1 |
|
|
/* $OpenBSD: umac.c,v 1.12 2017/05/31 08:09:45 markus Exp $ */ |
2 |
|
|
/* ----------------------------------------------------------------------- |
3 |
|
|
* |
4 |
|
|
* umac.c -- C Implementation UMAC Message Authentication |
5 |
|
|
* |
6 |
|
|
* Version 0.93b of rfc4418.txt -- 2006 July 18 |
7 |
|
|
* |
8 |
|
|
* For a full description of UMAC message authentication see the UMAC |
9 |
|
|
* world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac |
10 |
|
|
* Please report bugs and suggestions to the UMAC webpage. |
11 |
|
|
* |
12 |
|
|
* Copyright (c) 1999-2006 Ted Krovetz |
13 |
|
|
* |
14 |
|
|
* Permission to use, copy, modify, and distribute this software and |
15 |
|
|
* its documentation for any purpose and with or without fee, is hereby |
16 |
|
|
* granted provided that the above copyright notice appears in all copies |
17 |
|
|
* and in supporting documentation, and that the name of the copyright |
18 |
|
|
* holder not be used in advertising or publicity pertaining to |
19 |
|
|
* distribution of the software without specific, written prior permission. |
20 |
|
|
* |
21 |
|
|
* Comments should be directed to Ted Krovetz (tdk@acm.org) |
22 |
|
|
* |
23 |
|
|
* ---------------------------------------------------------------------- */ |
24 |
|
|
|
25 |
|
|
/* ////////////////////// IMPORTANT NOTES ///////////////////////////////// |
26 |
|
|
* |
27 |
|
|
* 1) This version does not work properly on messages larger than 16MB |
28 |
|
|
* |
29 |
|
|
* 2) If you set the switch to use SSE2, then all data must be 16-byte |
30 |
|
|
* aligned |
31 |
|
|
* |
32 |
|
|
* 3) When calling the function umac(), it is assumed that msg is in |
33 |
|
|
* a writable buffer of length divisible by 32 bytes. The message itself |
34 |
|
|
* does not have to fill the entire buffer, but bytes beyond msg may be |
35 |
|
|
* zeroed. |
36 |
|
|
* |
37 |
|
|
* 4) Three free AES implementations are supported by this implementation of |
38 |
|
|
* UMAC. Paulo Barreto's version is in the public domain and can be found |
39 |
|
|
* at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for |
40 |
|
|
* "Barreto"). The only two files needed are rijndael-alg-fst.c and |
41 |
|
|
* rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU |
42 |
|
|
* Public lisence at http://fp.gladman.plus.com/AES/index.htm. It |
43 |
|
|
* includes a fast IA-32 assembly version. The OpenSSL crypo library is |
44 |
|
|
* the third. |
45 |
|
|
* |
46 |
|
|
* 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes |
47 |
|
|
* produced under gcc with optimizations set -O3 or higher. Dunno why. |
48 |
|
|
* |
49 |
|
|
/////////////////////////////////////////////////////////////////////// */ |
50 |
|
|
|
51 |
|
|
/* ---------------------------------------------------------------------- */ |
52 |
|
|
/* --- User Switches ---------------------------------------------------- */ |
53 |
|
|
/* ---------------------------------------------------------------------- */ |
54 |
|
|
|
55 |
|
|
#define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ |
56 |
|
|
/* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ |
57 |
|
|
/* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ |
58 |
|
|
/* #define SSE2 0 Is SSE2 is available? */ |
59 |
|
|
/* #define RUN_TESTS 0 Run basic correctness/speed tests */ |
60 |
|
|
/* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */ |
61 |
|
|
|
62 |
|
|
/* ---------------------------------------------------------------------- */ |
63 |
|
|
/* -- Global Includes --------------------------------------------------- */ |
64 |
|
|
/* ---------------------------------------------------------------------- */ |
65 |
|
|
|
66 |
|
|
#include <sys/types.h> |
67 |
|
|
#include <endian.h> |
68 |
|
|
#include <string.h> |
69 |
|
|
#include <stdio.h> |
70 |
|
|
#include <stdlib.h> |
71 |
|
|
#include <stddef.h> |
72 |
|
|
|
73 |
|
|
#include "xmalloc.h" |
74 |
|
|
#include "umac.h" |
75 |
|
|
#include "misc.h" |
76 |
|
|
|
77 |
|
|
/* ---------------------------------------------------------------------- */ |
78 |
|
|
/* --- Primitive Data Types --- */ |
79 |
|
|
/* ---------------------------------------------------------------------- */ |
80 |
|
|
|
81 |
|
|
/* The following assumptions may need change on your system */ |
82 |
|
|
typedef u_int8_t UINT8; /* 1 byte */ |
83 |
|
|
typedef u_int16_t UINT16; /* 2 byte */ |
84 |
|
|
typedef u_int32_t UINT32; /* 4 byte */ |
85 |
|
|
typedef u_int64_t UINT64; /* 8 bytes */ |
86 |
|
|
typedef unsigned int UWORD; /* Register */ |
87 |
|
|
|
88 |
|
|
/* ---------------------------------------------------------------------- */ |
89 |
|
|
/* --- Constants -------------------------------------------------------- */ |
90 |
|
|
/* ---------------------------------------------------------------------- */ |
91 |
|
|
|
92 |
|
|
#define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ |
93 |
|
|
|
94 |
|
|
/* Message "words" are read from memory in an endian-specific manner. */ |
95 |
|
|
/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ |
96 |
|
|
/* be set true if the host computer is little-endian. */ |
97 |
|
|
|
98 |
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
99 |
|
|
#define __LITTLE_ENDIAN__ 1 |
100 |
|
|
#else |
101 |
|
|
#define __LITTLE_ENDIAN__ 0 |
102 |
|
|
#endif |
103 |
|
|
|
104 |
|
|
/* ---------------------------------------------------------------------- */ |
105 |
|
|
/* ---------------------------------------------------------------------- */ |
106 |
|
|
/* ----- Architecture Specific ------------------------------------------ */ |
107 |
|
|
/* ---------------------------------------------------------------------- */ |
108 |
|
|
/* ---------------------------------------------------------------------- */ |
109 |
|
|
|
110 |
|
|
|
111 |
|
|
/* ---------------------------------------------------------------------- */ |
112 |
|
|
/* ---------------------------------------------------------------------- */ |
113 |
|
|
/* ----- Primitive Routines --------------------------------------------- */ |
114 |
|
|
/* ---------------------------------------------------------------------- */ |
115 |
|
|
/* ---------------------------------------------------------------------- */ |
116 |
|
|
|
117 |
|
|
|
118 |
|
|
/* ---------------------------------------------------------------------- */ |
119 |
|
|
/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ |
120 |
|
|
/* ---------------------------------------------------------------------- */ |
121 |
|
|
|
122 |
|
|
#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) |
123 |
|
|
|
124 |
|
|
/* ---------------------------------------------------------------------- */ |
125 |
|
|
/* --- Endian Conversion --- Forcing assembly on some platforms */ |
126 |
|
|
/* ---------------------------------------------------------------------- */ |
127 |
|
|
|
128 |
|
|
/* The following definitions use the above reversal-primitives to do the right |
129 |
