GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: usr.bin/ssh/ssh-keygen/../moduli.c Lines: 0 309 0.0 %
Date: 2017-11-07 Branches: 0 189 0.0 %

Line Branch Exec Source
1
/* $OpenBSD: moduli.c,v 1.31 2016/09/12 01:22:38 deraadt Exp $ */
2
/*
3
 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4
 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5
 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6
 * All rights reserved.
7
 *
8
 * Redistribution and use in source and binary forms, with or without
9
 * modification, are permitted provided that the following conditions
10
 * are met:
11
 * 1. Redistributions of source code must retain the above copyright
12
 *    notice, this list of conditions and the following disclaimer.
13
 * 2. Redistributions in binary form must reproduce the above copyright
14
 *    notice, this list of conditions and the following disclaimer in the
15
 *    documentation and/or other materials provided with the distribution.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
29
/*
30
 * Two-step process to generate safe primes for DHGEX
31
 *
32
 *  Sieve candidates for "safe" primes,
33
 *  suitable for use as Diffie-Hellman moduli;
34
 *  that is, where q = (p-1)/2 is also prime.
35
 *
36
 * First step: generate candidate primes (memory intensive)
37
 * Second step: test primes' safety (processor intensive)
38
 */
39
40
#include <sys/types.h>
41
42
#include <openssl/bn.h>
43
#include <openssl/dh.h>
44
45
#include <errno.h>
46
#include <stdio.h>
47
#include <stdlib.h>
48
#include <string.h>
49
#include <stdarg.h>
50
#include <time.h>
51
#include <unistd.h>
52
#include <limits.h>
53
54
#include "xmalloc.h"
55
#include "dh.h"
56
#include "log.h"
57
#include "misc.h"
58
59
/*
60
 * File output defines
61
 */
62
63
/* need line long enough for largest moduli plus headers */
64
#define QLINESIZE		(100+8192)
65
66
/*
67
 * Size: decimal.
68
 * Specifies the number of the most significant bit (0 to M).
69
 * WARNING: internally, usually 1 to N.
70
 */
71
#define QSIZE_MINIMUM		(511)
72
73
/*
74
 * Prime sieving defines
75
 */
76
77
/* Constant: assuming 8 bit bytes and 32 bit words */
78
#define SHIFT_BIT	(3)
79
#define SHIFT_BYTE	(2)
80
#define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
81
#define SHIFT_MEGABYTE	(20)
82
#define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
83
84
/*
85
 * Using virtual memory can cause thrashing.  This should be the largest
86
 * number that is supported without a large amount of disk activity --
87
 * that would increase the run time from hours to days or weeks!
88
 */
89
#define LARGE_MINIMUM	(8UL)	/* megabytes */
90
91
/*
92
 * Do not increase this number beyond the unsigned integer bit size.
93
 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
94
 */
95
#define LARGE_MAXIMUM	(127UL)	/* megabytes */
96
97
/*
98
 * Constant: when used with 32-bit integers, the largest sieve prime
99
 * has to be less than 2**32.
