GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: usr.bin/signify/fe25519.c Lines: 191 197 97.0 %
Date: 2017-11-07 Branches: 68 70 97.1 %

Line Branch Exec Source
1
/* $OpenBSD: fe25519.c,v 1.1 2014/07/22 00:41:19 deraadt Exp $ */
2
3
/*
4
 * Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange,
5
 * Peter Schwabe, Bo-Yin Yang.
6
 * Copied from supercop-20130419/crypto_sign/ed25519/ref/fe25519.c
7
 */
8
9
#define WINDOWSIZE 1 /* Should be 1,2, or 4 */
10
#define WINDOWMASK ((1<<WINDOWSIZE)-1)
11
12
#include "fe25519.h"
13
14
static crypto_uint32 equal(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
15
{
16
41602
  crypto_uint32 x = a ^ b; /* 0: yes; 1..65535: no */
17
20801
  x -= 1; /* 4294967295: yes; 0..65534: no */
18
20801
  x >>= 31; /* 1: yes; 0: no */
19
20801
  return x;
20
}
21
22
static crypto_uint32 ge(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
23
{
24
  unsigned int x = a;
25
1342
  x -= (unsigned int) b; /* 0..65535: yes; 4294901761..4294967295: no */
26
671
  x >>= 31; /* 0: yes; 1: no */
27
671
  x ^= 1; /* 1: yes; 0: no */
28
671
  return x;
29
}
30
31
static crypto_uint32 times19(crypto_uint32 a)
32
{
33
3778532
  return (a << 4) + (a << 1) + a;
34
}
35
36
static crypto_uint32 times38(crypto_uint32 a)
37
{
38
20778122
  return (a << 5) + (a << 2) + (a << 1);
39
}
40
41
static void reduce_add_sub(fe25519 *r)
42
{
43
  crypto_uint32 t;
44
  int i,rep;
45
46
3352261
  for(rep=0;rep<4;rep++)
47
  {
48
1219004
    t = r->v[31] >> 7;
49
1219004
    r->v[31] &= 127;
50
1219004
    t = times19(t);
51
1219004
    r->v[0] += t;
52
78016256
    for(i=0;i<31;i++)
53
    {
54
37789124
      t = r->v[i] >> 8;
55
37789124
      r->v[i+1] += t;
56
37789124
      r->v[i] &= 255;
57
    }
58
  }
59
304751
}
60
61
static void reduce_mul(fe25519 *r)
62
{
63
  crypto_uint32 t;
64
  int i,rep;
65
66
2345917
  for(rep=0;rep<2;rep++)
67
  {
68
670262
    t = r->v[31] >> 7;
69
670262
    r->v[31] &= 127;
70
670262
    t = times19(t);
71
670262
    r->v[0] += t;
72
42896768
    for(i=0;i<31;i++)
73
    {
74
20778122
      t = r->v[i] >> 8;
75
20778122
      r->v[i+1] += t;
76
20778122
      r->v[i] &= 255;
77
    }
78
  }
79
335131
}
80
81
/* reduction modulo 2^255-19 */
82
void fe25519_freeze(fe25519 *r)
83
{
84
  int i;
85
1342
  crypto_uint32 m = equal(r->v[31],127);
86
41602
  for(i=30;i>0;i--)
87
20130
    m &= equal(r->v[i],255);
88
671
  m &= ge(r->v[0],237);
89
90
671
  m = -m;
91
92
671
  r->v[31] -= m&127;
93
41602
  for(i=30;i>0;i--)
94
20130
    r->v[i] -= m&255;
95
671
  r->v[0] -= m&237;
96
671
}
97
98
void fe25519_unpack(fe25519 *r, const unsigned char x[32])
99
{
100
  int i;
101
5963
  for(i=0;i<32;i++) r->v[i] = x[i];
102
89
  r->v[31] &= 127;
103
89
}
104
105
/* Assumes input x being reduced below 2^255 */
106
void fe25519_pack(unsigned char r[32], const fe25519 *x)
107
{
108
  int i;
109
226
  fe25519 y = *x;
110
113
  fe25519_freeze(&y);
111
7458
  for(i=0;i<32;i++)
112
3616
    r[i] = y.v[i];
113
113
}
114
115
int fe25519_iszero(const fe25519 *x)
116
{
117
  int i;
118
  int r;
119
  fe25519 t = *x;
120
  fe25519_freeze(&t);
121
  r = equal(t.v[0],0);
122
  for(i=1;i<32;i++)
123
    r &= equal(t.v[i],0);
124
  return r;
125
}
126
127
int fe25519_iseq_vartime(const fe25519 *x, const fe25519 *y)
128
{
129
  int i;
130
356
  fe25519 t1 = *x;
131
178
  fe25519 t2 = *y;
132
178
  fe25519_freeze(&t1);
133
178
  fe25519_freeze(&t2);
134
9764
  for(i=0;i<32;i++)
135
4766