|
|
* thing on endian specific load and stores. |
130 |
|
|
*/ |
131 |
|
|
|
132 |
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
133 |
|
|
#define LOAD_UINT32_REVERSED(p) get_u32(p) |
134 |
|
|
#define STORE_UINT32_REVERSED(p,v) put_u32(p,v) |
135 |
|
|
#else |
136 |
|
|
#define LOAD_UINT32_REVERSED(p) get_u32_le(p) |
137 |
|
|
#define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v) |
138 |
|
|
#endif |
139 |
|
|
|
140 |
|
|
#define LOAD_UINT32_LITTLE(p) (get_u32_le(p)) |
141 |
|
|
#define STORE_UINT32_BIG(p,v) put_u32(p, v) |
142 |
|
|
|
143 |
|
|
|
144 |
|
|
|
145 |
|
|
/* ---------------------------------------------------------------------- */ |
146 |
|
|
/* ---------------------------------------------------------------------- */ |
147 |
|
|
/* ----- Begin KDF & PDF Section ---------------------------------------- */ |
148 |
|
|
/* ---------------------------------------------------------------------- */ |
149 |
|
|
/* ---------------------------------------------------------------------- */ |
150 |
|
|
|
151 |
|
|
/* UMAC uses AES with 16 byte block and key lengths */ |
152 |
|
|
#define AES_BLOCK_LEN 16 |
153 |
|
|
|
154 |
|
|
#ifdef WITH_OPENSSL |
155 |
|
|
#include <openssl/aes.h> |
156 |
|
|
typedef AES_KEY aes_int_key[1]; |
157 |
|
|
#define aes_encryption(in,out,int_key) \ |
158 |
|
|
AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) |
159 |
|
|
#define aes_key_setup(key,int_key) \ |
160 |
|
|
AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key) |
161 |
|
|
#else |
162 |
|
|
#include "rijndael.h" |
163 |
|
|
#define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6) |
164 |
|
|
typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */ |
165 |
|
|
#define aes_encryption(in,out,int_key) \ |
166 |
|
|
rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out)) |
167 |
|
|
#define aes_key_setup(key,int_key) \ |
168 |
|
|
rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \ |
169 |
|
|
UMAC_KEY_LEN*8) |
170 |
|
|
#endif |
171 |
|
|
|
172 |
|
|
/* The user-supplied UMAC key is stretched using AES in a counter |
173 |
|
|
* mode to supply all random bits needed by UMAC. The kdf function takes |
174 |
|
|
* an AES internal key representation 'key' and writes a stream of |
175 |
|
|
* 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct |
176 |
|
|
* 'ndx' causes a distinct byte stream. |
177 |
|
|
*/ |
178 |
|
|
static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes) |
179 |
|
|
{ |
180 |
|
|
UINT8 in_buf[AES_BLOCK_LEN] = {0}; |
181 |
|
|
UINT8 out_buf[AES_BLOCK_LEN]; |
182 |
|
|
UINT8 *dst_buf = (UINT8 *)buffer_ptr; |
183 |
|
|
int i; |
184 |
|
|
|
185 |
|
|
/* Setup the initial value */ |
186 |
|
|
in_buf[AES_BLOCK_LEN-9] = ndx; |
187 |
|
|
in_buf[AES_BLOCK_LEN-1] = i = 1; |
188 |
|
|
|
189 |
|
|
while (nbytes >= AES_BLOCK_LEN) { |
190 |
|
|
aes_encryption(in_buf, out_buf, key); |
191 |
|
|
memcpy(dst_buf,out_buf,AES_BLOCK_LEN); |
192 |
|
|
in_buf[AES_BLOCK_LEN-1] = ++i; |
193 |
|
|
nbytes -= AES_BLOCK_LEN; |
194 |
|
|
dst_buf += AES_BLOCK_LEN; |
195 |
|
|
} |
196 |
|
|
if (nbytes) { |
197 |
|
|
aes_encryption(in_buf, out_buf, key); |
198 |
|
|
memcpy(dst_buf,out_buf,nbytes); |
199 |
|
|
} |
200 |
|
|
explicit_bzero(in_buf, sizeof(in_buf)); |
201 |
|
|
explicit_bzero(out_buf, sizeof(out_buf)); |
202 |
|
|
} |
203 |
|
|
|
204 |
|
|
/* The final UHASH result is XOR'd with the output of a pseudorandom |
205 |
|
|
* function. Here, we use AES to generate random output and |
206 |
|
|
* xor the appropriate bytes depending on the last bits of nonce. |
207 |
|
|
* This scheme is optimized for sequential, increasing big-endian nonces. |
208 |
|
|
*/ |
209 |
|
|
|
210 |
|
|
typedef struct { |
211 |
|
|
UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ |
212 |
|
|
UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ |
213 |
|
|
aes_int_key prf_key; /* Expanded AES key for PDF */ |
214 |
|
|
} pdf_ctx; |
215 |
|
|
|
216 |
|
|
static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) |
217 |
|
|
{ |
218 |
|
|
UINT8 buf[UMAC_KEY_LEN]; |
219 |
|
|
|
220 |
|
|
kdf(buf, prf_key, 0, UMAC_KEY_LEN); |
221 |
|
|
aes_key_setup(buf, pc->prf_key); |
222 |
|
|
|
223 |
|
|
/* Initialize pdf and cache */ |
224 |
|
|
memset(pc->nonce, 0, sizeof(pc->nonce)); |
225 |
|
|
aes_encryption(pc->nonce, pc->cache, pc->prf_key); |
226 |
|
|
explicit_bzero(buf, sizeof(buf)); |
227 |
|
|
} |
228 |
|
|
|
229 |
|
|
static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8]) |
230 |
|
|
{ |
231 |
|
|
/* 'ndx' indicates that we'll be using the 0th or 1st eight bytes |
232 |
|
|
* of the AES output. If last time around we returned the ndx-1st |
233 |
|
|
* element, then we may have the result in the cache already. |
234 |
|
|
*/ |
235 |
|
|
|
236 |
|
|
#if (UMAC_OUTPUT_LEN == 4) |
237 |
|
|
#define LOW_BIT_MASK 3 |
238 |
|
|
#elif (UMAC_OUTPUT_LEN == 8) |
239 |
|
|
#define LOW_BIT_MASK 1 |
240 |
|
|
#elif (UMAC_OUTPUT_LEN > 8) |
241 |
|
|
#define LOW_BIT_MASK 0 |
242 |
|
|
#endif |
243 |
|
|
union { |
244 |
|
|
UINT8 tmp_nonce_lo[4]; |
245 |
|
|
UINT32 align; |
246 |
|
|
} t; |
247 |
|
|
#if LOW_BIT_MASK != 0 |
248 |
|
|
int ndx = nonce[7] & LOW_BIT_MASK; |
249 |
|
|
#endif |
250 |
|
|
*(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; |
251 |
|
|
t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ |
252 |
|
|
|
253 |
|
|
if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || |
254 |
|
|
(((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) |
255 |
|
|
{ |
256 |
|
|
((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; |
257 |
|
|
((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; |
258 |
|
|
aes_encryption(pc->nonce, pc->cache, pc->prf_key); |
259 |
|
|
} |
260 |
|
|
|
261 |
|
|
#if (UMAC_OUTPUT_LEN == 4) |
262 |
|
|
*((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; |
263 |
|
|
#elif (UMAC_OUTPUT_LEN == 8) |
264 |
|
|
*((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; |
265 |
|
|
#elif (UMAC_OUTPUT_LEN == 12) |
266 |
|
|
((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
267 |
|
|
((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; |
268 |
|
|
#elif (UMAC_OUTPUT_LEN == 16) |
269 |
|
|
((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
270 |
|
|
((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; |
271 |
|
|
#endif |
272 |
|
|
} |
273 |
|
|
|
274 |
|
|
/* ---------------------------------------------------------------------- */ |
275 |
|
|
/* ---------------------------------------------------------------------- */ |
276 |
|
|
/* ----- Begin NH Hash Section ------------------------------------------ */ |
277 |
|
|
/* ---------------------------------------------------------------------- */ |
278 |
|
|
/* ---------------------------------------------------------------------- */ |
279 |
|
|
|
280 |
|
|
/* The NH-based hash functions used in UMAC are described in the UMAC paper |
281 |
|
|
* and specification, both of which can be found at the UMAC website. |
