GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: usr.bin/top/machine.c Lines: 0 342 0.0 %
Date: 2017-11-07 Branches: 0 255 0.0 %

Line Branch Exec Source
1
/* $OpenBSD: machine.c,v 1.89 2017/05/30 06:01:30 tedu Exp $	 */
2
3
/*-
4
 * Copyright (c) 1994 Thorsten Lockert <tholo@sigmasoft.com>
5
 * All rights reserved.
6
 *
7
 * Redistribution and use in source and binary forms, with or without
8
 * modification, are permitted provided that the following conditions
9
 * are met:
10
 * 1. Redistributions of source code must retain the above copyright
11
 *    notice, this list of conditions and the following disclaimer.
12
 * 2. Redistributions in binary form must reproduce the above copyright
13
 *    notice, this list of conditions and the following disclaimer in the
14
 *    documentation and/or other materials provided with the distribution.
15
 * 3. The name of the author may not be used to endorse or promote products
16
 *    derived from this software without specific prior written permission.
17
 *
18
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
19
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
20
 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL
21
 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
27
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 *
29
 * AUTHOR:  Thorsten Lockert <tholo@sigmasoft.com>
30
 *          Adapted from BSD4.4 by Christos Zoulas <christos@ee.cornell.edu>
31
 *          Patch for process wait display by Jarl F. Greipsland <jarle@idt.unit.no>
32
 *	    Patch for -DORDER by Kenneth Stailey <kstailey@disclosure.com>
33
 *	    Patch for new swapctl(2) by Tobias Weingartner <weingart@openbsd.org>
34
 */
35
36
#include <sys/param.h>	/* DEV_BSIZE MAXCOMLEN PZERO */
37
#include <sys/types.h>
38
#include <sys/signal.h>
39
#include <sys/mount.h>
40
#include <sys/proc.h>
41
#include <sys/sched.h>
42
#include <sys/swap.h>
43
#include <sys/sysctl.h>
44
45
#include <stdio.h>
46
#include <stdlib.h>
47
#include <string.h>
48
#include <unistd.h>
49
#include <err.h>
50
#include <errno.h>
51
52
#include "top.h"
53
#include "display.h"
54
#include "machine.h"
55
#include "utils.h"
56
57
static int	swapmode(int *, int *);
58
static char	*state_abbr(struct kinfo_proc *);
59
static char	*format_comm(struct kinfo_proc *);
60
static int	cmd_matches(struct kinfo_proc *, char *);
61
static char	**get_proc_args(struct kinfo_proc *);
62
63
/* get_process_info passes back a handle.  This is what it looks like: */
64
65
struct handle {
66
	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
67
	int		remaining;	/* number of pointers remaining */
68
};
69
70
/* what we consider to be process size: */
71
#define PROCSIZE(pp) ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize)
72
73
/*
74
 *  These definitions control the format of the per-process area
75
 */
76
static char header[] =
77
	"  PID X        PRI NICE  SIZE   RES STATE     WAIT      TIME    CPU COMMAND";
78
79
/* 0123456   -- field to fill in starts at header+6 */
80
#define UNAME_START 6
81
82
#define Proc_format \
83
	"%5d %-8.8s %3d %4d %5s %5s %-9s %-7.7s %6s %5.2f%% %s"
84
85
/* process state names for the "STATE" column of the display */
86
/*
87
 * the extra nulls in the string "run" are for adding a slash and the
88
 * processor number when needed
89
 */
90
91
char	*state_abbrev[] = {
92
	"", "start", "run", "sleep", "stop", "zomb", "dead", "onproc"
93
};
94
95
/* these are for calculating cpu state percentages */
96
static int64_t	**cp_time;
97
static int64_t	**cp_old;
98
static int64_t	**cp_diff;
99
100
/* these are for detailing the process states */
101
int process_states[8];
102
char *procstatenames[] = {
103
	"", " starting, ", " running, ", " idle, ",
104
	" stopped, ", " zombie, ", " dead, ", " on processor, ",
105
	NULL
106
};
107
108
/* these are for detailing the cpu states */
109
int64_t *cpu_states;
110
char *cpustatenames[] = {
111
	"user", "nice", "system", "interrupt", "idle", NULL
112
};
113
114
/* these are for detailing the memory statistics */