100
 */
101
#define SMALL_MAXIMUM	(0xffffffffUL)
102
103
/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
104
#define TINY_NUMBER	(1UL<<16)
105
106
/* Ensure enough bit space for testing 2*q. */
107
#define TEST_MAXIMUM	(1UL<<16)
108
#define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
109
/* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
110
#define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
111
112
/* bit operations on 32-bit words */
113
#define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
114
#define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
115
#define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
116
117
/*
118
 * Prime testing defines
119
 */
120
121
/* Minimum number of primality tests to perform */
122
#define TRIAL_MINIMUM	(4)
123
124
/*
125
 * Sieving data (XXX - move to struct)
126
 */
127
128
/* sieve 2**16 */
129
static u_int32_t *TinySieve, tinybits;
130
131
/* sieve 2**30 in 2**16 parts */
132
static u_int32_t *SmallSieve, smallbits, smallbase;
133
134
/* sieve relative to the initial value */
135
static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
136
static u_int32_t largebits, largememory;	/* megabytes */
137
static BIGNUM *largebase;
138
139
int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
140
int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long,
141
    unsigned long);
142
143
/*
144
 * print moduli out in consistent form,
145
 */
146
static int
147
qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
148
    u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
149
{
150
	struct tm *gtm;
151
	time_t time_now;
152
	int res;
153
154
	time(&time_now);
155
	gtm = gmtime(&time_now);
156
157
	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
158
	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
159
	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
160
	    otype, otests, otries, osize, ogenerator);
161
162
	if (res < 0)
163
		return (-1);
164
165
	if (BN_print_fp(ofile, omodulus) < 1)
166
		return (-1);
167
168
	res = fprintf(ofile, "\n");
169
	fflush(ofile);
170
171
	return (res > 0 ? 0 : -1);
172
}
173
174
175
/*
176
 ** Sieve p's and q's with small factors
177
 */
178
static void
179
sieve_large(u_int32_t s)
180
{
181
	u_int32_t r, u;
182
183
	debug3("sieve_large %u", s);
184
	largetries++;
185
	/* r = largebase mod s */
186
	r = BN_mod_word(largebase, s);
187
	if (r == 0)
188
		u = 0; /* s divides into largebase exactly */
189
	else
190
		u = s - r; /* largebase+u is first entry divisible by s */
191
192
	if (u < largebits * 2) {
193
		/*
194
		 * The sieve omits p's and q's divisible by 2, so ensure that
195
		 * largebase+u is odd. Then, step through the sieve in
196
		 * increments of 2*s
197
		 */
198
		if (u & 0x1)
199
			u += s; /* Make largebase+u odd, and u even */
200
201
		/* Mark all multiples of 2*s */
202
		for (u /= 2; u < largebits; u += s)
203
			BIT_SET(LargeSieve, u);
204
	}
205
206
	/* r = p mod s */
207
	r = (2 * r + 1) % s;
208
	if (r == 0)
209
		u = 0; /* s divides p exactly */
210
	else
211
		u = s - r; /* p+u is first entry divisible by s */
212
213
	if (u < largebits * 4) {
214
		/*
215
		 * The sieve omits p's divisible by 4, so ensure that
216
		 * largebase+u is not. Then, step through the sieve in
217
		 * increments of 4*s
218
		 */
219
		while (u & 0x3) {
220
			if (SMALL_MAXIMUM - u < s)
221
				return;
222
			u += s;
223
		}
224
225
		/* Mark all multiples of 4*s */
226
		for (u /= 4; u < largebits; u += s)
227
			BIT_SET(LargeSieve, u);
228
	}
229
}
230
231
/*
232
 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
233
 * to standard output.
234
 * The list is checked against small known primes (less than 2**30).
235
 */
236
int
237
gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
238
{
239
	BIGNUM *q;
240
	u_int32_t j, r, s, t;
241
	u_int32_t smallwords = TINY_NUMBER >> 6;
242
	u_int32_t tinywords = TINY_NUMBER >> 6;
243
	time_t time_start, time_stop;
244
	u_int32_t i;
245
	int ret = 0;
246
247
	largememory = memory;
248
249
	if (memory != 0 &&
250
	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
251
		error("Invalid memory amount (min %ld, max %ld)",
252
		    LARGE_MINIMUM, LARGE_MAXIMUM);
253
		return (-1);
254
	}
255
256
	/*
257
	 * Set power to the length in bits of the prime to be generated.
258
	 * This is changed to 1 less than the desired safe prime moduli p.
259
	 */
260
	if (power > TEST_MAXIMUM) {
261
		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
262
		return (-1);
263
	} else if (power < TEST_MINIMUM) {
264
		error("Too few bits: %u < %u", power, TEST_MINIMUM);
265
		return (-1);
266
	}
267
	power--; /* decrement before squaring */
268
269
	/*
270
	 * The density of ordinary primes is on the order of 1/bits, so the
271
	 * density of safe primes should be about (1/bits)**2. Set test range
272
	 * to something well above bits**2 to be reasonably sure (but not
273
	 * guaranteed) of catching at least one safe prime.
274
	 */
275
	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
276
277
	/*
278
	 * Need idea of how much memory is available. We don't have to use all
279
	 * of it.
