1 |
|
|
/* $OpenBSD: moduli.c,v 1.31 2016/09/12 01:22:38 deraadt Exp $ */ |
2 |
|
|
/* |
3 |
|
|
* Copyright 1994 Phil Karn <karn@qualcomm.com> |
4 |
|
|
* Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com> |
5 |
|
|
* Copyright 2000 Niels Provos <provos@citi.umich.edu> |
6 |
|
|
* All rights reserved. |
7 |
|
|
* |
8 |
|
|
* Redistribution and use in source and binary forms, with or without |
9 |
|
|
* modification, are permitted provided that the following conditions |
10 |
|
|
* are met: |
11 |
|
|
* 1. Redistributions of source code must retain the above copyright |
12 |
|
|
* notice, this list of conditions and the following disclaimer. |
13 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
14 |
|
|
* notice, this list of conditions and the following disclaimer in the |
15 |
|
|
* documentation and/or other materials provided with the distribution. |
16 |
|
|
* |
17 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
18 |
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
19 |
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
20 |
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
21 |
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
22 |
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 |
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 |
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 |
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
26 |
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 |
|
|
*/ |
28 |
|
|
|
29 |
|
|
/* |
30 |
|
|
* Two-step process to generate safe primes for DHGEX |
31 |
|
|
* |
32 |
|
|
* Sieve candidates for "safe" primes, |
33 |
|
|
* suitable for use as Diffie-Hellman moduli; |
34 |
|
|
* that is, where q = (p-1)/2 is also prime. |
35 |
|
|
* |
36 |
|
|
* First step: generate candidate primes (memory intensive) |
37 |
|
|
* Second step: test primes' safety (processor intensive) |
38 |
|
|
*/ |
39 |
|
|
|
40 |
|
|
#include <sys/types.h> |
41 |
|
|
|
42 |
|
|
#include <openssl/bn.h> |
43 |
|
|
#include <openssl/dh.h> |
44 |
|
|
|
45 |
|
|
#include <errno.h> |
46 |
|
|
#include <stdio.h> |
47 |
|
|
#include <stdlib.h> |
48 |
|
|
#include <string.h> |
49 |
|
|
#include <stdarg.h> |
50 |
|
|
#include <time.h> |
51 |
|
|
#include <unistd.h> |
52 |
|
|
#include <limits.h> |
53 |
|
|
|
54 |
|
|
#include "xmalloc.h" |
55 |
|
|
#include "dh.h" |
56 |
|
|
#include "log.h" |
57 |
|
|
#include "misc.h" |
58 |
|
|
|
59 |
|
|
/* |
60 |
|
|
* File output defines |
61 |
|
|
*/ |
62 |
|
|
|
63 |
|
|
/* need line long enough for largest moduli plus headers */ |
64 |
|
|
#define QLINESIZE (100+8192) |
65 |
|
|
|
66 |
|
|
/* |
67 |
|
|
* Size: decimal. |
68 |
|
|
* Specifies the number of the most significant bit (0 to M). |
69 |
|
|
* WARNING: internally, usually 1 to N. |
70 |
|
|
*/ |
71 |
|
|
#define QSIZE_MINIMUM (511) |
72 |
|
|
|
73 |
|
|
/* |
74 |
|
|
* Prime sieving defines |
75 |
|
|
*/ |
76 |
|
|
|
77 |
|
|
/* Constant: assuming 8 bit bytes and 32 bit words */ |
78 |
|
|
#define SHIFT_BIT (3) |
79 |
|
|
#define SHIFT_BYTE (2) |
80 |
|
|
#define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE) |
81 |
|
|
#define SHIFT_MEGABYTE (20) |
82 |
|
|
#define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE) |
83 |
|
|
|
84 |
|
|
/* |
85 |
|
|
* Using virtual memory can cause thrashing. This should be the largest |
86 |
|
|
* number that is supported without a large amount of disk activity -- |
87 |
|
|
* that would increase the run time from hours to days or weeks! |
88 |
|
|
*/ |
89 |
|
|
#define LARGE_MINIMUM (8UL) /* megabytes */ |
90 |
|
|