282 |
|
|
* The interface to this implementation has two |
283 |
|
|
* versions, one expects the entire message being hashed to be passed |
284 |
|
|
* in a single buffer and returns the hash result immediately. The second |
285 |
|
|
* allows the message to be passed in a sequence of buffers. In the |
286 |
|
|
* muliple-buffer interface, the client calls the routine nh_update() as |
287 |
|
|
* many times as necessary. When there is no more data to be fed to the |
288 |
|
|
* hash, the client calls nh_final() which calculates the hash output. |
289 |
|
|
* Before beginning another hash calculation the nh_reset() routine |
290 |
|
|
* must be called. The single-buffer routine, nh(), is equivalent to |
291 |
|
|
* the sequence of calls nh_update() and nh_final(); however it is |
292 |
|
|
* optimized and should be prefered whenever the multiple-buffer interface |
293 |
|
|
* is not necessary. When using either interface, it is the client's |
294 |
|
|
* responsability to pass no more than L1_KEY_LEN bytes per hash result. |
295 |
|
|
* |
296 |
|
|
* The routine nh_init() initializes the nh_ctx data structure and |
297 |
|
|
* must be called once, before any other PDF routine. |
298 |
|
|
*/ |
299 |
|
|
|
300 |
|
|
/* The "nh_aux" routines do the actual NH hashing work. They |
301 |
|
|
* expect buffers to be multiples of L1_PAD_BOUNDARY. These routines |
302 |
|
|
* produce output for all STREAMS NH iterations in one call, |
303 |
|
|
* allowing the parallel implementation of the streams. |
304 |
|
|
*/ |
305 |
|
|
|
306 |
|
|
#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ |
307 |
|
|
#define L1_KEY_LEN 1024 /* Internal key bytes */ |
308 |
|
|
#define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ |
309 |
|
|
#define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ |
310 |
|
|
#define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ |
311 |
|
|
#define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ |
312 |
|
|
|
313 |
|
|
typedef struct { |
314 |
|
|
UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ |
315 |
|
|
UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */ |
316 |
|
|
int next_data_empty; /* Bookeeping variable for data buffer. */ |
317 |
|
|
int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */ |
318 |
|
|
UINT64 state[STREAMS]; /* on-line state */ |
319 |
|
|
} nh_ctx; |
320 |
|
|
|
321 |
|
|
|
322 |
|
|
#if (UMAC_OUTPUT_LEN == 4) |
323 |
|
|
|
324 |
|
|
static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
325 |
|
|
/* NH hashing primitive. Previous (partial) hash result is loaded and |
326 |
|
|
* then stored via hp pointer. The length of the data pointed at by "dp", |
327 |
|
|
* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key |
328 |
|
|
* is expected to be endian compensated in memory at key setup. |
329 |
|
|
*/ |
330 |
|
|
{ |
331 |
|
|
UINT64 h; |
332 |
|
|
UWORD c = dlen / 32; |
333 |
|
|
UINT32 *k = (UINT32 *)kp; |
334 |
|
|
const UINT32 *d = (const UINT32 *)dp; |
335 |
|
|
UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
336 |
|
|
UINT32 k0,k1,k2,k3,k4,k5,k6,k7; |
337 |
|
|
|
338 |
|
|
h = *((UINT64 *)hp); |
339 |
|
|
do { |
340 |
|
|
d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
341 |
|
|
d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
342 |
|
|
d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
343 |
|
|
d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
344 |
|
|
k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
345 |
|
|
k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
346 |
|
|
h += MUL64((k0 + d0), (k4 + d4)); |
347 |
|
|
h += MUL64((k1 + d1), (k5 + d5)); |
348 |
|
|
h += MUL64((k2 + d2), (k6 + d6)); |
349 |
|
|
h += MUL64((k3 + d3), (k7 + d7)); |
350 |
|
|
|
351 |
|
|
d += 8; |
352 |
|
|
k += 8; |
353 |
|
|
} while (--c); |
354 |
|
|
*((UINT64 *)hp) = h; |
355 |
|
|
} |
356 |
|
|
|
357 |
|
|
#elif (UMAC_OUTPUT_LEN == 8) |
358 |
|
|
|
359 |
|
|
static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
360 |
|
|
/* Same as previous nh_aux, but two streams are handled in one pass, |
361 |
|
|
* reading and writing 16 bytes of hash-state per call. |
362 |
|
|
*/ |
363 |
|
|
{ |
364 |
|
|
UINT64 h1,h2; |
365 |
|
|
UWORD c = dlen / 32; |
366 |
|
|
UINT32 *k = (UINT32 *)kp; |
367 |
|
|
const UINT32 *d = (const UINT32 *)dp; |
368 |
|
|
UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
369 |
|
|
UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
370 |
|
|
k8,k9,k10,k11; |
371 |
|
|
|
372 |
|
|
h1 = *((UINT64 *)hp); |
373 |
|
|
h2 = *((UINT64 *)hp + 1); |
374 |
|
|
k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
375 |
|
|
do { |
376 |
|
|
d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
377 |
|
|
d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
378 |
|
|
d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
379 |
|
|
d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
380 |
|
|
k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
381 |
|
|
k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
382 |
|
|
|
383 |
|
|
h1 += MUL64((k0 + d0), (k4 + d4)); |
384 |
|
|
h2 += MUL64((k4 + d0), (k8 + d4)); |
385 |
|
|
|
386 |
|
|
h1 += MUL64((k1 + d1), (k5 + d5)); |
387 |
|
|
h2 += MUL64((k5 + d1), (k9 + d5)); |
388 |
|
|
|
389 |
|
|
h1 += MUL64((k2 + d2), (k6 + d6)); |
390 |
|
|
h2 += MUL64((k6 + d2), (k10 + d6)); |
391 |
|
|
|
392 |
|
|
h1 += MUL64((k3 + d3), (k7 + d7)); |
393 |
|
|
h2 += MUL64((k7 + d3), (k11 + d7)); |
394 |
|
|
|
395 |
|
|
k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
396 |
|
|
|
397 |
|
|
d += 8; |
398 |
|
|
k += 8; |
399 |
|
|
} while (--c); |
400 |
|
|
((UINT64 *)hp)[0] = h1; |
401 |
|
|
((UINT64 *)hp)[1] = h2; |
402 |
|
|
} |
403 |
|
|
|
404 |
|
|
#elif (UMAC_OUTPUT_LEN == 12) |
405 |
|
|
|
406 |
|
|
static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
407 |
|
|
/* Same as previous nh_aux, but two streams are handled in one pass, |
408 |
|
|
* reading and writing 24 bytes of hash-state per call. |
409 |
|
|
*/ |
410 |
|
|
{ |
411 |
|
|
UINT64 h1,h2,h3; |
412 |
|
|
UWORD c = dlen / 32; |
413 |
|
|
UINT32 *k = (UINT32 *)kp; |
414 |
|
|
const UINT32 *d = (const UINT32 *)dp; |
415 |
|
|
UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
416 |
|
|
UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
417 |
|
|
k8,k9,k10,k11,k12,k13,k14,k15; |
418 |
|
|
|
419 |
|
|
h1 = *((UINT64 *)hp); |
420 |
|
|
h2 = *((UINT64 *)hp + 1); |
421 |
|
|
h3 = *((UINT64 *)hp + 2); |
422 |
|
|
k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
423 |
|
|
k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
424 |
|
|
do { |
425 |
|
|
d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
426 |
|
|
d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
427 |
|
|
d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
428 |
|
|
d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
429 |
|
|
k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
430 |
|
|