280
	 */
281
	if (largememory > LARGE_MAXIMUM) {
282
		logit("Limited memory: %u MB; limit %lu MB",
283
		    largememory, LARGE_MAXIMUM);
284
		largememory = LARGE_MAXIMUM;
285
	}
286
287
	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
288
		logit("Increased memory: %u MB; need %u bytes",
289
		    largememory, (largewords << SHIFT_BYTE));
290
		largewords = (largememory << SHIFT_MEGAWORD);
291
	} else if (largememory > 0) {
292
		logit("Decreased memory: %u MB; want %u bytes",
293
		    largememory, (largewords << SHIFT_BYTE));
294
		largewords = (largememory << SHIFT_MEGAWORD);
295
	}
296
297
	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
298
	tinybits = tinywords << SHIFT_WORD;
299
300
	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
301
	smallbits = smallwords << SHIFT_WORD;
302
303
	/*
304
	 * dynamically determine available memory
305
	 */
306
	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
307
		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
308
309
	largebits = largewords << SHIFT_WORD;
310
	largenumbers = largebits * 2;	/* even numbers excluded */
311
312
	/* validation check: count the number of primes tried */
313
	largetries = 0;
314
	if ((q = BN_new()) == NULL)
315
		fatal("BN_new failed");
316
317
	/*
318
	 * Generate random starting point for subprime search, or use
319
	 * specified parameter.
320
	 */
321
	if ((largebase = BN_new()) == NULL)
322
		fatal("BN_new failed");
323
	if (start == NULL) {
324
		if (BN_rand(largebase, power, 1, 1) == 0)
325
			fatal("BN_rand failed");
326
	} else {
327
		if (BN_copy(largebase, start) == NULL)
328
			fatal("BN_copy: failed");
329
	}
330
331
	/* ensure odd */
332
	if (BN_set_bit(largebase, 0) == 0)
333
		fatal("BN_set_bit: failed");
334
335
	time(&time_start);
336
337
	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
338
	    largenumbers, power);
339
	debug2("start point: 0x%s", BN_bn2hex(largebase));
340
341
	/*
342
	 * TinySieve
343
	 */
344
	for (i = 0; i < tinybits; i++) {
345
		if (BIT_TEST(TinySieve, i))
346
			continue; /* 2*i+3 is composite */
347
348
		/* The next tiny prime */
349
		t = 2 * i + 3;
350
351
		/* Mark all multiples of t */
352
		for (j = i + t; j < tinybits; j += t)
353
			BIT_SET(TinySieve, j);
354
355
		sieve_large(t);
356
	}
357
358
	/*
359
	 * Start the small block search at the next possible prime. To avoid
360
	 * fencepost errors, the last pass is skipped.
361
	 */
362
	for (smallbase = TINY_NUMBER + 3;
363
	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
364
	    smallbase += TINY_NUMBER) {
365
		for (i = 0; i < tinybits; i++) {
366
			if (BIT_TEST(TinySieve, i))
367
				continue; /* 2*i+3 is composite */
368
369
			/* The next tiny prime */
370
			t = 2 * i + 3;
371
			r = smallbase % t;
372
373
			if (r == 0) {
374
				s = 0; /* t divides into smallbase exactly */
375
			} else {
376
				/* smallbase+s is first entry divisible by t */
377
				s = t - r;
378
			}
379
380
			/*
381
			 * The sieve omits even numbers, so ensure that
382
			 * smallbase+s is odd. Then, step through the sieve
383
			 * in increments of 2*t
384
			 */
385
			if (s & 1)
386
				s += t; /* Make smallbase+s odd, and s even */
387
388
			/* Mark all multiples of 2*t */
389
			for (s /= 2; s < smallbits; s += t)
390
				BIT_SET(SmallSieve, s);
391
		}
392
393
		/*
394
		 * SmallSieve
395
		 */
396
		for (i = 0; i < smallbits; i++) {
397
			if (BIT_TEST(SmallSieve, i))
398
				continue; /* 2*i+smallbase is composite */
399
400
			/* The next small prime */
401
			sieve_large((2 * i) + smallbase);
402
		}
403
404
		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
405
	}
406
407
	time(&time_stop);
408
409
	logit("%.24s Sieved with %u small primes in %ld seconds",
410
	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
411
412
	for (j = r = 0; j < largebits; j++) {
413
		if (BIT_TEST(LargeSieve, j))
414
			continue; /* Definitely composite, skip */
415
416