|
91 |
|
|
/* |
92 |
|
|
* Do not increase this number beyond the unsigned integer bit size. |
93 |
|
|
* Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits). |
94 |
|
|
*/ |
95 |
|
|
#define LARGE_MAXIMUM (127UL) /* megabytes */ |
96 |
|
|
|
97 |
|
|
/* |
98 |
|
|
* Constant: when used with 32-bit integers, the largest sieve prime |
99 |
|
|
* has to be less than 2**32. |
100 |
|
|
*/ |
101 |
|
|
#define SMALL_MAXIMUM (0xffffffffUL) |
102 |
|
|
|
103 |
|
|
/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */ |
104 |
|
|
#define TINY_NUMBER (1UL<<16) |
105 |
|
|
|
106 |
|
|
/* Ensure enough bit space for testing 2*q. */ |
107 |
|
|
#define TEST_MAXIMUM (1UL<<16) |
108 |
|
|
#define TEST_MINIMUM (QSIZE_MINIMUM + 1) |
109 |
|
|
/* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */ |
110 |
|
|
#define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */ |
111 |
|
|
|
112 |
|
|
/* bit operations on 32-bit words */ |
113 |
|
|
#define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31))) |
114 |
|
|
#define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31))) |
115 |
|
|
#define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31))) |
116 |
|
|
|
117 |
|
|
/* |
118 |
|
|
* Prime testing defines |
119 |
|
|
*/ |
120 |
|
|
|
121 |
|
|
/* Minimum number of primality tests to perform */ |
122 |
|
|
#define TRIAL_MINIMUM (4) |
123 |
|
|
|
124 |
|
|
/* |
125 |
|
|
* Sieving data (XXX - move to struct) |
126 |
|
|
*/ |
127 |
|
|
|
128 |
|
|
/* sieve 2**16 */ |
129 |
|
|
static u_int32_t *TinySieve, tinybits; |
130 |
|
|
|
131 |
|
|
/* sieve 2**30 in 2**16 parts */ |
132 |
|
|
static u_int32_t *SmallSieve, smallbits, smallbase; |
133 |
|
|
|
134 |
|
|
/* sieve relative to the initial value */ |
135 |
|
|
static u_int32_t *LargeSieve, largewords, largetries, largenumbers; |
136 |
|
|
static u_int32_t largebits, largememory; /* megabytes */ |
137 |
|
|
static BIGNUM *largebase; |
138 |
|
|
|
139 |
|
|
int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *); |
140 |
|
|
int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long, |
141 |
|
|
unsigned long); |
142 |
|
|
|
143 |
|
|
/* |
144 |
|
|
* print moduli out in consistent form, |
145 |
|
|
*/ |
146 |
|
|
static int |
147 |
|
|
qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries, |
148 |
|
|
u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus) |
149 |
|
|
{ |
150 |
|
|
struct tm *gtm; |
151 |
|
|
time_t time_now; |
152 |
|
|
int res; |
153 |
|
|
|
154 |
|
|
time(&time_now); |
155 |
|
|
gtm = gmtime(&time_now); |
156 |
|
|
|
157 |
|
|
res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ", |
158 |
|
|
gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday, |
159 |
|
|
gtm->tm_hour, gtm->tm_min, gtm->tm_sec, |
160 |
|
|
otype, otests, otries, osize, ogenerator); |
161 |
|
|
|
162 |
|
|
if (res < 0) |
163 |
|
|
return (-1); |
164 |
|
|
|
165 |
|
|
if (BN_print_fp(ofile, omodulus) < 1) |
166 |
|
|
return (-1); |
167 |
|
|
|
168 |
|
|
res = fprintf(ofile, "\n"); |
169 |
|
|
fflush(ofile); |
170 |
|
|
|
171 |
|
|
return (res > 0 ? 0 : -1); |
172 |
|
|
} |
173 |
|
|
|
174 |
|
|
|
175 |
|
|
/* |
176 |
|
|
** Sieve p's and q's with small factors |
177 |
|
|
*/ |
178 |
|
|
static void |
179 |
|
|
sieve_large(u_int32_t s) |
180 |
|
|
{ |
181 |
|
|
u_int32_t r, u; |
182 |
|
|
|
183 |
|
|
debug3("sieve_large %u", s); |
184 |
|
|
largetries++; |
185 |
|
|
/* r = largebase mod s */ |
186 |
|
|
r = BN_mod_word(largebase, s); |
187 |
|
|
if (r == 0) |
188 |
|
|
u = 0; /* s divides into largebase exactly */ |
189 |
|
|
else |
190 |
|
|
