1 |
|
|
/* @(#)s_expm1.c 5.1 93/09/24 */ |
2 |
|
|
/* |
3 |
|
|
* ==================================================== |
4 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
5 |
|
|
* |
6 |
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business. |
7 |
|
|
* Permission to use, copy, modify, and distribute this |
8 |
|
|
* software is freely granted, provided that this notice |
9 |
|
|
* is preserved. |
10 |
|
|
* ==================================================== |
11 |
|
|
*/ |
12 |
|
|
|
13 |
|
|
/* expm1(x) |
14 |
|
|
* Returns exp(x)-1, the exponential of x minus 1. |
15 |
|
|
* |
16 |
|
|
* Method |
17 |
|
|
* 1. Argument reduction: |
18 |
|
|
* Given x, find r and integer k such that |
19 |
|
|
* |
20 |
|
|
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 |
21 |
|
|
* |
22 |
|
|
* Here a correction term c will be computed to compensate |
23 |
|
|
* the error in r when rounded to a floating-point number. |
24 |
|
|
* |
25 |
|
|
* 2. Approximating expm1(r) by a special rational function on |
26 |
|
|
* the interval [0,0.34658]: |
27 |
|
|
* Since |
28 |
|
|
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |
29 |
|
|
* we define R1(r*r) by |
30 |
|
|
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |
31 |
|
|
* That is, |
32 |
|
|
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |
33 |
|
|
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |
34 |
|
|
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |
35 |
|
|
* We use a special Remes algorithm on [0,0.347] to generate |
36 |
|
|
* a polynomial of degree 5 in r*r to approximate R1. The |
37 |
|
|
* maximum error of this polynomial approximation is bounded |
38 |
|
|
* by 2**-61. In other words, |
39 |
|
|
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |
40 |
|
|
* where Q1 = -1.6666666666666567384E-2, |
41 |
|
|
* Q2 = 3.9682539681370365873E-4, |
42 |
|
|
* Q3 = -9.9206344733435987357E-6, |
43 |
|
|
* Q4 = 2.5051361420808517002E-7, |
44 |
|
|
* Q5 = -6.2843505682382617102E-9; |
45 |
|
|
* (where z=r*r, and the values of Q1 to Q5 are listed below) |
46 |
|
|
* with error bounded by |
47 |
|
|
* | 5 | -61 |
48 |
|
|
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 |
49 |
|
|
* | | |
50 |
|
|
* |
51 |
|
|
* expm1(r) = exp(r)-1 is then computed by the following |
52 |
|
|
* specific way which minimize the accumulation rounding error: |
53 |
|
|
* 2 3 |
54 |
|
|
* r r [ 3 - (R1 + R1*r/2) ] |
55 |
|
|
* expm1(r) = r + --- + --- * [--------------------] |
56 |
|
|
* 2 2 [ 6 - r*(3 - R1*r/2) ] |
57 |
|
|
* |
58 |
|
|
* To compensate the error in the argument reduction, we use |
59 |
|
|
* expm1(r+c) = expm1(r) + c + expm1(r)*c |
60 |
|
|
* ~ expm1(r) + c + r*c |
61 |
|
|
* Thus c+r*c will be added in as the correction terms for |
62 |
|
|
* expm1(r+c). Now rearrange the term to avoid optimization |
63 |
|
|
* screw up: |
64 |
|
|
* ( 2 2 ) |
65 |
|
|
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) |
66 |
|
|
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |
67 |
|
|
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) |
68 |
|
|
* ( ) |
69 |
|
|
* |
70 |
|
|
* = r - E |
71 |
|
|
* 3. Scale back to obtain expm1(x): |
72 |
|
|
* From step 1, we have |
73 |
|
|
* expm1(x) = either 2^k*[expm1(r)+1] - 1 |
74 |
|
|
* = or 2^k*[expm1(r) + (1-2^-k)] |
75 |
|
|
* 4. Implementation notes: |
76 |
|
|
* (A). To save one multiplication, we scale the coefficient Qi |
77 |
|
|
* to Qi*2^i, and replace z by (x^2)/2. |
78 |
|
|
* (B). To achieve maximum accuracy, we compute expm1(x) by |
79 |
|
|
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |
80 |
|
|
* (ii) if k=0, return r-E |
81 |
|
|
* (iii) if k=-1, return 0.5*(r-E)-0.5 |
82 |
|
|
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) |
83 |
|
|
* else return 1.0+2.0*(r-E); |
84 |
|
|
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |
85 |
|
|
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else |
86 |
|
|
* (vii) return 2^k(1-((E+2^-k)-r)) |
87 |
|
|
* |
88 |
|
|
* Special cases: |
89 |
|
|
* expm1(INF) is INF, expm1(NaN) is NaN; |
90 |
|
|
* expm1(-INF) is -1, and |
91 |
|
|
* for finite argument, only expm1(0)=0 is exact. |
92 |
|
|
* |
93 |
|
|
* Accuracy: |
94 |
|
|
* according to an error analysis, the error is always less than |
95 |
|
|
* 1 ulp (unit in the last place). |
96 |
|
|
* |
97 |
|
|
* Misc. info. |
98 |
|
|
* For IEEE double |
99 |
|
|
* if x > 7.09782712893383973096e+02 then expm1(x) overflow |
100 |
|
|
* |
101 |
|
|
* Constants: |
102 |
|
|
* The hexadecimal values are the intended ones for the following |
103 |
|
|
* constants. The decimal values may be used, provided that the |
104 |
|
|