k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
431 |
|
|
|
432 |
|
|
h1 += MUL64((k0 + d0), (k4 + d4)); |
433 |
|
|
h2 += MUL64((k4 + d0), (k8 + d4)); |
434 |
|
|
h3 += MUL64((k8 + d0), (k12 + d4)); |
435 |
|
|
|
436 |
|
|
h1 += MUL64((k1 + d1), (k5 + d5)); |
437 |
|
|
h2 += MUL64((k5 + d1), (k9 + d5)); |
438 |
|
|
h3 += MUL64((k9 + d1), (k13 + d5)); |
439 |
|
|
|
440 |
|
|
h1 += MUL64((k2 + d2), (k6 + d6)); |
441 |
|
|
h2 += MUL64((k6 + d2), (k10 + d6)); |
442 |
|
|
h3 += MUL64((k10 + d2), (k14 + d6)); |
443 |
|
|
|
444 |
|
|
h1 += MUL64((k3 + d3), (k7 + d7)); |
445 |
|
|
h2 += MUL64((k7 + d3), (k11 + d7)); |
446 |
|
|
h3 += MUL64((k11 + d3), (k15 + d7)); |
447 |
|
|
|
448 |
|
|
k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
449 |
|
|
k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
450 |
|
|
|
451 |
|
|
d += 8; |
452 |
|
|
k += 8; |
453 |
|
|
} while (--c); |
454 |
|
|
((UINT64 *)hp)[0] = h1; |
455 |
|
|
((UINT64 *)hp)[1] = h2; |
456 |
|
|
((UINT64 *)hp)[2] = h3; |
457 |
|
|
} |
458 |
|
|
|
459 |
|
|
#elif (UMAC_OUTPUT_LEN == 16) |
460 |
|
|
|
461 |
|
|
static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
462 |
|
|
/* Same as previous nh_aux, but two streams are handled in one pass, |
463 |
|
|
* reading and writing 24 bytes of hash-state per call. |
464 |
|
|
*/ |
465 |
|
|
{ |
466 |
|
|
UINT64 h1,h2,h3,h4; |
467 |
|
|
UWORD c = dlen / 32; |
468 |
|
|
UINT32 *k = (UINT32 *)kp; |
469 |
|
|
const UINT32 *d = (const UINT32 *)dp; |
470 |
|
|
UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
471 |
|
|
UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
472 |
|
|
k8,k9,k10,k11,k12,k13,k14,k15, |
473 |
|
|
k16,k17,k18,k19; |
474 |
|
|
|
475 |
|
|
h1 = *((UINT64 *)hp); |
476 |
|
|
h2 = *((UINT64 *)hp + 1); |
477 |
|
|
h3 = *((UINT64 *)hp + 2); |
478 |
|
|
h4 = *((UINT64 *)hp + 3); |
479 |
|
|
k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
480 |
|
|
k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
481 |
|
|
do { |
482 |
|
|
d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
483 |
|
|
d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
484 |
|
|
d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
485 |
|
|
d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
486 |
|
|
k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
487 |
|
|
k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
488 |
|
|
k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); |
489 |
|
|
|
490 |
|
|
h1 += MUL64((k0 + d0), (k4 + d4)); |
491 |
|
|
h2 += MUL64((k4 + d0), (k8 + d4)); |
492 |
|
|
h3 += MUL64((k8 + d0), (k12 + d4)); |
493 |
|
|
h4 += MUL64((k12 + d0), (k16 + d4)); |
494 |
|
|
|
495 |
|
|
h1 += MUL64((k1 + d1), (k5 + d5)); |
496 |
|
|
h2 += MUL64((k5 + d1), (k9 + d5)); |
497 |
|
|
h3 += MUL64((k9 + d1), (k13 + d5)); |
498 |
|
|
h4 += MUL64((k13 + d1), (k17 + d5)); |
499 |
|
|
|
500 |
|
|
h1 += MUL64((k2 + d2), (k6 + d6)); |
501 |
|
|
h2 += MUL64((k6 + d2), (k10 + d6)); |
502 |
|
|
h3 += MUL64((k10 + d2), (k14 + d6)); |
503 |
|
|
h4 += MUL64((k14 + d2), (k18 + d6)); |
504 |
|
|
|
505 |
|
|
h1 += MUL64((k3 + d3), (k7 + d7)); |
506 |
|
|
h2 += MUL64((k7 + d3), (k11 + d7)); |
507 |
|
|
h3 += MUL64((k11 + d3), (k15 + d7)); |
508 |
|
|
h4 += MUL64((k15 + d3), (k19 + d7)); |
509 |
|
|
|
510 |
|
|
k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
511 |
|
|
k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
512 |
|
|
k8 = k16; k9 = k17; k10 = k18; k11 = k19; |
513 |
|
|
|
514 |
|
|
d += 8; |
515 |
|
|
k += 8; |
516 |
|
|
} while (--c); |
517 |
|
|
((UINT64 *)hp)[0] = h1; |
518 |
|
|
((UINT64 *)hp)[1] = h2; |
519 |
|
|
((UINT64 *)hp)[2] = h3; |
520 |
|
|
((UINT64 *)hp)[3] = h4; |
521 |
|
|
} |
522 |
|
|
|
523 |
|
|
/* ---------------------------------------------------------------------- */ |
524 |
|
|
#endif /* UMAC_OUTPUT_LENGTH */ |
525 |
|
|
/* ---------------------------------------------------------------------- */ |
526 |
|
|
|
527 |
|
|
|
528 |
|
|
/* ---------------------------------------------------------------------- */ |
529 |
|
|
|
530 |
|
|
static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) |
531 |
|
|
/* This function is a wrapper for the primitive NH hash functions. It takes |
532 |
|
|
* as argument "hc" the current hash context and a buffer which must be a |
533 |
|
|
* multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset |
534 |
|
|
* appropriately according to how much message has been hashed already. |
535 |
|
|
*/ |
536 |
|
|
{ |
537 |
|
|
UINT8 *key; |
538 |
|
|
|
539 |
|
|
key = hc->nh_key + hc->bytes_hashed; |
540 |
|
|
nh_aux(key, buf, hc->state, nbytes); |
541 |
|
|
} |
542 |
|
|
|
543 |
|
|
/* ---------------------------------------------------------------------- */ |
544 |
|
|
|
545 |
|
|
#if (__LITTLE_ENDIAN__) |
546 |
|
|
static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) |
547 |
|
|
/* We endian convert the keys on little-endian computers to */ |
548 |
|
|
/* compensate for the lack of big-endian memory reads during hashing. */ |
549 |
|
|
{ |
550 |
|
|
UWORD iters = num_bytes / bpw; |
551 |
|
|
if (bpw == 4) { |
552 |
|
|
UINT32 *p = (UINT32 *)buf; |
553 |
|
|
do { |
554 |
|
|
*p = LOAD_UINT32_REVERSED(p); |
555 |
|
|
p++; |
556 |
|
|
} while (--iters); |
557 |
|
|
} else if (bpw == 8) { |
558 |
|
|
UINT32 *p = (UINT32 *)buf; |
559 |
|
|
UINT32 t; |
560 |
|
|
do { |
561 |
|
|
t = LOAD_UINT32_REVERSED(p+1); |
562 |
|
|
p[1] = LOAD_UINT32_REVERSED(p); |
563 |
|
|
p[0] = t; |
564 |
|
|
p += 2; |
565 |
|
|
} while (--iters); |
566 |
|
|
} |
567 |
|
|
} |
568 |
|
|
#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) |
569 |
|
|
#else |
570 |
|
|
#define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ |
571 |
|
|
#endif |
572 |
|
|
|
573 |
|
|
/* ---------------------------------------------------------------------- */ |
574 |
|
|
|
575 |
|
|
static void nh_reset(nh_ctx *hc) |
576 |
|
|
/* Reset nh_ctx to ready for hashing of new data */ |
577 |
|
|
{ |
578 |
|
|
hc->bytes_hashed = 0; |
579 |
|
|
hc->next_data_empty = 0; |
580 |
|
|
hc->state[0] = 0; |
581 |
|
|
#if (UMAC_OUTPUT_LEN >= 8) |
582 |
|
|
hc->state[1] = 0; |
583 |
|
|
#endif |
584 |
|
|
#if (UMAC_OUTPUT_LEN >= 12) |
585 |
|
|
hc->state[2] = 0; |
586 |
|
|
#endif |
587 |
|
|
#if (UMAC_OUTPUT_LEN == 16) |
588 |
|
|
hc->state[3] = 0; |
589 |
|
|
#endif |
590 |
|
|
|
591 |
|
|
} |
592 |
|
|
|
593 |
|
|
/* ---------------------------------------------------------------------- */ |
594 |
|
|
|
595 |
|
|
static void nh_init(nh_ctx *hc, aes_int_key prf_key) |
596 |
|
|
/* Generate nh_key, endian convert and reset to be ready for hashing. */ |
597 |
|
|
{ |
598 |
|
|
kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); |
599 |
|
|
endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); |
600 |
|
|
nh_reset(hc); |
601 |
|
|
} |
602 |
|
|
|
603 |
|
|
/* ---------------------------------------------------------------------- */ |
604 |
|
|
|
605 |
|
|
static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) |