u = s - r; /* largebase+u is first entry divisible by s */ |
191 |
|
|
|
192 |
|
|
if (u < largebits * 2) { |
193 |
|
|
/* |
194 |
|
|
* The sieve omits p's and q's divisible by 2, so ensure that |
195 |
|
|
* largebase+u is odd. Then, step through the sieve in |
196 |
|
|
* increments of 2*s |
197 |
|
|
*/ |
198 |
|
|
if (u & 0x1) |
199 |
|
|
u += s; /* Make largebase+u odd, and u even */ |
200 |
|
|
|
201 |
|
|
/* Mark all multiples of 2*s */ |
202 |
|
|
for (u /= 2; u < largebits; u += s) |
203 |
|
|
BIT_SET(LargeSieve, u); |
204 |
|
|
} |
205 |
|
|
|
206 |
|
|
/* r = p mod s */ |
207 |
|
|
r = (2 * r + 1) % s; |
208 |
|
|
if (r == 0) |
209 |
|
|
u = 0; /* s divides p exactly */ |
210 |
|
|
else |
211 |
|
|
u = s - r; /* p+u is first entry divisible by s */ |
212 |
|
|
|
213 |
|
|
if (u < largebits * 4) { |
214 |
|
|
/* |
215 |
|
|
* The sieve omits p's divisible by 4, so ensure that |
216 |
|
|
* largebase+u is not. Then, step through the sieve in |
217 |
|
|
* increments of 4*s |
218 |
|
|
*/ |
219 |
|
|
while (u & 0x3) { |
220 |
|
|
if (SMALL_MAXIMUM - u < s) |
221 |
|
|
return; |
222 |
|
|
u += s; |
223 |
|
|
} |
224 |
|
|
|
225 |
|
|
/* Mark all multiples of 4*s */ |
226 |
|
|
for (u /= 4; u < largebits; u += s) |
227 |
|
|
BIT_SET(LargeSieve, u); |
228 |
|
|
} |
229 |
|
|
} |
230 |
|
|
|
231 |
|
|
/* |
232 |
|
|
* list candidates for Sophie-Germain primes (where q = (p-1)/2) |
233 |
|
|
* to standard output. |
234 |
|
|
* The list is checked against small known primes (less than 2**30). |
235 |
|
|
*/ |
236 |
|
|
int |
237 |
|
|
gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start) |
238 |
|
|
{ |
239 |
|
|
BIGNUM *q; |
240 |
|
|
u_int32_t j, r, s, t; |
241 |
|
|
u_int32_t smallwords = TINY_NUMBER >> 6; |
242 |
|
|
u_int32_t tinywords = TINY_NUMBER >> 6; |
243 |
|
|
time_t time_start, time_stop; |
244 |
|
|
u_int32_t i; |
245 |
|
|
int ret = 0; |
246 |
|
|
|
247 |
|
|
largememory = memory; |
248 |
|
|
|
249 |
|
|
if (memory != 0 && |
250 |
|
|
(memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) { |
251 |
|
|
error("Invalid memory amount (min %ld, max %ld)", |
252 |
|
|
LARGE_MINIMUM, LARGE_MAXIMUM); |
253 |
|
|
return (-1); |
254 |
|
|
} |
255 |
|
|
|
256 |
|
|
/* |
257 |
|
|
* Set power to the length in bits of the prime to be generated. |
258 |
|
|
* This is changed to 1 less than the desired safe prime moduli p. |
259 |
|
|
*/ |
260 |
|
|
if (power > TEST_MAXIMUM) { |
261 |
|
|
error("Too many bits: %u > %lu", power, TEST_MAXIMUM); |
262 |
|
|
return (-1); |
263 |
|
|
} else if (power < TEST_MINIMUM) { |
264 |
|
|
error("Too few bits: %u < %u", power, TEST_MINIMUM); |
265 |
|
|
return (-1); |
266 |
|
|
} |
267 |
|
|
power--; /* decrement before squaring */ |
268 |
|
|
|
269 |
|
|
/* |
270 |
|
|
* The density of ordinary primes is on the order of 1/bits, so the |
271 |
|
|
* density of safe primes should be about (1/bits)**2. Set test range |
272 |
|
|
* to something well above bits**2 to be reasonably sure (but not |
273 |
|
|
* guaranteed) of catching at least one safe prime. |
274 |
|
|
*/ |
275 |
|
|
largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER)); |
276 |
|
|
|
277 |
|
|
/* |
278 |
|
|
* Need idea of how much memory is available. We don't have to use all |
279 |
|
|
* of it. |
280 |
|
|
*/ |
281 |
|
|
if (largememory > LARGE_MAXIMUM) { |
282 |
|
|
logit("Limited memory: %u MB; limit %lu MB", |
283 |
|
|
largememory, LARGE_MAXIMUM); |
284 |
|
|
largememory = LARGE_MAXIMUM; |
285 |
|
|
} |
286 |
|
|
|
287 |
|
|
if (largewords <= (largememory << SHIFT_MEGAWORD)) { |
288 |
|
|
