GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libm/src/s_ctanf.c Lines: 0 41 0.0 %
Date: 2017-11-07 Branches: 0 8 0.0 %

Line Branch Exec Source
1
/*	$OpenBSD: s_ctanf.c,v 1.2 2011/07/20 19:28:33 martynas Exp $	*/
2
/*
3
 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4
 *
5
 * Permission to use, copy, modify, and distribute this software for any
6
 * purpose with or without fee is hereby granted, provided that the above
7
 * copyright notice and this permission notice appear in all copies.
8
 *
9
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16
 */
17
18
/*							ctanf()
19
 *
20
 *	Complex circular tangent
21
 *
22
 *
23
 *
24
 * SYNOPSIS:
25
 *
26
 * void ctanf();
27
 * cmplxf z, w;
28
 *
29
 * ctanf( &z, &w );
30
 *
31
 *
32
 *
33
 * DESCRIPTION:
34
 *
35
 * If
36
 *     z = x + iy,
37
 *
38
 * then
39
 *
40
 *           sin 2x  +  i sinh 2y
41
 *     w  =  --------------------.
42
 *            cos 2x  +  cosh 2y
43
 *
44
 * On the real axis the denominator is zero at odd multiples
45
 * of PI/2.  The denominator is evaluated by its Taylor
46
 * series near these points.
47
 *
48
 *
49
 * ACCURACY:
50
 *
51
 *                      Relative error:
52
 * arithmetic   domain     # trials      peak         rms
53
 *    IEEE      -10,+10     30000       3.3e-7       5.1e-8
54
 */
55
56
#include <complex.h>
57
#include <math.h>
58
59
#define MACHEPF 3.0e-8
60
#define MAXNUMF 1.0e38f
61
62
static const double DP1 = 3.140625;
63
static const double DP2 = 9.67502593994140625E-4;
64
static const double DP3 = 1.509957990978376432E-7;
65
66
static float
67
_redupif(float xx)
68
{
69
	float x, t;
70
	long i;
71
72
	x = xx;
73
	t = x/(float)M_PI;
74
	if(t >= 0.0)
75
		t += 0.5;
76
	else
77
		t -= 0.5;
78
79
	i = t;	/* the multiple */
80
	t = i;
81
	t = ((x - t * DP1) - t * DP2) - t * DP3;
82
	return(t);
83
}
84
85
/*  Taylor series expansion for cosh(2y) - cos(2x)	*/
86
87
static float
88
_ctansf(float complex z)
89
{
90
	float f, x, x2, y, y2, rn, t, d;
91
92
	x = fabsf(2.0f * crealf(z));
93
	y = fabsf(2.0f * cimagf(z));
94
95
	x = _redupif(x);
96
97
	x = x * x;
98
	y = y * y;
99
	x2 = 1.0f;
100
	y2 = 1.0f;
101
	f = 1.0f;
102
	rn = 0.0f;
103
	d = 0.0f;
104
	do {
105
		rn += 1.0f;
106
		f *= rn;
107
		rn += 1.0f;
108
		f *= rn;
109
		x2 *= x;
110
		y2 *= y;
111
		t = y2 + x2;
112
		t /= f;
113
		d += t;
114
115
		rn += 1.0f;
116
		f *= rn;
117
		rn += 1.0f;
118
		f *= rn;
119
		x2 *= x;
120
		y2 *= y;
121
		t = y2 - x2;
122
		t /= f;
123
		d += t;
124
	}
125
	while (fabsf(t/d) > MACHEPF)
126
		;
127
	return(d);
128
}
129
130
float complex
131
ctanf(float complex z)
132
{
133
	float complex w;
134
	float d;
135
136
	d = cosf( 2.0f * crealf(z) ) + coshf( 2.0f * cimagf(z) );
137
138
	if(fabsf(d) < 0.25f)
139
		d = _ctansf(z);
140
141
	if (d == 0.0f) {
142
		/*mtherr( "ctanf", OVERFLOW );*/
143
		w = MAXNUMF + MAXNUMF * I;
144
		return (w);
145
	}
146
	w = sinf (2.0f * crealf(z)) / d + (sinhf (2.0f * cimagf(z)) / d) * I;
147
	return (w);
148
}