GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libm/src/s_cpowf.c Lines: 0 13 0.0 %
Date: 2017-11-07 Branches: 0 4 0.0 %

Line Branch Exec Source
1
/*	$OpenBSD: s_cpowf.c,v 1.2 2010/07/18 18:42:26 guenther Exp $	*/
2
/*
3
 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4
 *
5
 * Permission to use, copy, modify, and distribute this software for any
6
 * purpose with or without fee is hereby granted, provided that the above
7
 * copyright notice and this permission notice appear in all copies.
8
 *
9
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16
 */
17
18
/*							cpowf
19
 *
20
 *	Complex power function
21
 *
22
 *
23
 *
24
 * SYNOPSIS:
25
 *
26
 * float complex cpowf();
27
 * float complex a, z, w;
28
 *
29
 * w = cpowf (a, z);
30
 *
31
 *
32
 *
33
 * DESCRIPTION:
34
 *
35
 * Raises complex A to the complex Zth power.
36
 * Definition is per AMS55 # 4.2.8,
37
 * analytically equivalent to cpow(a,z) = cexp(z clog(a)).
38
 *
39
 * ACCURACY:
40
 *
41
 *                      Relative error:
42
 * arithmetic   domain     # trials      peak         rms
43
 *    IEEE      -10,+10     30000       9.4e-15     1.5e-15
44
 *
45
 */
46
47
#include <complex.h>
48
#include <math.h>
49
50
float complex
51
cpowf(float complex a, float complex z)
52
{
53
	float complex w;
54
	float x, y, r, theta, absa, arga;
55
56
	x = crealf(z);
57
	y = cimagf(z);
58
	absa = cabsf (a);
59
	if (absa == 0.0f) {
60
		return (0.0f + 0.0f * I);
61
	}
62
	arga = cargf (a);
63
	r = powf (absa, x);
64
	theta = x * arga;
65
	if (y != 0.0f) {
66
		r = r * expf (-y * arga);
67
		theta = theta + y * logf (absa);
68
	}
69
	w = r * cosf (theta) + (r * sinf (theta)) * I;
70
	return (w);
71
}