1  | 
     | 
     | 
    /* @(#)s_asinh.c 5.1 93/09/24 */  | 
    
    
    2  | 
     | 
     | 
    /*  | 
    
    
    3  | 
     | 
     | 
     * ====================================================  | 
    
    
    4  | 
     | 
     | 
     * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.  | 
    
    
    5  | 
     | 
     | 
     *  | 
    
    
    6  | 
     | 
     | 
     * Developed at SunPro, a Sun Microsystems, Inc. business.  | 
    
    
    7  | 
     | 
     | 
     * Permission to use, copy, modify, and distribute this  | 
    
    
    8  | 
     | 
     | 
     * software is freely granted, provided that this notice  | 
    
    
    9  | 
     | 
     | 
     * is preserved.  | 
    
    
    10  | 
     | 
     | 
     * ====================================================  | 
    
    
    11  | 
     | 
     | 
     */  | 
    
    
    12  | 
     | 
     | 
     | 
    
    
    13  | 
     | 
     | 
    /* asinhl(x)  | 
    
    
    14  | 
     | 
     | 
     * Method :  | 
    
    
    15  | 
     | 
     | 
     *	Based on  | 
    
    
    16  | 
     | 
     | 
     *		asinhl(x) = signl(x) * logl [ |x| + sqrtl(x*x+1) ]  | 
    
    
    17  | 
     | 
     | 
     *	we have  | 
    
    
    18  | 
     | 
     | 
     *	asinhl(x) := x  if  1+x*x=1,  | 
    
    
    19  | 
     | 
     | 
     *		  := signl(x)*(logl(x)+ln2)) for large |x|, else  | 
    
    
    20  | 
     | 
     | 
     *		  := signl(x)*logl(2|x|+1/(|x|+sqrtl(x*x+1))) if|x|>2, else  | 
    
    
    21  | 
     | 
     | 
     *		  := signl(x)*log1pl(|x| + x^2/(1 + sqrtl(1+x^2)))  | 
    
    
    22  | 
     | 
     | 
     */  | 
    
    
    23  | 
     | 
     | 
     | 
    
    
    24  | 
     | 
     | 
    #include <math.h>  | 
    
    
    25  | 
     | 
     | 
     | 
    
    
    26  | 
     | 
     | 
    #include "math_private.h"  | 
    
    
    27  | 
     | 
     | 
     | 
    
    
    28  | 
     | 
     | 
    static const long double  | 
    
    
    29  | 
     | 
     | 
    one =  1.000000000000000000000e+00L, /* 0x3FFF, 0x00000000, 0x00000000 */  | 
    
    
    30  | 
     | 
     | 
    ln2 =  6.931471805599453094287e-01L, /* 0x3FFE, 0xB17217F7, 0xD1CF79AC */  | 
    
    
    31  | 
     | 
     | 
    huge=  1.000000000000000000e+4900L;  | 
    
    
    32  | 
     | 
     | 
     | 
    
    
    33  | 
     | 
     | 
    long double  | 
    
    
    34  | 
     | 
     | 
    asinhl(long double x)  | 
    
    
    35  | 
     | 
     | 
    { | 
    
    
    36  | 
     | 
     | 
    	long double t,w;  | 
    
    
    37  | 
     | 
     | 
    	int32_t hx,ix;  | 
    
    
    38  | 
     | 
     | 
    	GET_LDOUBLE_EXP(hx,x);  | 
    
    
    39  | 
     | 
     | 
    	ix = hx&0x7fff;  | 
    
    
    40  | 
     | 
     | 
    	if(ix==0x7fff) return x+x;	/* x is inf or NaN */  | 
    
    
    41  | 
     | 
     | 
    	if(ix< 0x3fde) {	/* |x|<2**-34 */ | 
    
    
    42  | 
     | 
     | 
    	    if(huge+x>one) return x;	/* return x inexact except 0 */  | 
    
    
    43  | 
     | 
     | 
    	}  | 
    
    
    44  | 
     | 
     | 
    	if(ix>0x4020) {		/* |x| > 2**34 */ | 
    
    
    45  | 
     | 
     | 
    	    w = logl(fabsl(x))+ln2;  | 
    
    
    46  | 
     | 
     | 
    	} else if (ix>0x4000) {	/* 2**34 > |x| > 2.0 */ | 
    
    
    47  | 
     | 
     | 
    	    t = fabsl(x);  | 
    
    
    48  | 
     | 
     | 
    	    w = logl(2.0*t+one/(sqrtl(x*x+one)+t));  | 
    
    
    49  | 
     | 
     | 
    	} else {		/* 2.0 > |x| > 2**-28 */ | 
    
    
    50  | 
     | 
     | 
    	    t = x*x;  | 
    
    
    51  | 
     | 
     | 
    	    w =log1pl(fabsl(x)+t/(one+sqrtl(one+t)));  | 
    
    
    52  | 
     | 
     | 
    	}  | 
    
    
    53  | 
     | 
     | 
    	if(hx&0x8000) return -w; else return w;  | 
    
    
    54  | 
     | 
     | 
    }  |