    if(t1.v[i] != t2.v[i]) return 0;
136
147
  return 1;
137
178
}
138
139
void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b)
140
{
141
  int i;
142
36720
  crypto_uint32 mask = b;
143
18360
  mask = -mask;
144
1211760
  for(i=0;i<32;i++) r->v[i] ^= mask & (x->v[i] ^ r->v[i]);
145
18360
}
146
147
unsigned char fe25519_getparity(const fe25519 *x)
148
{
149
404
  fe25519 t = *x;
150
202
  fe25519_freeze(&t);
151
404
  return t.v[0] & 1;
152
202
}
153
154
void fe25519_setone(fe25519 *r)
155
{
156
  int i;
157
582
  r->v[0] = 1;
158
18624
  for(i=1;i<32;i++) r->v[i]=0;
159
291
}
160
161
void fe25519_setzero(fe25519 *r)
162
{
163
  int i;
164
1671248
  for(i=0;i<32;i++) r->v[i]=0;
165
24944
}
166
167
void fe25519_neg(fe25519 *r, const fe25519 *x)
168
{
169
49532
  fe25519 t;
170
  int i;
171
1634556
  for(i=0;i<32;i++) t.v[i]=x->v[i];
172
24766
  fe25519_setzero(r);
173
24766
  fe25519_sub(r, r, &t);
174
24766
}
175
176
void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y)
177
{
178
  int i;
179
9069388
  for(i=0;i<32;i++) r->v[i] = x->v[i] + y->v[i];
180
135364
  reduce_add_sub(r);
181
135364
}
182
183
void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y)
184
{
185
  int i;
186
338774
  crypto_uint32 t[32];
187
169387
  t[0] = x->v[0] + 0x1da;
188
169387
  t[31] = x->v[31] + 0xfe;
189
10501994
  for(i=1;i<31;i++) t[i] = x->v[i] + 0x1fe;
190
11179542
  for(i=0;i<32;i++) r->v[i] = t[i] - y->v[i];
191
169387
  reduce_add_sub(r);
192
169387
}
193
194
void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y)
195
{
196
  int i,j;
197
670262
  crypto_uint32 t[63];
198
42896768
  for(i=0;i<63;i++)t[i] = 0;
199
200
22118646
  for(i=0;i<32;i++)
201
707796672
    for(j=0;j<32;j++)
202
343174144
      t[i+j] += x->v[i] * y->v[j];
203
204
21448384
  for(i=32;i<63;i++)
205
10389061
    r->v[i-32] = t[i-32] + times38(t[i]);
206
335131
  r->v[31] = t[31]; /* result now in r[0]...r[31] */
207
208
335131
  reduce_mul(r);
209
335131
}
210
211
void fe25519_square(fe25519 *r, const fe25519 *x)
212
{
213
284532
  fe25519_mul(r, x, x);
214
142266
}
215
216
void fe25519_invert(fe25519 *r, const fe25519 *x)
217
{
218
226
	fe25519 z2;
219
113
	fe25519 z9;
220
113
	fe25519 z11;
221
113
	fe25519 z2_5_0;
222
113
	fe25519 z2_10_0;
223
113
	fe25519 z2_20_0;
224
113
	fe25519 z2_50_0;
225
113
	fe25519 z2_100_0;
226
113
	fe25519 t0;
227
113
	fe25519 t1;
228
	int i;
229
230
113
	/* 2 */ fe25519_square(&z2,x);
231
113
	/* 4 */ fe25519_square(&t1,&z2);
232
113
	/* 8 */ fe25519_square(&t0,&t1);
233
113
	/* 9 */ fe25519_mul(&z9,&t0,x);
234
113
	/* 11 */ fe25519_mul(&z11,&z9,&z2);
235
113
	/* 22 */ fe25519_square(&t0,&z11);
236
113
	/* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t0,&z9);
237
238
113
	/* 2^6 - 2^1 */ fe25519_square(&t0,&z2_5_0);
239
113
	/* 2^7 - 2^2 */ fe25519_square(&t1,&t0);
240
113
	/* 2^8 - 2^3 */ fe25519_square(&t0,&t1);
241
113
	/* 2^9 - 2^4 */ fe25519_square(&t1,&t0);
242
113
	/* 2^10 - 2^5 */ fe25519_square(&t0,&t1);
243
113
	/* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t0,&z2_5_0);
244
245
113
	/* 2^11 - 2^1 */ fe25519_square(&t0,&z2_10_0);
246
113
	/* 2^12 - 2^2 */ fe25519_square(&t1,&t0);
247
1130
	/* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
248
113
	/* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t1,&z2_10_0);
249
250
113
	/* 2^21 - 2^1 */ fe25519_square(&t0,&z2_20_0);
251
113
	/* 2^22 - 2^2 */ fe25519_square(&t1,&t0);
252
2260
	/* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
253
113