606 |
|
|
/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ |
607 |
|
|
/* even multiple of HASH_BUF_BYTES. */ |
608 |
|
|
{ |
609 |
|
|
UINT32 i,j; |
610 |
|
|
|
611 |
|
|
j = hc->next_data_empty; |
612 |
|
|
if ((j + nbytes) >= HASH_BUF_BYTES) { |
613 |
|
|
if (j) { |
614 |
|
|
i = HASH_BUF_BYTES - j; |
615 |
|
|
memcpy(hc->data+j, buf, i); |
616 |
|
|
nh_transform(hc,hc->data,HASH_BUF_BYTES); |
617 |
|
|
nbytes -= i; |
618 |
|
|
buf += i; |
619 |
|
|
hc->bytes_hashed += HASH_BUF_BYTES; |
620 |
|
|
} |
621 |
|
|
if (nbytes >= HASH_BUF_BYTES) { |
622 |
|
|
i = nbytes & ~(HASH_BUF_BYTES - 1); |
623 |
|
|
nh_transform(hc, buf, i); |
624 |
|
|
nbytes -= i; |
625 |
|
|
buf += i; |
626 |
|
|
hc->bytes_hashed += i; |
627 |
|
|
} |
628 |
|
|
j = 0; |
629 |
|
|
} |
630 |
|
|
memcpy(hc->data + j, buf, nbytes); |
631 |
|
|
hc->next_data_empty = j + nbytes; |
632 |
|
|
} |
633 |
|
|
|
634 |
|
|
/* ---------------------------------------------------------------------- */ |
635 |
|
|
|
636 |
|
|
static void zero_pad(UINT8 *p, int nbytes) |
637 |
|
|
{ |
638 |
|
|
/* Write "nbytes" of zeroes, beginning at "p" */ |
639 |
|
|
if (nbytes >= (int)sizeof(UWORD)) { |
640 |
|
|
while ((ptrdiff_t)p % sizeof(UWORD)) { |
641 |
|
|
*p = 0; |
642 |
|
|
nbytes--; |
643 |
|
|
p++; |
644 |
|
|
} |
645 |
|
|
while (nbytes >= (int)sizeof(UWORD)) { |
646 |
|
|
*(UWORD *)p = 0; |
647 |
|
|
nbytes -= sizeof(UWORD); |
648 |
|
|
p += sizeof(UWORD); |
649 |
|
|
} |
650 |
|
|
} |
651 |
|
|
while (nbytes) { |
652 |
|
|
*p = 0; |
653 |
|
|
nbytes--; |
654 |
|
|
p++; |
655 |
|
|
} |
656 |
|
|
} |
657 |
|
|
|
658 |
|
|
/* ---------------------------------------------------------------------- */ |
659 |
|
|
|
660 |
|
|
static void nh_final(nh_ctx *hc, UINT8 *result) |
661 |
|
|
/* After passing some number of data buffers to nh_update() for integration |
662 |
|
|
* into an NH context, nh_final is called to produce a hash result. If any |
663 |
|
|
* bytes are in the buffer hc->data, incorporate them into the |
664 |
|
|
* NH context. Finally, add into the NH accumulation "state" the total number |
665 |
|
|
* of bits hashed. The resulting numbers are written to the buffer "result". |
666 |
|
|
* If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. |
667 |
|
|
*/ |
668 |
|
|
{ |
669 |
|
|
int nh_len, nbits; |
670 |
|
|
|
671 |
|
|
if (hc->next_data_empty != 0) { |
672 |
|
|
nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & |
673 |
|
|
~(L1_PAD_BOUNDARY - 1)); |
674 |
|
|
zero_pad(hc->data + hc->next_data_empty, |
675 |
|
|
nh_len - hc->next_data_empty); |
676 |
|
|
nh_transform(hc, hc->data, nh_len); |
677 |
|
|
hc->bytes_hashed += hc->next_data_empty; |
678 |
|
|
} else if (hc->bytes_hashed == 0) { |
679 |
|
|
nh_len = L1_PAD_BOUNDARY; |
680 |
|
|
zero_pad(hc->data, L1_PAD_BOUNDARY); |
681 |
|
|
nh_transform(hc, hc->data, nh_len); |
682 |
|
|
} |
683 |
|
|
|
684 |
|
|
nbits = (hc->bytes_hashed << 3); |
685 |
|
|
((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; |
686 |
|
|
#if (UMAC_OUTPUT_LEN >= 8) |
687 |
|
|
((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; |
688 |
|
|
#endif |
689 |
|
|
#if (UMAC_OUTPUT_LEN >= 12) |
690 |
|
|
((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; |
691 |
|
|
#endif |
692 |
|
|
#if (UMAC_OUTPUT_LEN == 16) |
693 |
|
|
((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; |
694 |
|
|
#endif |
695 |
|
|
nh_reset(hc); |
696 |
|
|
} |
697 |
|
|
|
698 |
|
|
/* ---------------------------------------------------------------------- */ |
699 |
|
|
|
700 |
|
|
static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, |
701 |
|
|
UINT32 unpadded_len, UINT8 *result) |
702 |
|
|
/* All-in-one nh_update() and nh_final() equivalent. |
703 |
|
|
* Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is |
704 |
|
|
* well aligned |
705 |
|
|
*/ |
706 |
|
|
{ |
707 |
|
|
UINT32 nbits; |
708 |
|
|
|
709 |
|
|
/* Initialize the hash state */ |
710 |
|
|
nbits = (unpadded_len << 3); |
711 |
|
|
|
712 |
|
|
((UINT64 *)result)[0] = nbits; |
713 |
|
|
#if (UMAC_OUTPUT_LEN >= 8) |
714 |
|
|
((UINT64 *)result)[1] = nbits; |
715 |
|
|
#endif |
716 |
|
|
#if (UMAC_OUTPUT_LEN >= 12) |
717 |
|
|
((UINT64 *)result)[2] = nbits; |
718 |
|
|
#endif |
719 |
|
|
#if (UMAC_OUTPUT_LEN == 16) |
720 |
|
|
((UINT64 *)result)[3] = nbits; |
721 |
|
|
#endif |
722 |
|
|
|
723 |
|
|
nh_aux(hc->nh_key, buf, result, padded_len); |
724 |
|
|
} |
725 |
|
|
|
726 |
|
|
/* ---------------------------------------------------------------------- */ |
727 |
|
|
/* ---------------------------------------------------------------------- */ |
728 |
|
|
/* ----- Begin UHASH Section -------------------------------------------- */ |
729 |
|
|
/* ---------------------------------------------------------------------- */ |
730 |
|
|
/* ---------------------------------------------------------------------- */ |
731 |
|
|
|
732 |
|
|
/* UHASH is a multi-layered algorithm. Data presented to UHASH is first |
733 |
|
|
* hashed by NH. The NH output is then hashed by a polynomial-hash layer |
734 |
|
|
* unless the initial data to be hashed is short. After the polynomial- |
735 |
|
|
* layer, an inner-product hash is used to produce the final UHASH output. |
736 |
|
|
* |
737 |
|
|
* UHASH provides two interfaces, one all-at-once and another where data |
738 |
|
|
* buffers are presented sequentially. In the sequential interface, the |
739 |
|
|
* UHASH client calls the routine uhash_update() as many times as necessary. |
740 |
|
|
* When there is no more data to be fed to UHASH, the client calls |
741 |
|
|
* uhash_final() which |
742 |
|
|
* calculates the UHASH output. Before beginning another UHASH calculation |
743 |
|
|
* the uhash_reset() routine must be called. The all-at-once UHASH routine, |
744 |
|
|
* uhash(), is equivalent to the sequence of calls uhash_update() and |
745 |
|
|
* uhash_final(); however it is optimized and should be |
746 |
|
|
* used whenever the sequential interface is not necessary. |
747 |
|
|
* |
748 |
|
|
* The routine uhash_init() initializes the uhash_ctx data structure and |
749 |
|
|
* must be called once, before any other UHASH routine. |
750 |
|
|
*/ |
751 |
|
|
|
752 |
|
|
/* ---------------------------------------------------------------------- */ |
753 |
|
|
/* ----- Constants and uhash_ctx ---------------------------------------- */ |
754 |
|
|
/* ---------------------------------------------------------------------- */ |
755 |
|
|
|
756 |
|
|
/* ---------------------------------------------------------------------- */ |
757 |
|
|
/* ----- Poly hash and Inner-Product hash Constants --------------------- */ |
758 |
|
|
/* ---------------------------------------------------------------------- */ |
759 |
|
|
|
760 |
|
|
/* Primes and masks */ |
761 |
|
|
#define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ |
762 |
|
|
#define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ |
763 |
|
|