		debug2("test q = largebase+%u", 2 * j);
417
		if (BN_set_word(q, 2 * j) == 0)
418
			fatal("BN_set_word failed");
419
		if (BN_add(q, q, largebase) == 0)
420
			fatal("BN_add failed");
421
		if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
422
		    MODULI_TESTS_SIEVE, largetries,
423
		    (power - 1) /* MSB */, (0), q) == -1) {
424
			ret = -1;
425
			break;
426
		}
427
428
		r++; /* count q */
429
	}
430
431
	time(&time_stop);
432
433
	free(LargeSieve);
434
	free(SmallSieve);
435
	free(TinySieve);
436
437
	logit("%.24s Found %u candidates", ctime(&time_stop), r);
438
439
	return (ret);
440
}
441
442
static void
443
write_checkpoint(char *cpfile, u_int32_t lineno)
444
{
445
	FILE *fp;
446
	char tmp[PATH_MAX];
447
	int r;
448
449
	r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile);
450
	if (r == -1 || r >= PATH_MAX) {
451
		logit("write_checkpoint: temp pathname too long");
452
		return;
453
	}
454
	if ((r = mkstemp(tmp)) == -1) {
455
		logit("mkstemp(%s): %s", tmp, strerror(errno));
456
		return;
457
	}
458
	if ((fp = fdopen(r, "w")) == NULL) {
459
		logit("write_checkpoint: fdopen: %s", strerror(errno));
460
		unlink(tmp);
461
		close(r);
462
		return;
463
	}
464
	if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0
465
	    && rename(tmp, cpfile) == 0)
466
		debug3("wrote checkpoint line %lu to '%s'",
467
		    (unsigned long)lineno, cpfile);
468
	else
469
		logit("failed to write to checkpoint file '%s': %s", cpfile,
470
		    strerror(errno));
471
}
472
473
static unsigned long
474
read_checkpoint(char *cpfile)
475
{
476
	FILE *fp;
477
	unsigned long lineno = 0;
478
479
	if ((fp = fopen(cpfile, "r")) == NULL)
480
		return 0;
481
	if (fscanf(fp, "%lu\n", &lineno) < 1)
482
		logit("Failed to load checkpoint from '%s'", cpfile);
483
	else
484
		logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
485
	fclose(fp);
486
	return lineno;
487
}
488
489
static unsigned long
490
count_lines(FILE *f)
491
{
492
	unsigned long count = 0;
493
	char lp[QLINESIZE + 1];
494
495
	if (fseek(f, 0, SEEK_SET) != 0) {
496
		debug("input file is not seekable");
497
		return ULONG_MAX;
498
	}
499
	while (fgets(lp, QLINESIZE + 1, f) != NULL)
500
		count++;
501
	rewind(f);
502
	debug("input file has %lu lines", count);
503
	return count;
504
}
505
506
static char *
507
fmt_time(time_t seconds)
508
{
509
	int day, hr, min;
510
	static char buf[128];
511
512
	min = (seconds / 60) % 60;
513
	hr = (seconds / 60 / 60) % 24;
514
	day = seconds / 60 / 60 / 24;
515
	if (day > 0)
516
		snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min);
517
	else
518
		snprintf(buf, sizeof buf, "%d:%02d", hr, min);
519
	return buf;
520
}
521
522
static void
523
print_progress(unsigned long start_lineno, unsigned long current_lineno,
524
    unsigned long end_lineno)
525
{
526
	static time_t time_start, time_prev;
527
	time_t time_now, elapsed;
528
	unsigned long num_to_process, processed, remaining, percent, eta;
529
	double time_per_line;
530
	char *eta_str;
531
532
	time_now = monotime();
533
	if (time_start == 0) {
534
		time_start = time_prev = time_now;
535
		return;
536
	}
537
	/* print progress after 1m then once per 5m */
538
	if (time_now - time_prev < 5 * 60)
539
		return;
540
	time_prev = time_now;
541
	elapsed = time_now - time_start;
542
	processed = current_lineno - start_lineno;
543
	remaining = end_lineno - current_lineno;
544
	num_to_process = end_lineno - start_lineno;
545
	time_per_line = (double)elapsed / processed;
546
	/* if we don't know how many we're processing just report count+time */
547
	time(&time_now);
548
	if (end_lineno == ULONG_MAX) {
549
		logit("%.24s processed %lu in %s", ctime(&time_now),
550
		    processed, fmt_time(elapsed));
551
		return;
552
	}
553
	percent = 100 * processed / num_to_process;
554
	eta = time_per_line * remaining;
555
	eta_str = xstrdup(fmt_time(eta));
556
	logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
557
