1 |
|
|
/* @(#)e_fmod.c 1.3 95/01/18 */ |
2 |
|
|
/*- |
3 |
|
|
* ==================================================== |
4 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
5 |
|
|
* |
6 |
|
|
* Developed at SunSoft, a Sun Microsystems, Inc. business. |
7 |
|
|
* Permission to use, copy, modify, and distribute this |
8 |
|
|
* software is freely granted, provided that this notice |
9 |
|
|
* is preserved. |
10 |
|
|
* ==================================================== |
11 |
|
|
*/ |
12 |
|
|
|
13 |
|
|
#include "math.h" |
14 |
|
|
#include "math_private.h" |
15 |
|
|
|
16 |
|
|
static const float Zero[] = {0.0, -0.0,}; |
17 |
|
|
|
18 |
|
|
/* |
19 |
|
|
* Return the IEEE remainder and set *quo to the last n bits of the |
20 |
|
|
* quotient, rounded to the nearest integer. We choose n=31 because |
21 |
|
|
* we wind up computing all the integer bits of the quotient anyway as |
22 |
|
|
* a side-effect of computing the remainder by the shift and subtract |
23 |
|
|
* method. In practice, this is far more bits than are needed to use |
24 |
|
|
* remquo in reduction algorithms. |
25 |
|
|
*/ |
26 |
|
|
float |
27 |
|
|
remquof(float x, float y, int *quo) |
28 |
|
|
{ |
29 |
|
|
int32_t n,hx,hy,hz,ix,iy,sx,i; |
30 |
|
|
u_int32_t q,sxy; |
31 |
|
|
|
32 |
|
|
GET_FLOAT_WORD(hx,x); |
33 |
|
|
GET_FLOAT_WORD(hy,y); |
34 |
|
|
sxy = (hx ^ hy) & 0x80000000; |
35 |
|
|
sx = hx&0x80000000; /* sign of x */ |
36 |
|
|
hx ^=sx; /* |x| */ |
37 |
|
|
hy &= 0x7fffffff; /* |y| */ |
38 |
|
|
|
39 |
|
|
/* purge off exception values */ |
40 |
|
|
if(hy==0||hx>=0x7f800000||hy>0x7f800000) /* y=0,NaN;or x not finite */ |
41 |
|
|
return (x*y)/(x*y); |
42 |
|
|
if(hx<hy) { |
43 |
|
|
q = 0; |
44 |
|
|
goto fixup; /* |x|<|y| return x or x-y */ |
45 |
|
|
} else if(hx==hy) { |
46 |
|
|
*quo = 1; |
47 |
|
|
return Zero[(u_int32_t)sx>>31]; /* |x|=|y| return x*0*/ |
48 |
|
|
} |
49 |
|
|
|
50 |
|
|
/* determine ix = ilogb(x) */ |
51 |
|
|
if(hx<0x00800000) { /* subnormal x */ |
52 |
|
|
for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1; |
53 |
|
|
} else ix = (hx>>23)-127; |
54 |
|
|
|
55 |
|
|
/* determine iy = ilogb(y) */ |
56 |
|
|
if(hy<0x00800000) { /* subnormal y */ |
57 |
|
|
for (iy = -126,i=(hy<<8); i>0; i<<=1) iy -=1; |
58 |
|
|
} else iy = (hy>>23)-127; |
59 |
|
|
|
60 |
|
|
/* set up {hx,lx}, {hy,ly} and align y to x */ |
61 |
|
|
if(ix >= -126) |
62 |
|
|
hx = 0x00800000|(0x007fffff&hx); |
63 |
|
|
else { /* subnormal x, shift x to normal */ |
64 |
|
|
n = -126-ix; |
65 |
|
|
hx <<= n; |
66 |
|
|
} |
67 |
|
|
if(iy >= -126) |
68 |
|
|
hy = 0x00800000|(0x007fffff&hy); |
69 |
|
|
else { /* subnormal y, shift y to normal */ |
70 |
|
|
n = -126-iy; |
71 |
|
|
hy <<= n; |
72 |
|
|
} |
73 |
|
|
|
74 |
|
|
/* fix point fmod */ |
75 |
|
|
n = ix - iy; |
76 |
|
|
q = 0; |
77 |
|
|
while(n--) { |
78 |
|
|
hz=hx-hy; |
79 |
|
|
if(hz<0) hx = hx << 1; |
80 |
|
|
else {hx = hz << 1; q++;} |
81 |
|
|
q <<= 1; |
82 |
|
|
} |
83 |
|
|
hz=hx-hy; |
84 |
|
|
if(hz>=0) {hx=hz;q++;} |
85 |
|
|
|
86 |
|
|
/* convert back to floating value and restore the sign */ |
87 |
|
|
if(hx==0) { /* return sign(x)*0 */ |
88 |
|
|
*quo = (sxy ? -q : q); |
89 |
|
|
return Zero[(u_int32_t)sx>>31]; |
90 |
|
|
} |
91 |
|
|
while(hx<0x00800000) { /* normalize x */ |
92 |
|
|
hx <<= 1; |
93 |
|
|
iy -= 1; |
94 |
|
|
} |
95 |
|
|
if(iy>= -126) { /* normalize output */ |
96 |
|
|
hx = ((hx-0x00800000)|((iy+127)<<23)); |
97 |
|
|
} else { /* subnormal output */ |
98 |
|
|
n = -126 - iy; |
99 |
|
|
hx >>= n; |
100 |
|
|
} |
101 |
|
|
fixup: |
102 |
|
|
SET_FLOAT_WORD(x,hx); |
103 |
|
|
y = fabsf(y); |
104 |
|
|
if (y < 0x1p-125f) { |
105 |
|
|
if (x+x>y || (x+x==y && (q & 1))) { |
106 |
|
|
q++; |
107 |
|
|
x-=y; |
108 |
|
|
} |
109 |
|
|
} else if (x>0.5f*y || (x==0.5f*y && (q & 1))) { |
110 |
|
|
q++; |
111 |
|
|
x-=y; |
112 |
|
|
} |
113 |
|
|
GET_FLOAT_WORD(hx,x); |
114 |
|
|
SET_FLOAT_WORD(x,hx^sx); |
115 |
|
|
q &= 0x7fffffff; |
116 |
|
|
*quo = (sxy ? -q : q); |
117 |
|
|
return x; |
118 |
|
|
} |