#define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ |
764 |
|
|
|
765 |
|
|
|
766 |
|
|
/* ---------------------------------------------------------------------- */ |
767 |
|
|
|
768 |
|
|
typedef struct uhash_ctx { |
769 |
|
|
nh_ctx hash; /* Hash context for L1 NH hash */ |
770 |
|
|
UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ |
771 |
|
|
UINT64 poly_accum[STREAMS]; /* poly hash result */ |
772 |
|
|
UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ |
773 |
|
|
UINT32 ip_trans[STREAMS]; /* Inner-product translation */ |
774 |
|
|
UINT32 msg_len; /* Total length of data passed */ |
775 |
|
|
/* to uhash */ |
776 |
|
|
} uhash_ctx; |
777 |
|
|
typedef struct uhash_ctx *uhash_ctx_t; |
778 |
|
|
|
779 |
|
|
/* ---------------------------------------------------------------------- */ |
780 |
|
|
|
781 |
|
|
|
782 |
|
|
/* The polynomial hashes use Horner's rule to evaluate a polynomial one |
783 |
|
|
* word at a time. As described in the specification, poly32 and poly64 |
784 |
|
|
* require keys from special domains. The following implementations exploit |
785 |
|
|
* the special domains to avoid overflow. The results are not guaranteed to |
786 |
|
|
* be within Z_p32 and Z_p64, but the Inner-Product hash implementation |
787 |
|
|
* patches any errant values. |
788 |
|
|
*/ |
789 |
|
|
|
790 |
|
|
static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) |
791 |
|
|
{ |
792 |
|
|
UINT32 key_hi = (UINT32)(key >> 32), |
793 |
|
|
key_lo = (UINT32)key, |
794 |
|
|
cur_hi = (UINT32)(cur >> 32), |
795 |
|
|
cur_lo = (UINT32)cur, |
796 |
|
|
x_lo, |
797 |
|
|
x_hi; |
798 |
|
|
UINT64 X,T,res; |
799 |
|
|
|
800 |
|
|
X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); |
801 |
|
|
x_lo = (UINT32)X; |
802 |
|
|
x_hi = (UINT32)(X >> 32); |
803 |
|
|
|
804 |
|
|
res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); |
805 |
|
|
|
806 |
|
|
T = ((UINT64)x_lo << 32); |
807 |
|
|
res += T; |
808 |
|
|
if (res < T) |
809 |
|
|
res += 59; |
810 |
|
|
|
811 |
|
|
res += data; |
812 |
|
|
if (res < data) |
813 |
|
|
res += 59; |
814 |
|
|
|
815 |
|
|
return res; |
816 |
|
|
} |
817 |
|
|
|
818 |
|
|
|
819 |
|
|
/* Although UMAC is specified to use a ramped polynomial hash scheme, this |
820 |
|
|
* implementation does not handle all ramp levels. Because we don't handle |
821 |
|
|
* the ramp up to p128 modulus in this implementation, we are limited to |
822 |
|
|
* 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 |
823 |
|
|
* bytes input to UMAC per tag, ie. 16MB). |
824 |
|
|
*/ |
825 |
|
|
static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) |
826 |
|
|
{ |
827 |
|
|
int i; |
828 |
|
|
UINT64 *data=(UINT64*)data_in; |
829 |
|
|
|
830 |
|
|
for (i = 0; i < STREAMS; i++) { |
831 |
|
|
if ((UINT32)(data[i] >> 32) == 0xfffffffful) { |
832 |
|
|
hc->poly_accum[i] = poly64(hc->poly_accum[i], |
833 |
|
|
hc->poly_key_8[i], p64 - 1); |
834 |
|
|
hc->poly_accum[i] = poly64(hc->poly_accum[i], |
835 |
|
|
hc->poly_key_8[i], (data[i] - 59)); |
836 |
|
|
} else { |
837 |
|
|
hc->poly_accum[i] = poly64(hc->poly_accum[i], |
838 |
|
|
hc->poly_key_8[i], data[i]); |
839 |
|
|
} |
840 |
|
|
} |
841 |
|
|
} |
842 |
|
|
|
843 |
|
|
|
844 |
|
|
/* ---------------------------------------------------------------------- */ |
845 |
|
|
|
846 |
|
|
|
847 |
|
|
/* The final step in UHASH is an inner-product hash. The poly hash |
848 |
|
|
* produces a result not neccesarily WORD_LEN bytes long. The inner- |
849 |
|
|
* product hash breaks the polyhash output into 16-bit chunks and |
850 |
|
|
* multiplies each with a 36 bit key. |
851 |
|
|
*/ |
852 |
|
|
|
853 |
|
|
static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) |
854 |
|
|
{ |
855 |
|
|
t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); |
856 |
|
|
t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); |
857 |
|
|
t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); |
858 |
|
|
t = t + ipkp[3] * (UINT64)(UINT16)(data); |
859 |
|
|
|
860 |
|
|
return t; |
861 |
|
|
} |
862 |
|
|
|
863 |
|
|
static UINT32 ip_reduce_p36(UINT64 t) |
864 |
|
|
{ |
865 |
|
|
/* Divisionless modular reduction */ |
866 |
|
|
UINT64 ret; |
867 |
|
|
|
868 |
|
|
ret = (t & m36) + 5 * (t >> 36); |
869 |
|
|
if (ret >= p36) |
870 |
|
|
ret -= p36; |
871 |
|
|
|
872 |
|
|
/* return least significant 32 bits */ |
873 |
|
|
return (UINT32)(ret); |
874 |
|
|
} |
875 |
|
|
|
876 |
|
|
|
877 |
|
|
/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then |
878 |
|
|
* the polyhash stage is skipped and ip_short is applied directly to the |
879 |
|
|
* NH output. |
880 |
|
|
*/ |
881 |
|
|
static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) |
882 |
|
|
{ |
883 |
|
|
UINT64 t; |
884 |
|
|
UINT64 *nhp = (UINT64 *)nh_res; |
885 |
|
|
|
886 |
|
|
t = ip_aux(0,ahc->ip_keys, nhp[0]); |
887 |
|
|
STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); |
888 |
|
|
#if (UMAC_OUTPUT_LEN >= 8) |
889 |
|
|
t = ip_aux(0,ahc->ip_keys+4, nhp[1]); |
890 |
|
|
STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); |
891 |
|
|
#endif |
892 |
|
|
#if (UMAC_OUTPUT_LEN >= 12) |
893 |
|
|
t = ip_aux(0,ahc->ip_keys+8, nhp[2]); |
894 |
|
|
STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); |
895 |
|
|
#endif |
896 |
|
|
#if (UMAC_OUTPUT_LEN == 16) |
897 |
|
|
t = ip_aux(0,ahc->ip_keys+12, nhp[3]); |
898 |
|
|
STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); |
899 |
|
|
#endif |
900 |
|
|
} |
901 |
|
|
|
902 |
|
|
/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then |
903 |
|
|
* the polyhash stage is not skipped and ip_long is applied to the |
904 |
|
|
* polyhash output. |
905 |
|
|
*/ |
906 |
|
|
static void ip_long(uhash_ctx_t ahc, u_char *res) |
907 |
|
|
{ |
908 |
|
|
int i; |
909 |
|
|
UINT64 t; |
910 |
|
|
|
911 |
|
|
for (i = 0; i < STREAMS; i++) { |
912 |
|
|
/* fix polyhash output not in Z_p64 */ |
913 |
|
|
if (ahc->poly_accum[i] >= p64) |
914 |
|
|
ahc->poly_accum[i] -= p64; |
915 |
|
|
t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); |
916 |
|
|
STORE_UINT32_BIG((UINT32 *)res+i, |
917 |
|
|
ip_reduce_p36(t) ^ ahc->ip_trans[i]); |
918 |
|
|
} |
919 |
|
|
} |
920 |
|
|
|
921 |
|
|
|
922 |
|
|
/* ---------------------------------------------------------------------- */ |
923 |
|
|
|
924 |
|
|
/* ---------------------------------------------------------------------- */ |
925 |
|
|
|
926 |
|
|
/* Reset uhash context for next hash session */ |
927 |
|
|
static int uhash_reset(uhash_ctx_t pc) |
928 |
|
|
{ |
929 |
|
|
nh_reset(&pc->hash); |
930 |
|
|
pc->msg_len = 0; |
931 |
|
|
pc->poly_accum[0] = 1; |
932 |
|
|
#if (UMAC_OUTPUT_LEN >= 8) |
933 |
|
|
pc->poly_accum[1] = 1; |
934 |
|
|
#endif |
935 |
|
|
#if (UMAC_OUTPUT_LEN >= 12) |
936 |
|
|
pc->poly_accum[2] = 1; |
937 |
|
|
#endif |
938 |
|
|
#if (UMAC_OUTPUT_LEN == 16) |
939 |
|
|
pc->poly_accum[3] = 1; |
940 |
|
|
#endif |
941 |
|
|
return 1; |
942 |
|
|
} |
943 |
|
|
|
944 |
|
|
/* ---------------------------------------------------------------------- */ |