	    ctime(&time_now), processed, num_to_process, percent,
558
	    fmt_time(elapsed), eta_str);
559
	free(eta_str);
560
}
561
562
/*
563
 * perform a Miller-Rabin primality test
564
 * on the list of candidates
565
 * (checking both q and p)
566
 * The result is a list of so-call "safe" primes
567
 */
568
int
569
prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
570
    char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines)
571
{
572
	BIGNUM *q, *p, *a;
573
	BN_CTX *ctx;
574
	char *cp, *lp;
575
	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
576
	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
577
	unsigned long last_processed = 0, end_lineno;
578
	time_t time_start, time_stop;
579
	int res;
580
581
	if (trials < TRIAL_MINIMUM) {
582
		error("Minimum primality trials is %d", TRIAL_MINIMUM);
583
		return (-1);
584
	}
585
586
	if (num_lines == 0)
587
		end_lineno = count_lines(in);
588
	else
589
		end_lineno = start_lineno + num_lines;
590
591
	time(&time_start);
592
593
	if ((p = BN_new()) == NULL)
594
		fatal("BN_new failed");
595
	if ((q = BN_new()) == NULL)
596
		fatal("BN_new failed");
597
	if ((ctx = BN_CTX_new()) == NULL)
598
		fatal("BN_CTX_new failed");
599
600
	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
601
	    ctime(&time_start), trials, generator_wanted);
602
603
	if (checkpoint_file != NULL)
604
		last_processed = read_checkpoint(checkpoint_file);
605
	last_processed = start_lineno = MAXIMUM(last_processed, start_lineno);
606
	if (end_lineno == ULONG_MAX)
607
		debug("process from line %lu from pipe", last_processed);
608
	else
609
		debug("process from line %lu to line %lu", last_processed,
610
		    end_lineno);
611
612
	res = 0;
613
	lp = xmalloc(QLINESIZE + 1);
614
	while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) {
615
		count_in++;
616
		if (count_in <= last_processed) {
617
			debug3("skipping line %u, before checkpoint or "
618
			    "specified start line", count_in);
619
			continue;
620
		}
621
		if (checkpoint_file != NULL)
622
			write_checkpoint(checkpoint_file, count_in);
623
		print_progress(start_lineno, count_in, end_lineno);
624
		if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
625
			debug2("%10u: comment or short line", count_in);
626
			continue;
627
		}
628
629
		/* XXX - fragile parser */
630
		/* time */
631
		cp = &lp[14];	/* (skip) */
632
633
		/* type */
634
		in_type = strtoul(cp, &cp, 10);
635
636
		/* tests */
637
		in_tests = strtoul(cp, &cp, 10);
638
639
		if (in_tests & MODULI_TESTS_COMPOSITE) {
640
			debug2("%10u: known composite", count_in);
641
			continue;
642
		}
643
644
		/* tries */
645
		in_tries = strtoul(cp, &cp, 10);
646
647
		/* size (most significant bit) */
648
		in_size = strtoul(cp, &cp, 10);
649
650
		/* generator (hex) */
651
		generator_known = strtoul(cp, &cp, 16);
652
653
		/* Skip white space */
654
		cp += strspn(cp, " ");
655
656
		/* modulus (hex) */
657
		switch (in_type) {
658
		case MODULI_TYPE_SOPHIE_GERMAIN:
659
			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
660
			a = q;
661
			if (BN_hex2bn(&a, cp) == 0)
662
				fatal("BN_hex2bn failed");
663
			/* p = 2*q + 1 */
664
			if (BN_lshift(p, q, 1) == 0)
665
				fatal("BN_lshift failed");
666
			if (BN_add_word(p, 1) == 0)
667
				fatal("BN_add_word failed");
668
			in_size += 1;
669
			generator_known = 0;
670
			break;
671
		case MODULI_TYPE_UNSTRUCTURED:
672
		case MODULI_TYPE_SAFE:
673
		case MODULI_TYPE_SCHNORR:
674
		case MODULI_TYPE_STRONG:
675
		case MODULI_TYPE_UNKNOWN:
676
			debug2("%10u: (%u)", count_in, in_type);
677
			a = p;
678
			if (BN_hex2bn(&a, cp) == 0)
679
				fatal("BN_hex2bn failed");
680
			/* q = (p-1) / 2 */
681
			if (BN_rshift(q, p, 1) == 0)
682
				fatal("BN_rshift failed");
683
			break;
684
		default:
685
			debug2("Unknown prime type");
686
			break;
687
		}
688
689
		/*
690
		 * due to earlier inconsistencies in interpretation, check
691
		 * the proposed bit size.