logit("Increased memory: %u MB; need %u bytes", |
289 |
|
|
largememory, (largewords << SHIFT_BYTE)); |
290 |
|
|
largewords = (largememory << SHIFT_MEGAWORD); |
291 |
|
|
} else if (largememory > 0) { |
292 |
|
|
logit("Decreased memory: %u MB; want %u bytes", |
293 |
|
|
largememory, (largewords << SHIFT_BYTE)); |
294 |
|
|
largewords = (largememory << SHIFT_MEGAWORD); |
295 |
|
|
} |
296 |
|
|
|
297 |
|
|
TinySieve = xcalloc(tinywords, sizeof(u_int32_t)); |
298 |
|
|
tinybits = tinywords << SHIFT_WORD; |
299 |
|
|
|
300 |
|
|
SmallSieve = xcalloc(smallwords, sizeof(u_int32_t)); |
301 |
|
|
smallbits = smallwords << SHIFT_WORD; |
302 |
|
|
|
303 |
|
|
/* |
304 |
|
|
* dynamically determine available memory |
305 |
|
|
*/ |
306 |
|
|
while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL) |
307 |
|
|
largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */ |
308 |
|
|
|
309 |
|
|
largebits = largewords << SHIFT_WORD; |
310 |
|
|
largenumbers = largebits * 2; /* even numbers excluded */ |
311 |
|
|
|
312 |
|
|
/* validation check: count the number of primes tried */ |
313 |
|
|
largetries = 0; |
314 |
|
|
if ((q = BN_new()) == NULL) |
315 |
|
|
fatal("BN_new failed"); |
316 |
|
|
|
317 |
|
|
/* |
318 |
|
|
* Generate random starting point for subprime search, or use |
319 |
|
|
* specified parameter. |
320 |
|
|
*/ |
321 |
|
|
if ((largebase = BN_new()) == NULL) |
322 |
|
|
fatal("BN_new failed"); |
323 |
|
|
if (start == NULL) { |
324 |
|
|
if (BN_rand(largebase, power, 1, 1) == 0) |
325 |
|
|
fatal("BN_rand failed"); |
326 |
|
|
} else { |
327 |
|
|
if (BN_copy(largebase, start) == NULL) |
328 |
|
|
fatal("BN_copy: failed"); |
329 |
|
|
} |
330 |
|
|
|
331 |
|
|
/* ensure odd */ |
332 |
|
|
if (BN_set_bit(largebase, 0) == 0) |
333 |
|
|
fatal("BN_set_bit: failed"); |
334 |
|
|
|
335 |
|
|
time(&time_start); |
336 |
|
|
|
337 |
|
|
logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start), |
338 |
|
|
largenumbers, power); |
339 |
|
|
debug2("start point: 0x%s", BN_bn2hex(largebase)); |
340 |
|
|
|
341 |
|
|
/* |
342 |
|
|
* TinySieve |
343 |
|
|
*/ |
344 |
|
|
for (i = 0; i < tinybits; i++) { |
345 |
|
|
if (BIT_TEST(TinySieve, i)) |
346 |
|
|
continue; /* 2*i+3 is composite */ |
347 |
|
|
|
348 |
|
|
/* The next tiny prime */ |
349 |
|
|
t = 2 * i + 3; |
350 |
|
|
|
351 |
|
|
/* Mark all multiples of t */ |
352 |
|
|
for (j = i + t; j < tinybits; j += t) |
353 |
|
|
BIT_SET(TinySieve, j); |
354 |
|
|
|
355 |
|
|
sieve_large(t); |
356 |
|
|
} |
357 |
|
|
|
358 |
|
|
/* |
359 |
|
|
* Start the small block search at the next possible prime. To avoid |
360 |
|
|
* fencepost errors, the last pass is skipped. |
361 |
|
|
*/ |
362 |
|
|
for (smallbase = TINY_NUMBER + 3; |
363 |
|
|
smallbase < (SMALL_MAXIMUM - TINY_NUMBER); |
364 |
|
|
smallbase += TINY_NUMBER) { |
365 |
|
|
for (i = 0; i < tinybits; i++) { |
366 |
|
|
if (BIT_TEST(TinySieve, i)) |
367 |
|
|
continue; /* 2*i+3 is composite */ |
368 |
|
|
|
369 |
|
|
/* The next tiny prime */ |
370 |
|
|
t = 2 * i + 3; |
371 |
|
|
r = smallbase % t; |
372 |
|
|
|
373 |
|
|
if (r == 0) { |
374 |
|
|
s = 0; /* t divides into smallbase exactly */ |
375 |
|
|
} else { |
376 |
|
|
/* smallbase+s is first entry divisible by t */ |
377 |
|
|
s = t - r; |
378 |
|
|
} |
379 |
|
|
|
380 |
|
|
/* |
381 |
|
|
* The sieve omits even numbers, so ensure that |
382 |
|
|
* smallbase+s is odd. Then, step through the sieve |
383 |
|
|
* in increments of 2*t |
384 |
|
|
*/ |
385 |
|
|
if (s & 1) |
386 |
|
|
s += t; /* Make smallbase+s odd, and s even */ |
387 |
|
|
|
388 |
|
|
/* Mark all multiples of 2*t */ |