945 |
|
|
|
946 |
|
|
/* Given a pointer to the internal key needed by kdf() and a uhash context, |
947 |
|
|
* initialize the NH context and generate keys needed for poly and inner- |
948 |
|
|
* product hashing. All keys are endian adjusted in memory so that native |
949 |
|
|
* loads cause correct keys to be in registers during calculation. |
950 |
|
|
*/ |
951 |
|
|
static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) |
952 |
|
|
{ |
953 |
|
|
int i; |
954 |
|
|
UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; |
955 |
|
|
|
956 |
|
|
/* Zero the entire uhash context */ |
957 |
|
|
memset(ahc, 0, sizeof(uhash_ctx)); |
958 |
|
|
|
959 |
|
|
/* Initialize the L1 hash */ |
960 |
|
|
nh_init(&ahc->hash, prf_key); |
961 |
|
|
|
962 |
|
|
/* Setup L2 hash variables */ |
963 |
|
|
kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ |
964 |
|
|
for (i = 0; i < STREAMS; i++) { |
965 |
|
|
/* Fill keys from the buffer, skipping bytes in the buffer not |
966 |
|
|
* used by this implementation. Endian reverse the keys if on a |
967 |
|
|
* little-endian computer. |
968 |
|
|
*/ |
969 |
|
|
memcpy(ahc->poly_key_8+i, buf+24*i, 8); |
970 |
|
|
endian_convert_if_le(ahc->poly_key_8+i, 8, 8); |
971 |
|
|
/* Mask the 64-bit keys to their special domain */ |
972 |
|
|
ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; |
973 |
|
|
ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ |
974 |
|
|
} |
975 |
|
|
|
976 |
|
|
/* Setup L3-1 hash variables */ |
977 |
|
|
kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ |
978 |
|
|
for (i = 0; i < STREAMS; i++) |
979 |
|
|
memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), |
980 |
|
|
4*sizeof(UINT64)); |
981 |
|
|
endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), |
982 |
|
|
sizeof(ahc->ip_keys)); |
983 |
|
|
for (i = 0; i < STREAMS*4; i++) |
984 |
|
|
ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ |
985 |
|
|
|
986 |
|
|
/* Setup L3-2 hash variables */ |
987 |
|
|
/* Fill buffer with index 4 key */ |
988 |
|
|
kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); |
989 |
|
|
endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), |
990 |
|
|
STREAMS * sizeof(UINT32)); |
991 |
|
|
explicit_bzero(buf, sizeof(buf)); |
992 |
|
|
} |
993 |
|
|
|
994 |
|
|
/* ---------------------------------------------------------------------- */ |
995 |
|
|
|
996 |
|
|
#if 0 |
997 |
|
|
static uhash_ctx_t uhash_alloc(u_char key[]) |
998 |
|
|
{ |
999 |
|
|
/* Allocate memory and force to a 16-byte boundary. */ |
1000 |
|
|
uhash_ctx_t ctx; |
1001 |
|
|
u_char bytes_to_add; |
1002 |
|
|
aes_int_key prf_key; |
1003 |
|
|
|
1004 |
|
|
ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); |
1005 |
|
|
if (ctx) { |
1006 |
|
|
if (ALLOC_BOUNDARY) { |
1007 |
|
|
bytes_to_add = ALLOC_BOUNDARY - |
1008 |
|
|
((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); |
1009 |
|
|
ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); |
1010 |
|
|
*((u_char *)ctx - 1) = bytes_to_add; |
1011 |
|
|
} |
1012 |
|
|
aes_key_setup(key,prf_key); |
1013 |
|
|
uhash_init(ctx, prf_key); |
1014 |
|
|
} |
1015 |
|
|
return (ctx); |
1016 |
|
|
} |
1017 |
|
|
#endif |
1018 |
|
|
|
1019 |
|
|
/* ---------------------------------------------------------------------- */ |
1020 |
|
|
|
1021 |
|
|
#if 0 |
1022 |
|
|
static int uhash_free(uhash_ctx_t ctx) |
1023 |
|
|
{ |
1024 |
|
|
/* Free memory allocated by uhash_alloc */ |
1025 |
|
|
u_char bytes_to_sub; |
1026 |
|
|
|
1027 |
|
|
if (ctx) { |
1028 |
|
|
if (ALLOC_BOUNDARY) { |
1029 |
|
|
bytes_to_sub = *((u_char *)ctx - 1); |
1030 |
|
|
ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); |
1031 |
|
|
} |
1032 |
|
|
free(ctx); |
1033 |
|
|
} |
1034 |
|
|
return (1); |
1035 |
|
|
} |
1036 |
|
|
#endif |
1037 |
|
|
/* ---------------------------------------------------------------------- */ |
1038 |
|
|
|
1039 |
|
|
static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) |
1040 |
|
|
/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and |
1041 |
|
|
* hash each one with NH, calling the polyhash on each NH output. |
1042 |
|
|
*/ |
1043 |
|
|
{ |
1044 |
|
|
UWORD bytes_hashed, bytes_remaining; |
1045 |
|
|
UINT64 result_buf[STREAMS]; |
1046 |
|
|
UINT8 *nh_result = (UINT8 *)&result_buf; |
1047 |
|
|
|
1048 |
|
|
if (ctx->msg_len + len <= L1_KEY_LEN) { |
1049 |
|
|
nh_update(&ctx->hash, (const UINT8 *)input, len); |
1050 |
|
|
ctx->msg_len += len; |
1051 |
|
|
} else { |
1052 |
|
|
|
1053 |
|
|
bytes_hashed = ctx->msg_len % L1_KEY_LEN; |
1054 |
|
|
if (ctx->msg_len == L1_KEY_LEN) |
1055 |
|
|
bytes_hashed = L1_KEY_LEN; |
1056 |
|
|
|
1057 |
|
|
if (bytes_hashed + len >= L1_KEY_LEN) { |
1058 |
|
|
|
1059 |
|
|
/* If some bytes have been passed to the hash function */ |
1060 |
|
|
/* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ |
1061 |
|
|
/* bytes to complete the current nh_block. */ |
1062 |
|
|
if (bytes_hashed) { |
1063 |
|
|
bytes_remaining = (L1_KEY_LEN - bytes_hashed); |
1064 |
|
|
nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); |
1065 |
|
|
nh_final(&ctx->hash, nh_result); |
1066 |
|
|
ctx->msg_len += bytes_remaining; |
1067 |
|
|
poly_hash(ctx,(UINT32 *)nh_result); |
1068 |
|
|
len -= bytes_remaining; |
1069 |
|
|
input += bytes_remaining; |
1070 |
|
|
} |
1071 |
|
|
|
1072 |
|
|
/* Hash directly from input stream if enough bytes */ |
1073 |
|
|
while (len >= L1_KEY_LEN) { |
1074 |
|
|
nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, |
1075 |
|
|
L1_KEY_LEN, nh_result); |
1076 |
|
|
ctx->msg_len += L1_KEY_LEN; |
1077 |
|
|
len -= L1_KEY_LEN; |
1078 |
|
|
input += L1_KEY_LEN; |
1079 |
|
|
poly_hash(ctx,(UINT32 *)nh_result); |
1080 |
|
|
} |
1081 |
|
|
} |
1082 |
|
|
|
1083 |
|
|
/* pass remaining < L1_KEY_LEN bytes of input data to NH */ |
1084 |
|
|
if (len) { |
1085 |
|
|
nh_update(&ctx->hash, (const UINT8 *)input, len); |
1086 |
|
|
ctx->msg_len += len; |
1087 |
|
|
} |
1088 |
|
|
} |
1089 |
|
|
|
1090 |
|
|
return (1); |
1091 |
|
|
} |
1092 |
|
|
|
1093 |
|
|
/* ---------------------------------------------------------------------- */ |
1094 |
|
|
|
1095 |
|
|
static int uhash_final(uhash_ctx_t ctx, u_char *res) |
1096 |
|
|
/* Incorporate any pending data, pad, and generate tag */ |
1097 |
|
|
{ |
1098 |
|
|
UINT64 result_buf[STREAMS]; |
1099 |
|
|
UINT8 *nh_result = (UINT8 *)&result_buf; |
1100 |
|
|
|
1101 |
|
|
if (ctx->msg_len > L1_KEY_LEN) { |
1102 |
|
|
if (ctx->msg_len % L1_KEY_LEN) { |
1103 |
|
|
nh_final(&ctx->hash, nh_result); |
1104 |
|
|
poly_hash(ctx,(UINT32 *)nh_result); |
1105 |
|
|
} |
1106 |
|
|
ip_long(ctx, res); |
1107 |
|
|
} else { |
1108 |
|
|
nh_final(&ctx->hash, nh_result); |
1109 |
|
|
ip_short(ctx,nh_result, res); |
1110 |
|
|
} |
1111 |
|
|
uhash_reset(ctx); |
1112 |
|
|
return (1); |
1113 |
|
|
} |
1114 |
|
|
|
1115 |
|
|
/* ---------------------------------------------------------------------- */ |
1116 |
|
|
|
1117 |
|
|
#if 0 |
1118 |
|
|
