GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libm/src/ld80/s_expm1l.c Lines: 0 25 0.0 %
Date: 2017-11-07 Branches: 0 6 0.0 %

Line Branch Exec Source
1
/*	$OpenBSD: s_expm1l.c,v 1.3 2016/09/12 19:47:03 guenther Exp $	*/
2
3
/*
4
 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5
 *
6
 * Permission to use, copy, modify, and distribute this software for any
7
 * purpose with or without fee is hereby granted, provided that the above
8
 * copyright notice and this permission notice appear in all copies.
9
 *
10
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17
 */
18
19
/*							expm1l.c
20
 *
21
 *	Exponential function, minus 1
22
 *      Long double precision
23
 *
24
 *
25
 * SYNOPSIS:
26
 *
27
 * long double x, y, expm1l();
28
 *
29
 * y = expm1l( x );
30
 *
31
 *
32
 *
33
 * DESCRIPTION:
34
 *
35
 * Returns e (2.71828...) raised to the x power, minus 1.
36
 *
37
 * Range reduction is accomplished by separating the argument
38
 * into an integer k and fraction f such that
39
 *
40
 *     x    k  f
41
 *    e  = 2  e.
42
 *
43
 * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
44
 * in the basic range [-0.5 ln 2, 0.5 ln 2].
45
 *
46
 *
47
 * ACCURACY:
48
 *
49
 *                      Relative error:
50
 * arithmetic   domain     # trials      peak         rms
51
 *    IEEE    -45,+MAXLOG   200,000     1.2e-19     2.5e-20
52
 *
53
 * ERROR MESSAGES:
54
 *
55
 *   message         condition      value returned
56
 * expm1l overflow   x > MAXLOG         MAXNUM
57
 *
58
 */
59
60
#include <math.h>
61
62
static const long double MAXLOGL = 1.1356523406294143949492E4L;
63
64
/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
65
   -.5 ln 2  <  x  <  .5 ln 2
66
   Theoretical peak relative error = 3.4e-22  */
67
68
static const long double
69
  P0 = -1.586135578666346600772998894928250240826E4L,
70
  P1 =  2.642771505685952966904660652518429479531E3L,
71
  P2 = -3.423199068835684263987132888286791620673E2L,
72
  P3 =  1.800826371455042224581246202420972737840E1L,
73
  P4 = -5.238523121205561042771939008061958820811E-1L,
74
75
  Q0 = -9.516813471998079611319047060563358064497E4L,
76
  Q1 =  3.964866271411091674556850458227710004570E4L,
77
  Q2 = -7.207678383830091850230366618190187434796E3L,
78
  Q3 =  7.206038318724600171970199625081491823079E2L,
79
  Q4 = -4.002027679107076077238836622982900945173E1L,
80
  /* Q5 = 1.000000000000000000000000000000000000000E0 */
81
82
/* C1 + C2 = ln 2 */
83
C1 = 6.93145751953125E-1L,
84
C2 = 1.428606820309417232121458176568075500134E-6L,
85
/* ln 2^-65 */
86
minarg = -4.5054566736396445112120088E1L;
87
static const long double huge = 0x1p10000L;
88
89
long double
90
expm1l(long double x)
91
{
92
long double px, qx, xx;
93
int k;
94
95
/* Overflow.  */
96
if (x > MAXLOGL)
97
  return (huge*huge);	/* overflow */
98
99
if (x == 0.0)
100
  return x;
101
102
/* Minimum value.  */
103
if (x < minarg)
104
  return -1.0L;
105
106
xx = C1 + C2;
107
108
/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
109
px = floorl (0.5 + x / xx);
110
k = px;
111
/* remainder times ln 2 */
112
x -= px * C1;
113
x -= px * C2;
114
115
/* Approximate exp(remainder ln 2).  */
116
px = (((( P4 * x
117
	 + P3) * x
118
	+ P2) * x
119
       + P1) * x
120
      + P0) * x;
121
122
qx = (((( x
123
	 + Q4) * x
124
	+ Q3) * x
125
       + Q2) * x
126
      + Q1) * x
127
     + Q0;
128
129
xx = x * x;
130
qx = x + (0.5 * xx + xx * px / qx);
131
132
/* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
133
   We have qx = exp(remainder ln 2) - 1, so
134
   exp(x) - 1  =  2^k (qx + 1) - 1  =  2^k qx + 2^k - 1.  */
135
px = ldexpl(1.0L, k);
136
x = px * qx + (px - 1.0);
137
return x;
138
}
139
DEF_STD(expm1l);