389 |
|
|
for (s /= 2; s < smallbits; s += t) |
390 |
|
|
BIT_SET(SmallSieve, s); |
391 |
|
|
} |
392 |
|
|
|
393 |
|
|
/* |
394 |
|
|
* SmallSieve |
395 |
|
|
*/ |
396 |
|
|
for (i = 0; i < smallbits; i++) { |
397 |
|
|
if (BIT_TEST(SmallSieve, i)) |
398 |
|
|
continue; /* 2*i+smallbase is composite */ |
399 |
|
|
|
400 |
|
|
/* The next small prime */ |
401 |
|
|
sieve_large((2 * i) + smallbase); |
402 |
|
|
} |
403 |
|
|
|
404 |
|
|
memset(SmallSieve, 0, smallwords << SHIFT_BYTE); |
405 |
|
|
} |
406 |
|
|
|
407 |
|
|
time(&time_stop); |
408 |
|
|
|
409 |
|
|
logit("%.24s Sieved with %u small primes in %ld seconds", |
410 |
|
|
ctime(&time_stop), largetries, (long) (time_stop - time_start)); |
411 |
|
|
|
412 |
|
|
for (j = r = 0; j < largebits; j++) { |
413 |
|
|
if (BIT_TEST(LargeSieve, j)) |
414 |
|
|
continue; /* Definitely composite, skip */ |
415 |
|
|
|
416 |
|
|
debug2("test q = largebase+%u", 2 * j); |
417 |
|
|
if (BN_set_word(q, 2 * j) == 0) |
418 |
|
|
fatal("BN_set_word failed"); |
419 |
|
|
if (BN_add(q, q, largebase) == 0) |
420 |
|
|
fatal("BN_add failed"); |
421 |
|
|
if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN, |
422 |
|
|
MODULI_TESTS_SIEVE, largetries, |
423 |
|
|
(power - 1) /* MSB */, (0), q) == -1) { |
424 |
|
|
ret = -1; |
425 |
|
|
break; |
426 |
|
|
} |
427 |
|
|
|
428 |
|
|
r++; /* count q */ |
429 |
|
|
} |
430 |
|
|
|
431 |
|
|
time(&time_stop); |
432 |
|
|
|
433 |
|
|
free(LargeSieve); |
434 |
|
|
free(SmallSieve); |
435 |
|
|
free(TinySieve); |
436 |
|
|
|
437 |
|
|
logit("%.24s Found %u candidates", ctime(&time_stop), r); |
438 |
|
|
|
439 |
|
|
return (ret); |
440 |
|
|
} |
441 |
|
|
|
442 |
|
|
static void |
443 |
|
|
write_checkpoint(char *cpfile, u_int32_t lineno) |
444 |
|
|
{ |
445 |
|
|
FILE *fp; |
446 |
|
|
char tmp[PATH_MAX]; |
447 |
|
|
int r; |
448 |
|
|
|
449 |
|
|
r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile); |
450 |
|
|
if (r == -1 || r >= PATH_MAX) { |
451 |
|
|
logit("write_checkpoint: temp pathname too long"); |
452 |
|
|
return; |
453 |
|
|
} |
454 |
|
|
if ((r = mkstemp(tmp)) == -1) { |
455 |
|
|
logit("mkstemp(%s): %s", tmp, strerror(errno)); |
456 |
|
|
return; |
457 |
|
|
} |
458 |
|
|
if ((fp = fdopen(r, "w")) == NULL) { |
459 |
|
|
logit("write_checkpoint: fdopen: %s", strerror(errno)); |
460 |
|
|
unlink(tmp); |
461 |
|
|
close(r); |
462 |
|
|
return; |
463 |
|
|
} |
464 |
|
|
if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0 |
465 |
|
|
&& rename(tmp, cpfile) == 0) |
466 |
|
|
debug3("wrote checkpoint line %lu to '%s'", |
467 |
|
|
(unsigned long)lineno, cpfile); |
468 |
|
|
else |
469 |
|
|
logit("failed to write to checkpoint file '%s': %s", cpfile, |
470 |
|
|
strerror(errno)); |
471 |
|
|
} |
472 |
|
|
|
473 |
|
|
static unsigned long |
474 |
|
|
read_checkpoint(char *cpfile) |
475 |
|
|
{ |
476 |
|
|
FILE *fp; |
477 |
|
|
unsigned long lineno = 0; |
478 |
|
|
|
479 |
|
|
if ((fp = fopen(cpfile, "r")) == NULL) |
480 |
|
|
return 0; |
481 |
|
|
if (fscanf(fp, "%lu\n", &lineno) < 1) |
482 |
|
|
logit("Failed to load checkpoint from '%s'", cpfile); |
483 |
|
|
else |
484 |
|
|
logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno); |
485 |
|
|
fclose(fp); |
486 |
|
|
return lineno; |
487 |
|
|
} |
488 |
|
|
|
489 |
|
|
static unsigned long |
490 |
|
|
count_lines(FILE *f) |
491 |
|
|
{ |
492 |
|
|
unsigned long count = 0; |
493 |
|
|
char lp[QLINESIZE + 1]; |
494 |
|
|
|
495 |
|
|
if (fseek(f, 0, SEEK_SET) != 0) { |
496 |
|
|
debug("input file is not seekable"); |
497 |
|
|
return ULONG_MAX; |
498 |
|
|