* compiler will convert from decimal to binary accurately enough |
105 |
|
|
* to produce the hexadecimal values shown. |
106 |
|
|
*/ |
107 |
|
|
|
108 |
|
|
#include <float.h> |
109 |
|
|
#include <math.h> |
110 |
|
|
|
111 |
|
|
#include "math_private.h" |
112 |
|
|
|
113 |
|
|
static const double |
114 |
|
|
one = 1.0, |
115 |
|
|
huge = 1.0e+300, |
116 |
|
|
tiny = 1.0e-300, |
117 |
|
|
o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */ |
118 |
|
|
ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */ |
119 |
|
|
ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */ |
120 |
|
|
invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */ |
121 |
|
|
/* scaled coefficients related to expm1 */ |
122 |
|
|
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ |
123 |
|
|
Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ |
124 |
|
|
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ |
125 |
|
|
Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ |
126 |
|
|
Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ |
127 |
|
|
|
128 |
|
|
double |
129 |
|
|
expm1(double x) |
130 |
|
|
{ |
131 |
|
|
double y,hi,lo,c,t,e,hxs,hfx,r1; |
132 |
|
|
int32_t k,xsb; |
133 |
|
|
u_int32_t hx; |
134 |
|
|
|
135 |
|
29820 |
GET_HIGH_WORD(hx,x); |
136 |
|
14910 |
xsb = hx&0x80000000; /* sign bit of x */ |
137 |
✓✓ |
25870 |
if(xsb==0) y=x; else y= -x; /* y = |x| */ |
138 |
|
14910 |
hx &= 0x7fffffff; /* high word of |x| */ |
139 |
|
|
|
140 |
|
|
/* filter out huge and non-finite argument */ |
141 |
✗✓ |
14910 |
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */ |
142 |
|
|
if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
143 |
|
|
if(hx>=0x7ff00000) { |
144 |
|
|
u_int32_t low; |
145 |
|
|
GET_LOW_WORD(low,x); |
146 |
|
|
if(((hx&0xfffff)|low)!=0) |
147 |
|
|
return x+x; /* NaN */ |
148 |
|
|
else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ |
149 |
|
|
} |
150 |
|
|
if(x > o_threshold) return huge*huge; /* overflow */ |
151 |
|
|
} |
152 |
|
|
if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */ |
153 |
|
|
if(x+tiny<0.0) /* raise inexact */ |
154 |
|
|
return tiny-one; /* return -1 */ |
155 |
|
|
} |
156 |
|
|
} |
157 |
|
|
|
158 |
|
|
/* argument reduction */ |
159 |
✓✓ |
14910 |
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
160 |
✓✓ |
10340 |
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
161 |
✓✓ |
3140 |
if(xsb==0) |
162 |
|
1760 |
{hi = x - ln2_hi; lo = ln2_lo; k = 1;} |
163 |
|
|
else |
164 |
|
1380 |
{hi = x + ln2_hi; lo = -ln2_lo; k = -1;} |
165 |
|
|
} else { |
166 |
|
7200 |
k = invln2*x+((xsb==0)?0.5:-0.5); |
167 |
|
7200 |
t = k; |
168 |
|
7200 |
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ |
169 |
|
7200 |
lo = t*ln2_lo; |
170 |
|
|
} |
171 |
|
10340 |
x = hi - lo; |
172 |
|
10340 |
c = (hi-x)-lo; |
173 |
|
10340 |
} |
174 |
✓✓ |
4570 |
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */ |
175 |
|
30 |
t = huge+x; /* return x with inexact flags when x!=0 */ |
176 |
|
30 |
return x - (t-(huge+x)); |
177 |
|
|
} |
178 |
|
|
else k = 0; |
179 |
|
|
|
180 |
|
|
/* x is now in primary range */ |
181 |
|
14880 |
hfx = 0.5*x; |
182 |
|
14880 |
hxs = x*hfx; |
183 |
|
14880 |
r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); |
184 |
|
14880 |
t = 3.0-r1*hfx; |
185 |
|
14880 |
e = hxs*((r1-t)/(6.0 - x*t)); |
186 |
✓✓ |
19420 |
if(k==0) return x - (x*e-hxs); /* c is 0 */ |
187 |
|
|
else { |
188 |
|
10340 |
e = (x*(e-c)-c); |
189 |
|
10340 |
e -= hxs; |
190 |
✓✓ |
11720 |
if(k== -1) return 0.5*(x-e)-0.5; |
191 |
✓✓ |
8960 |
if(k==1) { |
192 |
✓✓ |
2040 |
if(x < -0.25) return -2.0*(e-(x+0.5)); |
193 |
|
1480 |
else return one+2.0*(x-e); |
194 |
|
|
} |
195 |
✓✓ |
7200 |
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ |
196 |
|
|
u_int32_t high; |
197 |
|
1470 |
y = one-(e-x); |
198 |
|
1470 |
GET_HIGH_WORD(high,y); |
199 |
|
1470 |
SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ |
200 |
|
1470 |
return y-one; |
201 |
|
|
} |
202 |
|
|
t = one; |
203 |
✓✓ |
5730 |
if(k<20) { |
204 |
|
|
u_int32_t high; |
205 |
|
3440 |
SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */ |
206 |
|
3440 |
y = t-(e-x); |
207 |
|
3440 |
GET_HIGH_WORD(high,y); |
208 |
|
3440 |
SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ |
209 |
|
3440 |
} else { |
210 |
|
|
u_int32_t high; |
211 |
|
2290 |
SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */ |
212 |
|
2290 |
y = x-(e+t); |
213 |
|
2290 |
y += one; |
214 |
|
2290 |
GET_HIGH_WORD(high,y); |
215 |
|
2290 |
SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ |
216 |
|
|
} |
217 |
|
|
} |
218 |
|
5730 |
return y; |
219 |
|
14910 |
} |
220 |
|
|
DEF_STD(expm1); |
221 |
|
|
LDBL_MAYBE_CLONE(expm1); |