1 |
|
|
/* $OpenBSD: s_ctanf.c,v 1.2 2011/07/20 19:28:33 martynas Exp $ */ |
2 |
|
|
/* |
3 |
|
|
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
4 |
|
|
* |
5 |
|
|
* Permission to use, copy, modify, and distribute this software for any |
6 |
|
|
* purpose with or without fee is hereby granted, provided that the above |
7 |
|
|
* copyright notice and this permission notice appear in all copies. |
8 |
|
|
* |
9 |
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
10 |
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
11 |
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
12 |
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
13 |
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
14 |
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
15 |
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
16 |
|
|
*/ |
17 |
|
|
|
18 |
|
|
/* ctanf() |
19 |
|
|
* |
20 |
|
|
* Complex circular tangent |
21 |
|
|
* |
22 |
|
|
* |
23 |
|
|
* |
24 |
|
|
* SYNOPSIS: |
25 |
|
|
* |
26 |
|
|
* void ctanf(); |
27 |
|
|
* cmplxf z, w; |
28 |
|
|
* |
29 |
|
|
* ctanf( &z, &w ); |
30 |
|
|
* |
31 |
|
|
* |
32 |
|
|
* |
33 |
|
|
* DESCRIPTION: |
34 |
|
|
* |
35 |
|
|
* If |
36 |
|
|
* z = x + iy, |
37 |
|
|
* |
38 |
|
|
* then |
39 |
|
|
* |
40 |
|
|
* sin 2x + i sinh 2y |
41 |
|
|
* w = --------------------. |
42 |
|
|
* cos 2x + cosh 2y |
43 |
|
|
* |
44 |
|
|
* On the real axis the denominator is zero at odd multiples |
45 |
|
|
* of PI/2. The denominator is evaluated by its Taylor |
46 |
|
|
* series near these points. |
47 |
|
|
* |
48 |
|
|
* |
49 |
|
|
* ACCURACY: |
50 |
|
|
* |
51 |
|
|
* Relative error: |
52 |
|
|
* arithmetic domain # trials peak rms |
53 |
|
|
* IEEE -10,+10 30000 3.3e-7 5.1e-8 |
54 |
|
|
*/ |
55 |
|
|
|
56 |
|
|
#include <complex.h> |
57 |
|
|
#include <math.h> |
58 |
|
|
|
59 |
|
|
#define MACHEPF 3.0e-8 |
60 |
|
|
#define MAXNUMF 1.0e38f |
61 |
|
|
|
62 |
|
|
static const double DP1 = 3.140625; |
63 |
|
|
static const double DP2 = 9.67502593994140625E-4; |
64 |
|
|
static const double DP3 = 1.509957990978376432E-7; |
65 |
|
|
|
66 |
|
|
static float |
67 |
|
|
_redupif(float xx) |
68 |
|
|
{ |
69 |
|
|
float x, t; |
70 |
|
|
long i; |
71 |
|
|
|
72 |
|
|
x = xx; |
73 |
|
|
t = x/(float)M_PI; |
74 |
|
|
if(t >= 0.0) |
75 |
|
|
t += 0.5; |
76 |
|
|
else |
77 |
|
|
t -= 0.5; |
78 |
|
|
|
79 |
|
|
i = t; /* the multiple */ |
80 |
|
|
t = i; |
81 |
|
|
t = ((x - t * DP1) - t * DP2) - t * DP3; |
82 |
|
|
return(t); |
83 |
|
|
} |
84 |
|
|
|
85 |
|
|
/* Taylor series expansion for cosh(2y) - cos(2x) */ |
86 |
|
|
|
87 |
|
|
static float |
88 |
|
|
_ctansf(float complex z) |
89 |
|
|
{ |
90 |
|
|
float f, x, x2, y, y2, rn, t, d; |
91 |
|
|
|
92 |
|
|
x = fabsf(2.0f * crealf(z)); |
93 |
|
|
y = fabsf(2.0f * cimagf(z)); |
94 |
|
|
|
95 |
|
|
x = _redupif(x); |
96 |
|
|
|
97 |
|
|
x = x * x; |
98 |
|
|
y = y * y; |
99 |
|
|
x2 = 1.0f; |
100 |
|
|
y2 = 1.0f; |
101 |
|
|
f = 1.0f; |
102 |
|
|
rn = 0.0f; |
103 |
|
|
d = 0.0f; |
104 |
|
|
do { |
105 |
|
|
rn += 1.0f; |
106 |
|
|
f *= rn; |
107 |
|
|
rn += 1.0f; |
108 |
|
|
f *= rn; |
109 |
|
|
x2 *= x; |
110 |
|
|
y2 *= y; |
111 |
|
|
t = y2 + x2; |
112 |
|
|
t /= f; |
113 |
|
|
d += t; |
114 |
|
|
|
115 |
|
|
rn += 1.0f; |
116 |
|
|
f *= rn; |
117 |
|
|
rn += 1.0f; |
118 |
|
|
f *= rn; |
119 |
|
|
x2 *= x; |
120 |
|
|
y2 *= y; |
121 |
|
|
t = y2 - x2; |
122 |
|
|
t /= f; |
123 |
|
|
d += t; |
124 |
|
|
} |
125 |
|
|
while (fabsf(t/d) > MACHEPF) |
126 |
|
|
; |
127 |
|
|
return(d); |
128 |
|
|
} |
129 |
|
|
|
130 |
|
|
float complex |
131 |
|
|
ctanf(float complex z) |
132 |
|
|
{ |
133 |
|
|
float complex w; |
134 |
|
|
float d; |
135 |
|
|
|
136 |
|
|
d = cosf( 2.0f * crealf(z) ) + coshf( 2.0f * cimagf(z) ); |
137 |
|
|
|
138 |
|
|
if(fabsf(d) < 0.25f) |
139 |
|
|
d = _ctansf(z); |
140 |
|
|
|
141 |
|
|
if (d == 0.0f) { |
142 |
|
|
/*mtherr( "ctanf", OVERFLOW );*/ |
143 |
|
|
w = MAXNUMF + MAXNUMF * I; |
144 |
|
|
return (w); |
145 |
|
|
} |
146 |
|
|
w = sinf (2.0f * crealf(z)) / d + (sinhf (2.0f * cimagf(z)) / d) * I; |
147 |
|
|
return (w); |
148 |
|
|
} |