} |
499 |
|
|
while (fgets(lp, QLINESIZE + 1, f) != NULL) |
500 |
|
|
count++; |
501 |
|
|
rewind(f); |
502 |
|
|
debug("input file has %lu lines", count); |
503 |
|
|
return count; |
504 |
|
|
} |
505 |
|
|
|
506 |
|
|
static char * |
507 |
|
|
fmt_time(time_t seconds) |
508 |
|
|
{ |
509 |
|
|
int day, hr, min; |
510 |
|
|
static char buf[128]; |
511 |
|
|
|
512 |
|
|
min = (seconds / 60) % 60; |
513 |
|
|
hr = (seconds / 60 / 60) % 24; |
514 |
|
|
day = seconds / 60 / 60 / 24; |
515 |
|
|
if (day > 0) |
516 |
|
|
snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min); |
517 |
|
|
else |
518 |
|
|
snprintf(buf, sizeof buf, "%d:%02d", hr, min); |
519 |
|
|
return buf; |
520 |
|
|
} |
521 |
|
|
|
522 |
|
|
static void |
523 |
|
|
print_progress(unsigned long start_lineno, unsigned long current_lineno, |
524 |
|
|
unsigned long end_lineno) |
525 |
|
|
{ |
526 |
|
|
static time_t time_start, time_prev; |
527 |
|
|
time_t time_now, elapsed; |
528 |
|
|
unsigned long num_to_process, processed, remaining, percent, eta; |
529 |
|
|
double time_per_line; |
530 |
|
|
char *eta_str; |
531 |
|
|
|
532 |
|
|
time_now = monotime(); |
533 |
|
|
if (time_start == 0) { |
534 |
|
|
time_start = time_prev = time_now; |
535 |
|
|
return; |
536 |
|
|
} |
537 |
|
|
/* print progress after 1m then once per 5m */ |
538 |
|
|
if (time_now - time_prev < 5 * 60) |
539 |
|
|
return; |
540 |
|
|
time_prev = time_now; |
541 |
|
|
elapsed = time_now - time_start; |
542 |
|
|
processed = current_lineno - start_lineno; |
543 |
|
|
remaining = end_lineno - current_lineno; |
544 |
|
|
num_to_process = end_lineno - start_lineno; |
545 |
|
|
time_per_line = (double)elapsed / processed; |
546 |
|
|
/* if we don't know how many we're processing just report count+time */ |
547 |
|
|
time(&time_now); |
548 |
|
|
if (end_lineno == ULONG_MAX) { |
549 |
|
|
logit("%.24s processed %lu in %s", ctime(&time_now), |
550 |
|
|
processed, fmt_time(elapsed)); |
551 |
|
|
return; |
552 |
|
|
} |
553 |
|
|
percent = 100 * processed / num_to_process; |
554 |
|
|
eta = time_per_line * remaining; |
555 |
|
|
eta_str = xstrdup(fmt_time(eta)); |
556 |
|
|
logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s", |
557 |
|
|
ctime(&time_now), processed, num_to_process, percent, |
558 |
|
|
fmt_time(elapsed), eta_str); |
559 |
|
|
free(eta_str); |
560 |
|
|
} |
561 |
|
|
|
562 |
|
|
/* |
563 |
|
|
* perform a Miller-Rabin primality test |
564 |
|
|
* on the list of candidates |
565 |
|
|
* (checking both q and p) |
566 |
|
|
* The result is a list of so-call "safe" primes |
567 |
|
|
*/ |
568 |
|
|
int |
569 |
|
|
prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted, |
570 |
|
|
char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines) |
571 |
|
|
{ |
572 |
|
|
BIGNUM *q, *p, *a; |
573 |
|
|
BN_CTX *ctx; |
574 |
|
|
char *cp, *lp; |
575 |
|
|
u_int32_t count_in = 0, count_out = 0, count_possible = 0; |
576 |
|
|
u_int32_t generator_known, in_tests, in_tries, in_type, in_size; |
577 |
|
|
unsigned long last_processed = 0, end_lineno; |
578 |
|
|
time_t time_start, time_stop; |
579 |
|
|
int res; |
580 |
|
|
|
581 |
|
|
if (trials < TRIAL_MINIMUM) { |
582 |
|
|
error("Minimum primality trials is %d", TRIAL_MINIMUM); |
583 |
|
|
return (-1); |
584 |
|
|
} |
585 |
|
|
|
586 |
|
|
if (num_lines == 0) |
587 |
|
|
end_lineno = count_lines(in); |
588 |
|
|
else |
589 |
|
|
end_lineno = start_lineno + num_lines; |
590 |
|
|
|
591 |
|
|
time(&time_start); |
592 |
|
|
|
593 |
|
|
if ((p = BN_new()) == NULL) |
594 |
|
|
fatal("BN_new failed"); |
595 |
|
|
