1 |
|
|
/* @(#)s_tanh.c 5.1 93/09/24 */ |
2 |
|
|
/* |
3 |
|
|
* ==================================================== |
4 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
5 |
|
|
* |
6 |
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business. |
7 |
|
|
* Permission to use, copy, modify, and distribute this |
8 |
|
|
* software is freely granted, provided that this notice |
9 |
|
|
* is preserved. |
10 |
|
|
* ==================================================== |
11 |
|
|
*/ |
12 |
|
|
|
13 |
|
|
/* Tanh(x) |
14 |
|
|
* Return the Hyperbolic Tangent of x |
15 |
|
|
* |
16 |
|
|
* Method : |
17 |
|
|
* x -x |
18 |
|
|
* e - e |
19 |
|
|
* 0. tanh(x) is defined to be ----------- |
20 |
|
|
* x -x |
21 |
|
|
* e + e |
22 |
|
|
* 1. reduce x to non-negative by tanh(-x) = -tanh(x). |
23 |
|
|
* 2. 0 <= x < 2**-55 : tanh(x) := x*(one+x) |
24 |
|
|
* -t |
25 |
|
|
* 2**-55 <= x < 1 : tanh(x) := -----; t = expm1(-2x) |
26 |
|
|
* t + 2 |
27 |
|
|
* 2 |
28 |
|
|
* 1 <= x < 22.0 : tanh(x) := 1- ----- ; t=expm1(2x) |
29 |
|
|
* t + 2 |
30 |
|
|
* 22.0 <= x <= INF : tanh(x) := 1. |
31 |
|
|
* |
32 |
|
|
* Special cases: |
33 |
|
|
* tanh(NaN) is NaN; |
34 |
|
|
* only tanh(0)=0 is exact for finite argument. |
35 |
|
|
*/ |
36 |
|
|
|
37 |
|
|
#include <float.h> |
38 |
|
|
#include <math.h> |
39 |
|
|
|
40 |
|
|
#include "math_private.h" |
41 |
|
|
|
42 |
|
|
static const double one=1.0, two=2.0, tiny = 1.0e-300; |
43 |
|
|
|
44 |
|
|
double |
45 |
|
|
tanh(double x) |
46 |
|
|
{ |
47 |
|
|
double t,z; |
48 |
|
|
int32_t jx,ix,lx; |
49 |
|
|
|
50 |
|
|
/* High word of |x|. */ |
51 |
|
15840 |
EXTRACT_WORDS(jx,lx,x); |
52 |
|
7920 |
ix = jx&0x7fffffff; |
53 |
|
|
|
54 |
|
|
/* x is INF or NaN */ |
55 |
✗✓ |
7920 |
if(ix>=0x7ff00000) { |
56 |
|
|
if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */ |
57 |
|
|
else return one/x-one; /* tanh(NaN) = NaN */ |
58 |
|
|
} |
59 |
|
|
|
60 |
|
|
/* |x| < 22 */ |
61 |
✓✓ |
7920 |
if (ix < 0x40360000) { /* |x|<22 */ |
62 |
✓✓ |
7900 |
if ((ix | lx) == 0) |
63 |
|
10 |
return x; /* x == +-0 */ |
64 |
✓✓ |
7890 |
if (ix<0x3c800000) /* |x|<2**-55 */ |
65 |
|
620 |
return x*(one+x); /* tanh(small) = small */ |
66 |
✓✓ |
14540 |
if (ix>=0x3ff00000) { /* |x|>=1 */ |
67 |
|
10590 |
t = expm1(two*fabs(x)); |
68 |
|
3320 |
z = one - two/(t+two); |
69 |
|
3320 |
} else { |
70 |
|
3950 |
t = expm1(-two*fabs(x)); |
71 |
|
3950 |
z= -t/(t+two); |
72 |
|
|
} |
73 |
|
|
/* |x| >= 22, return +-1 */ |
74 |
|
|
} else { |
75 |
|
|
z = one - tiny; /* raised inexact flag */ |
76 |
|
|
} |
77 |
|
7290 |
return (jx>=0)? z: -z; |
78 |
|
7920 |
} |
79 |
|
|
DEF_STD(tanh); |
80 |
|
|
LDBL_MAYBE_UNUSED_CLONE(tanh); |