GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libm/src/s_csqrt.c Lines: 0 32 0.0 %
Date: 2017-11-07 Branches: 0 14 0.0 %

Line Branch Exec Source
1
/*	$OpenBSD: s_csqrt.c,v 1.8 2016/09/12 19:47:02 guenther Exp $	*/
2
/*
3
 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4
 *
5
 * Permission to use, copy, modify, and distribute this software for any
6
 * purpose with or without fee is hereby granted, provided that the above
7
 * copyright notice and this permission notice appear in all copies.
8
 *
9
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16
 */
17
18
/*							csqrt()
19
 *
20
 *	Complex square root
21
 *
22
 *
23
 *
24
 * SYNOPSIS:
25
 *
26
 * double complex csqrt();
27
 * double complex z, w;
28
 *
29
 * w = csqrt (z);
30
 *
31
 *
32
 *
33
 * DESCRIPTION:
34
 *
35
 *
36
 * If z = x + iy,  r = |z|, then
37
 *
38
 *                       1/2
39
 * Re w  =  [ (r + x)/2 ]   ,
40
 *
41
 *                       1/2
42
 * Im w  =  [ (r - x)/2 ]   .
43
 *
44
 * Cancellation error in r-x or r+x is avoided by using the
45
 * identity  2 Re w Im w  =  y.
46
 *
47
 * Note that -w is also a square root of z.  The root chosen
48
 * is always in the right half plane and Im w has the same sign as y.
49
 *
50
 *
51
 *
52
 * ACCURACY:
53
 *
54
 *                      Relative error:
55
 * arithmetic   domain     # trials      peak         rms
56
 *    DEC       -10,+10     25000       3.2e-17     9.6e-18
57
 *    IEEE      -10,+10   1,000,000     2.9e-16     6.1e-17
58
 *
59
 */
60
61
#include <complex.h>
62
#include <float.h>
63
#include <math.h>
64
65
double complex
66
csqrt(double complex z)
67
{
68
	double complex w;
69
	double x, y, r, t, scale;
70
71
	x = creal (z);
72
	y = cimag (z);
73
74
	if (y == 0.0) {
75
		if (x == 0.0) {
76
			w = 0.0 + y * I;
77
		}
78
		else {
79
			r = fabs (x);
80
			r = sqrt (r);
81
			if (x < 0.0) {
82
				w = 0.0 + copysign(r, y) * I;
83
			}
84
			else {
85
				w = r + y * I;
86
			}
87
		}
88
		return (w);
89
	}
90
	if (x == 0.0) {
91
		r = fabs (y);
92
		r = sqrt (0.5*r);
93
		if (y > 0)
94
			w = r + r * I;
95
		else
96
			w = r - r * I;
97
		return (w);
98
	}
99
	/* Rescale to avoid internal overflow or underflow.  */
100
	if ((fabs(x) > 4.0) || (fabs(y) > 4.0)) {
101
		x *= 0.25;
102
		y *= 0.25;
103
		scale = 2.0;
104
	}
105
	else {
106
		x *= 1.8014398509481984e16;  /* 2^54 */
107
		y *= 1.8014398509481984e16;
108
		scale = 7.450580596923828125e-9; /* 2^-27 */
109
#if 0
110
		x *= 4.0;
111
		y *= 4.0;
112
		scale = 0.5;
113
#endif
114
	}
115
	w = x + y * I;
116
	r = cabs(w);
117
	if (x > 0) {
118
		t = sqrt(0.5 * r + 0.5 * x);
119
		r = scale * fabs((0.5 * y) / t);
120
		t *= scale;
121
	}
122
	else {
123
		r = sqrt( 0.5 * r - 0.5 * x );
124
		t = scale * fabs( (0.5 * y) / r );
125
		r *= scale;
126
	}
127
	if (y < 0)
128
		w = t - r * I;
129
	else
130
		w = t + r * I;
131
	return (w);
132
}
133
DEF_STD(csqrt);
134
LDBL_MAYBE_CLONE(csqrt);