if ((q = BN_new()) == NULL) |
596 |
|
|
fatal("BN_new failed"); |
597 |
|
|
if ((ctx = BN_CTX_new()) == NULL) |
598 |
|
|
fatal("BN_CTX_new failed"); |
599 |
|
|
|
600 |
|
|
debug2("%.24s Final %u Miller-Rabin trials (%x generator)", |
601 |
|
|
ctime(&time_start), trials, generator_wanted); |
602 |
|
|
|
603 |
|
|
if (checkpoint_file != NULL) |
604 |
|
|
last_processed = read_checkpoint(checkpoint_file); |
605 |
|
|
last_processed = start_lineno = MAXIMUM(last_processed, start_lineno); |
606 |
|
|
if (end_lineno == ULONG_MAX) |
607 |
|
|
debug("process from line %lu from pipe", last_processed); |
608 |
|
|
else |
609 |
|
|
debug("process from line %lu to line %lu", last_processed, |
610 |
|
|
end_lineno); |
611 |
|
|
|
612 |
|
|
res = 0; |
613 |
|
|
lp = xmalloc(QLINESIZE + 1); |
614 |
|
|
while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) { |
615 |
|
|
count_in++; |
616 |
|
|
if (count_in <= last_processed) { |
617 |
|
|
debug3("skipping line %u, before checkpoint or " |
618 |
|
|
"specified start line", count_in); |
619 |
|
|
continue; |
620 |
|
|
} |
621 |
|
|
if (checkpoint_file != NULL) |
622 |
|
|
write_checkpoint(checkpoint_file, count_in); |
623 |
|
|
print_progress(start_lineno, count_in, end_lineno); |
624 |
|
|
if (strlen(lp) < 14 || *lp == '!' || *lp == '#') { |
625 |
|
|
debug2("%10u: comment or short line", count_in); |
626 |
|
|
continue; |
627 |
|
|
} |
628 |
|
|
|
629 |
|
|
/* XXX - fragile parser */ |
630 |
|
|
/* time */ |
631 |
|
|
cp = &lp[14]; /* (skip) */ |
632 |
|
|
|
633 |
|
|
/* type */ |
634 |
|
|
in_type = strtoul(cp, &cp, 10); |
635 |
|
|
|
636 |
|
|
/* tests */ |
637 |
|
|
in_tests = strtoul(cp, &cp, 10); |
638 |
|
|
|
639 |
|
|
if (in_tests & MODULI_TESTS_COMPOSITE) { |
640 |
|
|
debug2("%10u: known composite", count_in); |
641 |
|
|
continue; |
642 |
|
|
} |
643 |
|
|
|
644 |
|
|
/* tries */ |
645 |
|
|
in_tries = strtoul(cp, &cp, 10); |
646 |
|
|
|
647 |
|
|
/* size (most significant bit) */ |
648 |
|
|
in_size = strtoul(cp, &cp, 10); |
649 |
|
|
|
650 |
|
|
/* generator (hex) */ |
651 |
|
|
generator_known = strtoul(cp, &cp, 16); |
652 |
|
|
|
653 |
|
|
/* Skip white space */ |
654 |
|
|
cp += strspn(cp, " "); |
655 |
|
|
|
656 |
|
|
/* modulus (hex) */ |
657 |
|
|
switch (in_type) { |
658 |
|
|
case MODULI_TYPE_SOPHIE_GERMAIN: |
659 |
|
|
debug2("%10u: (%u) Sophie-Germain", count_in, in_type); |
660 |
|
|
a = q; |
661 |
|
|
if (BN_hex2bn(&a, cp) == 0) |
662 |
|
|
fatal("BN_hex2bn failed"); |
663 |
|
|
/* p = 2*q + 1 */ |
664 |
|
|
if (BN_lshift(p, q, 1) == 0) |
665 |
|
|
fatal("BN_lshift failed"); |
666 |
|
|
if (BN_add_word(p, 1) == 0) |
667 |
|
|
fatal("BN_add_word failed"); |
668 |
|
|
in_size += 1; |
669 |
|
|
generator_known = 0; |
670 |
|
|
break; |
671 |
|
|
case MODULI_TYPE_UNSTRUCTURED: |
672 |
|
|
case MODULI_TYPE_SAFE: |
673 |
|
|
case MODULI_TYPE_SCHNORR: |
674 |
|
|
case MODULI_TYPE_STRONG: |
675 |
|
|
case MODULI_TYPE_UNKNOWN: |
676 |
|
|
debug2("%10u: (%u)", count_in, in_type); |
677 |
|
|
a = p; |
678 |
|
|
if (BN_hex2bn(&a, cp) == 0) |
679 |
|
|
fatal("BN_hex2bn failed"); |
680 |
|
|
/* q = (p-1) / 2 */ |
681 |
|
|
if (BN_rshift(q, p, 1) == 0) |
682 |
|
|
fatal("BN_rshift failed"); |
683 |
|
|
break; |
684 |
|
|
default: |
685 |
|
|
debug2("Unknown prime type"); |
686 |
|
|
break; |
687 |
|
|
} |
688 |
|
|
|
689 |
|
|
/* |
690 |
|
|
* due to earlier inconsistencies in interpretation, check |
691 |
|
|
* the proposed bit size. |
692 |
|
|
*/ |
693 |
|
|
if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) { |
694 |
|
|
debug2("%10u: bit size %u mismatch", count_in, in_size); |
