508  | 
     | 
     | 
     *  | 
    
    
    509  | 
     | 
     | 
     *                      Relative error:  | 
    
    
    510  | 
     | 
     | 
     * arithmetic   x domain   n domain  # trials      peak         rms  | 
    
    
    511  | 
     | 
     | 
     *    IEEE     .001,1000  -1022,1023  50000       4.3e-17     7.8e-18  | 
    
    
    512  | 
     | 
     | 
     *    IEEE        1,2     -1022,1023  20000       3.9e-17     7.6e-18  | 
    
    
    513  | 
     | 
     | 
     *    IEEE     .99,1.01     0,8700    10000       3.6e-16     7.2e-17  | 
    
    
    514  | 
     | 
     | 
     *  | 
    
    
    515  | 
     | 
     | 
     * Returns MAXNUM on overflow, zero on underflow.  | 
    
    
    516  | 
     | 
     | 
     *  | 
    
    
    517  | 
     | 
     | 
     */  | 
    
    
    518  | 
     | 
     | 
     | 
    
    
    519  | 
     | 
     | 
    static long double  | 
    
    
    520  | 
     | 
     | 
    powil(long double x, int nn)  | 
    
    
    521  | 
     | 
     | 
    { | 
    
    
    522  | 
     | 
     | 
    long double ww, y;  | 
    
    
    523  | 
     | 
     | 
    long double s;  | 
    
    
    524  | 
     | 
     | 
    int n, e, sign, asign, lx;  | 
    
    
    525  | 
     | 
     | 
     | 
    
    
    526  | 
     | 
     | 
    if( x == 0.0L )  | 
    
    
    527  | 
     | 
     | 
    	{ | 
    
    
    528  | 
     | 
     | 
    	if( nn == 0 )  | 
    
    
    529  | 
     | 
     | 
    		return( 1.0L );  | 
    
    
    530  | 
     | 
     | 
    	else if( nn < 0 )  | 
    
    
    531  | 
     | 
     | 
    		return( LDBL_MAX );  | 
    
    
    532  | 
     | 
     | 
    	else  | 
    
    
    533  | 
     | 
     | 
    		return( 0.0L );  | 
    
    
    534  | 
     | 
     | 
    	}  | 
    
    
    535  | 
     | 
     | 
     | 
    
    
    536  | 
     | 
     | 
    if( nn == 0 )  | 
    
    
    537  | 
     | 
     | 
    	return( 1.0L );  | 
    
    
    538  | 
     | 
     | 
     | 
    
    
    539  | 
     | 
     | 
     | 
    
    
    540  | 
     | 
     | 
    if( x < 0.0L )  | 
    
    
    541  | 
     | 
     | 
    	{ | 
    
    
    542  | 
     | 
     | 
    	asign = -1;  | 
    
    
    543  | 
     | 
     | 
    	x = -x;  | 
    
    
    544  | 
     | 
     | 
    	}  | 
    
    
    545  | 
     | 
     | 
    else  | 
    
    
    546  | 
     | 
     | 
    	asign = 0;  | 
    
    
    547  | 
     | 
     | 
     | 
    
    
    548  | 
     | 
     | 
     | 
    
    
    549  | 
     | 
     | 
    if( nn < 0 )  | 
    
    
    550  | 
     | 
     | 
    	{ | 
    
    
    551  | 
     | 
     | 
    	sign = -1;  | 
    
    
    552  | 
     | 
     | 
    	n = -nn;  | 
    
    
    553  | 
     | 
     | 
    	}  | 
    
    
    554  | 
     | 
     | 
    else  | 
    
    
    555  | 
     | 
     | 
    	{ | 
    
    
    556  | 
     | 
     | 
    	sign = 1;  | 
    
    
    557  | 
     | 
     | 
    	n = nn;  | 
    
    
    558  | 
     | 
     | 
    	}  | 
    
    
    559  | 
     | 
     | 
     | 
    
    
    560  | 
     | 
     | 
    /* Overflow detection */  | 
    
    
    561  | 
     | 
     | 
     | 
    
    
    562  | 
     | 
     | 
    /* Calculate approximate logarithm of answer */  | 
    
    
    563  | 
     | 
     | 
    s = x;  | 
    
    
    564  | 
     | 
     | 
    s = frexpl( s, &lx );  | 
    
    
    565  | 
     | 
     | 
    e = (lx - 1)*n;  | 
    
    
    566  | 
     | 
     | 
    if( (e == 0) || (e > 64) || (e < -64) )  | 
    
    
    567  | 
     | 
     | 
    	{ | 
    
    
    568  | 
     | 
     | 
    	s = (s - 7.0710678118654752e-1L) / (s +  7.0710678118654752e-1L);  | 
    