	/* 2^40 - 2^0 */ fe25519_mul(&t0,&t1,&z2_20_0);
254
255
113
	/* 2^41 - 2^1 */ fe25519_square(&t1,&t0);
256
113
	/* 2^42 - 2^2 */ fe25519_square(&t0,&t1);
257
1130
	/* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
258
113
	/* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t0,&z2_10_0);
259
260
113
	/* 2^51 - 2^1 */ fe25519_square(&t0,&z2_50_0);
261
113
	/* 2^52 - 2^2 */ fe25519_square(&t1,&t0);
262
5650
	/* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
263
113
	/* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t1,&z2_50_0);
264
265
113
	/* 2^101 - 2^1 */ fe25519_square(&t1,&z2_100_0);
266
113
	/* 2^102 - 2^2 */ fe25519_square(&t0,&t1);
267
11300
	/* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
268
113
	/* 2^200 - 2^0 */ fe25519_mul(&t1,&t0,&z2_100_0);
269
270
113
	/* 2^201 - 2^1 */ fe25519_square(&t0,&t1);
271
113
	/* 2^202 - 2^2 */ fe25519_square(&t1,&t0);
272
5650
	/* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
273
113
	/* 2^250 - 2^0 */ fe25519_mul(&t0,&t1,&z2_50_0);
274
275
113
	/* 2^251 - 2^1 */ fe25519_square(&t1,&t0);
276
113
	/* 2^252 - 2^2 */ fe25519_square(&t0,&t1);
277
113
	/* 2^253 - 2^3 */ fe25519_square(&t1,&t0);
278
113
	/* 2^254 - 2^4 */ fe25519_square(&t0,&t1);
279
113
	/* 2^255 - 2^5 */ fe25519_square(&t1,&t0);
280
113
	/* 2^255 - 21 */ fe25519_mul(r,&t1,&z11);
281
113
}
282
283
void fe25519_pow2523(fe25519 *r, const fe25519 *x)
284
{
285
178
	fe25519 z2;
286
89
	fe25519 z9;
287
89
	fe25519 z11;
288
89
	fe25519 z2_5_0;
289
89
	fe25519 z2_10_0;
290
89
	fe25519 z2_20_0;
291
89
	fe25519 z2_50_0;
292
89
	fe25519 z2_100_0;
293
89
	fe25519 t;
294
	int i;
295
296
89
	/* 2 */ fe25519_square(&z2,x);
297
89
	/* 4 */ fe25519_square(&t,&z2);
298
89
	/* 8 */ fe25519_square(&t,&t);
299
89
	/* 9 */ fe25519_mul(&z9,&t,x);
300
89
	/* 11 */ fe25519_mul(&z11,&z9,&z2);
301
89
	/* 22 */ fe25519_square(&t,&z11);
302
89
	/* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t,&z9);
303
304
89
	/* 2^6 - 2^1 */ fe25519_square(&t,&z2_5_0);
305
890
	/* 2^10 - 2^5 */ for (i = 1;i < 5;i++) { fe25519_square(&t,&t); }
306
89
	/* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t,&z2_5_0);
307
308
89
	/* 2^11 - 2^1 */ fe25519_square(&t,&z2_10_0);
309
1780
	/* 2^20 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
310
89
	/* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t,&z2_10_0);
311
312
89
	/* 2^21 - 2^1 */ fe25519_square(&t,&z2_20_0);
313
3560
	/* 2^40 - 2^20 */ for (i = 1;i < 20;i++) { fe25519_square(&t,&t); }
314
89
	/* 2^40 - 2^0 */ fe25519_mul(&t,&t,&z2_20_0);
315
316
89
	/* 2^41 - 2^1 */ fe25519_square(&t,&t);
317
1780
	/* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
318
89
	/* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t,&z2_10_0);
319
320
89
	/* 2^51 - 2^1 */ fe25519_square(&t,&z2_50_0);
321
8900
	/* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
322
89
	/* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t,&z2_50_0);
323
324
89
	/* 2^101 - 2^1 */ fe25519_square(&t,&z2_100_0);
325
17800
	/* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { fe25519_square(&t,&t); }
326
89
	/* 2^200 - 2^0 */ fe25519_mul(&t,&t,&z2_100_0);
327
328
89
	/* 2^201 - 2^1 */ fe25519_square(&t,&t);
329
8900
	/* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
330
89
	/* 2^250 - 2^0 */ fe25519_mul(&t,&t,&z2_50_0);
331
332
89
	/* 2^251 - 2^1 */ fe25519_square(&t,&t);
333
89
	/* 2^252 - 2^2 */ fe25519_square(&t,&t);
334
89
	/* 2^252 - 3 */ fe25519_mul(r,&t,x);
335
89
}