695 |
|
|
continue; |
696 |
|
|
} |
697 |
|
|
if (in_size < QSIZE_MINIMUM) { |
698 |
|
|
debug2("%10u: bit size %u too short", count_in, in_size); |
699 |
|
|
continue; |
700 |
|
|
} |
701 |
|
|
|
702 |
|
|
if (in_tests & MODULI_TESTS_MILLER_RABIN) |
703 |
|
|
in_tries += trials; |
704 |
|
|
else |
705 |
|
|
in_tries = trials; |
706 |
|
|
|
707 |
|
|
/* |
708 |
|
|
* guess unknown generator |
709 |
|
|
*/ |
710 |
|
|
if (generator_known == 0) { |
711 |
|
|
if (BN_mod_word(p, 24) == 11) |
712 |
|
|
generator_known = 2; |
713 |
|
|
else if (BN_mod_word(p, 12) == 5) |
714 |
|
|
generator_known = 3; |
715 |
|
|
else { |
716 |
|
|
u_int32_t r = BN_mod_word(p, 10); |
717 |
|
|
|
718 |
|
|
if (r == 3 || r == 7) |
719 |
|
|
generator_known = 5; |
720 |
|
|
} |
721 |
|
|
} |
722 |
|
|
/* |
723 |
|
|
* skip tests when desired generator doesn't match |
724 |
|
|
*/ |
725 |
|
|
if (generator_wanted > 0 && |
726 |
|
|
generator_wanted != generator_known) { |
727 |
|
|
debug2("%10u: generator %d != %d", |
728 |
|
|
count_in, generator_known, generator_wanted); |
729 |
|
|
continue; |
730 |
|
|
} |
731 |
|
|
|
732 |
|
|
/* |
733 |
|
|
* Primes with no known generator are useless for DH, so |
734 |
|
|
* skip those. |
735 |
|
|
*/ |
736 |
|
|
if (generator_known == 0) { |
737 |
|
|
debug2("%10u: no known generator", count_in); |
738 |
|
|
continue; |
739 |
|
|
} |
740 |
|
|
|
741 |
|
|
count_possible++; |
742 |
|
|
|
743 |
|
|
/* |
744 |
|
|
* The (1/4)^N performance bound on Miller-Rabin is |
745 |
|
|
* extremely pessimistic, so don't spend a lot of time |
746 |
|
|
* really verifying that q is prime until after we know |
747 |
|
|
* that p is also prime. A single pass will weed out the |
748 |
|
|
* vast majority of composite q's. |
749 |
|
|
*/ |
750 |
|
|
if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) { |
751 |
|
|
debug("%10u: q failed first possible prime test", |
752 |
|
|
count_in); |
753 |
|
|
continue; |
754 |
|
|
} |
755 |
|
|
|
756 |
|
|
/* |
757 |
|
|
* q is possibly prime, so go ahead and really make sure |
758 |
|
|
* that p is prime. If it is, then we can go back and do |
759 |
|
|
* the same for q. If p is composite, chances are that |
760 |
|
|
* will show up on the first Rabin-Miller iteration so it |
761 |
|
|
* doesn't hurt to specify a high iteration count. |
762 |
|
|
*/ |
763 |
|
|
if (!BN_is_prime_ex(p, trials, ctx, NULL)) { |
764 |
|
|
debug("%10u: p is not prime", count_in); |
765 |
|
|
continue; |
766 |
|
|
} |
767 |
|
|
debug("%10u: p is almost certainly prime", count_in); |
768 |
|
|
|
769 |
|
|
/* recheck q more rigorously */ |
770 |
|
|
if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) { |
771 |
|
|
debug("%10u: q is not prime", count_in); |
772 |
|
|
continue; |
773 |
|
|
} |
774 |
|
|
debug("%10u: q is almost certainly prime", count_in); |
775 |
|
|
|
776 |
|
|
if (qfileout(out, MODULI_TYPE_SAFE, |
777 |
|
|
in_tests | MODULI_TESTS_MILLER_RABIN, |
778 |
|
|
in_tries, in_size, generator_known, p)) { |
779 |
|
|
res = -1; |
780 |
|
|
break; |
781 |
|
|
} |
782 |
|
|
|
783 |
|
|
count_out++; |
784 |
|
|
} |
785 |
|
|
|
786 |
|
|
time(&time_stop); |
787 |
|
|
free(lp); |
788 |
|
|
BN_free(p); |
789 |
|
|
BN_free(q); |
790 |
|
|
BN_CTX_free(ctx); |
791 |
|
|
|
792 |
|
|
if (checkpoint_file != NULL) |
793 |
|
|
unlink(checkpoint_file); |
794 |
|
|
|
795 |
|
|
logit("%.24s Found %u safe primes of %u candidates in %ld seconds", |
796 |
|
|
ctime(&time_stop), count_out, count_possible, |
797 |
|
|
(long) (time_stop - time_start)); |
798 |
|
|
|
799 |
|
|
return (res); |
800 |
|
|
} |