    
    569  | 
     | 
     | 
    	s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L;  | 
    
    
    570  | 
     | 
     | 
    	}  | 
    
    
    571  | 
     | 
     | 
    else  | 
    
    
    572  | 
     | 
     | 
    	{ | 
    
    
    573  | 
     | 
     | 
    	s = LOGE2L * e;  | 
    
    
    574  | 
     | 
     | 
    	}  | 
    
    
    575  | 
     | 
     | 
     | 
    
    
    576  | 
     | 
     | 
    if( s > MAXLOGL )  | 
    
    
    577  | 
     | 
     | 
    	return (huge * huge);		/* overflow */  | 
    
    
    578  | 
     | 
     | 
     | 
    
    
    579  | 
     | 
     | 
    if( s < MINLOGL )  | 
    
    
    580  | 
     | 
     | 
    	return (twom10000 * twom10000);	/* underflow */  | 
    
    
    581  | 
     | 
     | 
    /* Handle tiny denormal answer, but with less accuracy  | 
    
    
    582  | 
     | 
     | 
     * since roundoff error in 1.0/x will be amplified.  | 
    
    
    583  | 
     | 
     | 
     * The precise demarcation should be the gradual underflow threshold.  | 
    
    
    584  | 
     | 
     | 
     */  | 
    
    
    585  | 
     | 
     | 
    if( s < (-MAXLOGL+2.0L) )  | 
    
    
    586  | 
     | 
     | 
    	{ | 
    
    
    587  | 
     | 
     | 
    	x = 1.0L/x;  | 
    
    
    588  | 
     | 
     | 
    	sign = -sign;  | 
    
    
    589  | 
     | 
     | 
    	}  | 
    
    
    590  | 
     | 
     | 
     | 
    
    
    591  | 
     | 
     | 
    /* First bit of the power */  | 
    
    
    592  | 
     | 
     | 
    if( n & 1 )  | 
    
    
    593  | 
     | 
     | 
    	y = x;  | 
    
    
    594  | 
     | 
     | 
     | 
    
    
    595  | 
     | 
     | 
    else  | 
    
    
    596  | 
     | 
     | 
    	{ | 
    
    
    597  | 
     | 
     | 
    	y = 1.0L;  | 
    
    
    598  | 
     | 
     | 
    	asign = 0;  | 
    
    
    599  | 
     | 
     | 
    	}  | 
    
    
    600  | 
     | 
     | 
     | 
    
    
    601  | 
     | 
     | 
    ww = x;  | 
    
    
    602  | 
     | 
     | 
    n >>= 1;  | 
    
    
    603  | 
     | 
     | 
    while( n )  | 
    
    
    604  | 
     | 
     | 
    	{ | 
    
    
    605  | 
     | 
     | 
    	ww = ww * ww;	/* arg to the 2-to-the-kth power */  | 
    
    
    606  | 
     | 
     | 
    	if( n & 1 )	/* if that bit is set, then include in product */  | 
    
    
    607  | 
     | 
     | 
    		y *= ww;  | 
    
    
    608  | 
     | 
     | 
    	n >>= 1;  | 
    
    
    609  | 
     | 
     | 
    	}  | 
    
    
    610  | 
     | 
     | 
     | 
    
    
    611  | 
     | 
     | 
    if( asign )  | 
    
    
    612  | 
     | 
     | 
    	y = -y; /* odd power of negative number */  | 
    
    
    613  | 
     | 
     | 
    if( sign < 0 )  | 
    
    
    614  | 
     | 
     | 
    	y = 1.0L/y;  | 
    
    
    615  | 
     | 
     | 
    return(y);  | 
    
    
    616  | 
     | 
     | 
    }  |