static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) |
1119 |
|
|
/* assumes that msg is in a writable buffer of length divisible by */ |
1120 |
|
|
/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ |
1121 |
|
|
{ |
1122 |
|
|
UINT8 nh_result[STREAMS*sizeof(UINT64)]; |
1123 |
|
|
UINT32 nh_len; |
1124 |
|
|
int extra_zeroes_needed; |
1125 |
|
|
|
1126 |
|
|
/* If the message to be hashed is no longer than L1_HASH_LEN, we skip |
1127 |
|
|
* the polyhash. |
1128 |
|
|
*/ |
1129 |
|
|
if (len <= L1_KEY_LEN) { |
1130 |
|
|
if (len == 0) /* If zero length messages will not */ |
1131 |
|
|
nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ |
1132 |
|
|
else |
1133 |
|
|
nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); |
1134 |
|
|
extra_zeroes_needed = nh_len - len; |
1135 |
|
|
zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
1136 |
|
|
nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
1137 |
|
|
ip_short(ahc,nh_result, res); |
1138 |
|
|
} else { |
1139 |
|
|
/* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH |
1140 |
|
|
* output to poly_hash(). |
1141 |
|
|
*/ |
1142 |
|
|
do { |
1143 |
|
|
nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); |
1144 |
|
|
poly_hash(ahc,(UINT32 *)nh_result); |
1145 |
|
|
len -= L1_KEY_LEN; |
1146 |
|
|
msg += L1_KEY_LEN; |
1147 |
|
|
} while (len >= L1_KEY_LEN); |
1148 |
|
|
if (len) { |
1149 |
|
|
nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); |
1150 |
|
|
extra_zeroes_needed = nh_len - len; |
1151 |
|
|
zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
1152 |
|
|
nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
1153 |
|
|
poly_hash(ahc,(UINT32 *)nh_result); |
1154 |
|
|
} |
1155 |
|
|
|
1156 |
|
|
ip_long(ahc, res); |
1157 |
|
|
} |
1158 |
|
|
|
1159 |
|
|
uhash_reset(ahc); |
1160 |
|
|
return 1; |
1161 |
|
|
} |
1162 |
|
|
#endif |
1163 |
|
|
|
1164 |
|
|
/* ---------------------------------------------------------------------- */ |
1165 |
|
|
/* ---------------------------------------------------------------------- */ |
1166 |
|
|
/* ----- Begin UMAC Section --------------------------------------------- */ |
1167 |
|
|
/* ---------------------------------------------------------------------- */ |
1168 |
|
|
/* ---------------------------------------------------------------------- */ |
1169 |
|
|
|
1170 |
|
|
/* The UMAC interface has two interfaces, an all-at-once interface where |
1171 |
|
|
* the entire message to be authenticated is passed to UMAC in one buffer, |
1172 |
|
|
* and a sequential interface where the message is presented a little at a |
1173 |
|
|
* time. The all-at-once is more optimaized than the sequential version and |
1174 |
|
|
* should be preferred when the sequential interface is not required. |
1175 |
|
|
*/ |
1176 |
|
|
struct umac_ctx { |
1177 |
|
|
uhash_ctx hash; /* Hash function for message compression */ |
1178 |
|
|
pdf_ctx pdf; /* PDF for hashed output */ |
1179 |
|
|
void *free_ptr; /* Address to free this struct via */ |
1180 |
|
|
} umac_ctx; |
1181 |
|
|
|
1182 |
|
|
/* ---------------------------------------------------------------------- */ |
1183 |
|
|
|
1184 |
|
|
#if 0 |
1185 |
|
|
int umac_reset(struct umac_ctx *ctx) |
1186 |
|
|
/* Reset the hash function to begin a new authentication. */ |
1187 |
|
|
{ |
1188 |
|
|
uhash_reset(&ctx->hash); |
1189 |
|
|
return (1); |
1190 |
|
|
} |
1191 |
|
|
#endif |
1192 |
|
|
|
1193 |
|
|
/* ---------------------------------------------------------------------- */ |
1194 |
|
|
|
1195 |
|
|
int umac_delete(struct umac_ctx *ctx) |
1196 |
|
|
/* Deallocate the ctx structure */ |
1197 |
|
|
{ |
1198 |
|
|
if (ctx) { |
1199 |
|
|
if (ALLOC_BOUNDARY) |
1200 |
|
|
ctx = (struct umac_ctx *)ctx->free_ptr; |
1201 |
|
|
explicit_bzero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); |
1202 |
|
|
free(ctx); |
1203 |
|
|
} |
1204 |
|
|
return (1); |
1205 |
|
|
} |
1206 |
|
|
|
1207 |
|
|
/* ---------------------------------------------------------------------- */ |
1208 |
|
|
|
1209 |
|
|
struct umac_ctx *umac_new(const u_char key[]) |
1210 |
|
|
/* Dynamically allocate a umac_ctx struct, initialize variables, |
1211 |
|
|
* generate subkeys from key. Align to 16-byte boundary. |
1212 |
|
|
*/ |
1213 |
|
|
{ |
1214 |
|
|
struct umac_ctx *ctx, *octx; |
1215 |
|
|
size_t bytes_to_add; |
1216 |
|
|
aes_int_key prf_key; |
1217 |
|
|
|
1218 |
|
|
octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); |
1219 |
|
|
if (ctx) { |
1220 |
|
|
if (ALLOC_BOUNDARY) { |
1221 |
|
|
bytes_to_add = ALLOC_BOUNDARY - |
1222 |
|
|
((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); |
1223 |
|
|
ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); |
1224 |
|
|
} |
1225 |
|
|
ctx->free_ptr = octx; |
1226 |
|
|
aes_key_setup(key, prf_key); |
1227 |
|
|
pdf_init(&ctx->pdf, prf_key); |
1228 |
|
|
uhash_init(&ctx->hash, prf_key); |
1229 |
|
|
explicit_bzero(prf_key, sizeof(prf_key)); |
1230 |
|
|
} |
1231 |
|
|
|
1232 |
|
|
return (ctx); |
1233 |
|
|
} |
1234 |
|
|
|
1235 |
|
|
/* ---------------------------------------------------------------------- */ |
1236 |
|
|
|
1237 |
|
|
int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8]) |
1238 |
|
|
/* Incorporate any pending data, pad, and generate tag */ |
1239 |
|
|
{ |
1240 |
|
|
uhash_final(&ctx->hash, (u_char *)tag); |
1241 |
|
|
pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); |
1242 |
|
|
|
1243 |
|
|
return (1); |
1244 |
|
|
} |
1245 |
|
|
|
1246 |
|
|
/* ---------------------------------------------------------------------- */ |
1247 |
|
|
|
1248 |
|
|
int umac_update(struct umac_ctx *ctx, const u_char *input, long len) |
1249 |
|
|
/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ |
1250 |
|
|
/* hash each one, calling the PDF on the hashed output whenever the hash- */ |
1251 |
|
|
/* output buffer is full. */ |
1252 |
|
|
{ |
1253 |
|
|
uhash_update(&ctx->hash, input, len); |
1254 |
|
|
return (1); |
1255 |
|
|
} |
1256 |
|
|
|
1257 |
|
|
/* ---------------------------------------------------------------------- */ |
1258 |
|
|
|
1259 |
|
|
#if 0 |
1260 |
|
|
int umac(struct umac_ctx *ctx, u_char *input, |
1261 |
|
|
long len, u_char tag[], |
1262 |
|
|
u_char nonce[8]) |
1263 |
|
|
/* All-in-one version simply calls umac_update() and umac_final(). */ |
1264 |
|
|
{ |
1265 |
|
|
uhash(&ctx->hash, input, len, (u_char *)tag); |
1266 |
|
|
pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); |
1267 |
|
|
|
1268 |
|
|
return (1); |
1269 |
|
|
} |
1270 |
|
|
#endif |
1271 |
|
|
|
1272 |
|
|
/* ---------------------------------------------------------------------- */ |
1273 |
|
|
/* ---------------------------------------------------------------------- */ |
1274 |
|
|
/* ----- End UMAC Section ----------------------------------------------- */ |
1275 |
|
|
/* ---------------------------------------------------------------------- */ |
1276 |
|
|
/* ---------------------------------------------------------------------- */ |