692
		 */
693
		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
694
			debug2("%10u: bit size %u mismatch", count_in, in_size);
695
			continue;
696
		}
697
		if (in_size < QSIZE_MINIMUM) {
698
			debug2("%10u: bit size %u too short", count_in, in_size);
699
			continue;
700
		}
701
702
		if (in_tests & MODULI_TESTS_MILLER_RABIN)
703
			in_tries += trials;
704
		else
705
			in_tries = trials;
706
707
		/*
708
		 * guess unknown generator
709
		 */
710
		if (generator_known == 0) {
711
			if (BN_mod_word(p, 24) == 11)
712
				generator_known = 2;
713
			else if (BN_mod_word(p, 12) == 5)
714
				generator_known = 3;
715
			else {
716
				u_int32_t r = BN_mod_word(p, 10);
717
718
				if (r == 3 || r == 7)
719
					generator_known = 5;
720
			}
721
		}
722
		/*
723
		 * skip tests when desired generator doesn't match
724
		 */
725
		if (generator_wanted > 0 &&
726
		    generator_wanted != generator_known) {
727
			debug2("%10u: generator %d != %d",
728
			    count_in, generator_known, generator_wanted);
729
			continue;
730
		}
731
732
		/*
733
		 * Primes with no known generator are useless for DH, so
734
		 * skip those.
735
		 */
736
		if (generator_known == 0) {
737
			debug2("%10u: no known generator", count_in);
738
			continue;
739
		}
740
741
		count_possible++;
742
743
		/*
744
		 * The (1/4)^N performance bound on Miller-Rabin is
745
		 * extremely pessimistic, so don't spend a lot of time
746
		 * really verifying that q is prime until after we know
747
		 * that p is also prime. A single pass will weed out the
748
		 * vast majority of composite q's.
749
		 */
750
		if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
751
			debug("%10u: q failed first possible prime test",
752
			    count_in);
753
			continue;
754
		}
755
756
		/*
757
		 * q is possibly prime, so go ahead and really make sure
758
		 * that p is prime. If it is, then we can go back and do
759
		 * the same for q. If p is composite, chances are that
760
		 * will show up on the first Rabin-Miller iteration so it
761
		 * doesn't hurt to specify a high iteration count.
762
		 */
763
		if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
764
			debug("%10u: p is not prime", count_in);
765
			continue;
766
		}
767
		debug("%10u: p is almost certainly prime", count_in);
768
769
		/* recheck q more rigorously */
770
		if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
771
			debug("%10u: q is not prime", count_in);
772
			continue;
773
		}
774
		debug("%10u: q is almost certainly prime", count_in);
775
776
		if (qfileout(out, MODULI_TYPE_SAFE,
777
		    in_tests | MODULI_TESTS_MILLER_RABIN,
778
		    in_tries, in_size, generator_known, p)) {
779
			res = -1;
780
			break;
781
		}
782
783
		count_out++;
784
	}
785
786
	time(&time_stop);
787
	free(lp);
788
	BN_free(p);
789
	BN_free(q);
790
	BN_CTX_free(ctx);
791
792
	if (checkpoint_file != NULL)
793
		unlink(checkpoint_file);
794
795
	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
796
	    ctime(&time_stop), count_out, count_possible,
797
	    (long) (time_stop - time_start));
798
799
	return (res);
800
}