115
int memory_stats[10];
116
char *memorynames[] = {
117
	"Real: ", "K/", "K act/tot ", "Free: ", "K ",
118
	"Cache: ", "K ",
119
	"Swap: ", "K/", "K",
120
	NULL
121
};
122
123
/* these are names given to allowed sorting orders -- first is default */
124
char	*ordernames[] = {
125
	"cpu", "size", "res", "time", "pri", "pid", "command", NULL
126
};
127
128
/* these are for keeping track of the proc array */
129
static int	nproc;
130
static int	onproc = -1;
131
static int	pref_len;
132
static struct kinfo_proc *pbase;
133
static struct kinfo_proc **pref;
134
135
/* these are for getting the memory statistics */
136
static int	pageshift;	/* log base 2 of the pagesize */
137
138
/* define pagetok in terms of pageshift */
139
#define pagetok(size) ((size) << pageshift)
140
141
int		ncpu;
142
int		fscale;
143
144
unsigned int	maxslp;
145
146
int
147
getfscale(void)
148
{
149
	int mib[] = { CTL_KERN, KERN_FSCALE };
150
	size_t size = sizeof(fscale);
151
152
	if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
153
	    &fscale, &size, NULL, 0) < 0)
154
		return (-1);
155
	return fscale;
156
}
157
158
int
159
getncpu(void)
160
{
161
	int mib[] = { CTL_HW, HW_NCPU };
162
	int numcpu;
163
	size_t size = sizeof(numcpu);
164
165
	if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
166
	    &numcpu, &size, NULL, 0) == -1)
167
		return (-1);
168
169
	return (numcpu);
170
}
171
172
int
173
machine_init(struct statics *statics)
174
{
175
	int pagesize, cpu;
176
177
	ncpu = getncpu();
178
	if (ncpu == -1)
179
		return (-1);
180
	if (getfscale() == -1)
181
		return (-1);
182
	cpu_states = calloc(ncpu, CPUSTATES * sizeof(int64_t));
183
	if (cpu_states == NULL)
184
		err(1, NULL);
185
	cp_time = calloc(ncpu, sizeof(int64_t *));
186
	cp_old  = calloc(ncpu, sizeof(int64_t *));
187
	cp_diff = calloc(ncpu, sizeof(int64_t *));
188
	if (cp_time == NULL || cp_old == NULL || cp_diff == NULL)
189
		err(1, NULL);
190
	for (cpu = 0; cpu < ncpu; cpu++) {
191
		cp_time[cpu] = calloc(CPUSTATES, sizeof(int64_t));
192
		cp_old[cpu] = calloc(CPUSTATES, sizeof(int64_t));
193
		cp_diff[cpu] = calloc(CPUSTATES, sizeof(int64_t));
194
		if (cp_time[cpu] == NULL || cp_old[cpu] == NULL ||
195
		    cp_diff[cpu] == NULL)
196
			err(1, NULL);
197
	}
198
199
	pbase = NULL;
200
	pref = NULL;
201
	onproc = -1;
202
	nproc = 0;
203
204
	/*
205
	 * get the page size with "getpagesize" and calculate pageshift from
206
	 * it
207
	 */
208
	pagesize = getpagesize();
209
	pageshift = 0;
210
	while (pagesize > 1) {
211
		pageshift++;
212
		pagesize >>= 1;
213
	}
214
215
	/* we only need the amount of log(2)1024 for our conversion */
216
	pageshift -= LOG1024;
217
218
	/* fill in the statics information */
219
	statics->procstate_names = procstatenames;
220
	statics->cpustate_names = cpustatenames;
221
	statics->memory_names = memorynames;
222
	statics->order_names = ordernames;
223
	return (0);
224
}
225
226
char *
227
format_header(char *second_field, int show_threads)
228
{
229
	char *field_name, *thread_field = "     TID";
230
	char *ptr;
231
232
	if (show_threads)
233
		field_name = thread_field;
234
	else
235
		field_name = second_field;
236
237
	ptr = header + UNAME_START;
238
	while (*field_name != '\0')
239
		*ptr++ = *field_name++;
240
	return (header);
241
}
242
243
void
244
get_system_info(struct system_info *si)
245
{
246
	static int sysload_mib[] = {CTL_VM, VM_LOADAVG};
247
	static int uvmexp_mib[] = {CTL_VM, VM_UVMEXP};
248
	static int bcstats_mib[] = {CTL_VFS, VFS_GENERIC, VFS_BCACHESTAT};
249
	struct loadavg sysload;
250
	struct uvmexp uvmexp;
251
	struct bcachestats bcstats;
252
	double *infoloadp;
253
	size_t size;
254
	int i;
255
	int64_t *tmpstate;
256
257
	if (ncpu > 1) {
258
		int cp_time_mib[] = {CTL_KERN, KERN_CPTIME2, /*fillme*/0};
259
260
		size = CPUSTATES * sizeof(int64_t);
261
		for (i = 0; i < ncpu; i++) {
262
			cp_time_mib[2] = i;
263
			tmpstate = cpu_states + (CPUSTATES * i);
264
			if (sysctl(cp_time_mib, 3, cp_time[i], &size, NULL, 0) < 0)
265
				warn("sysctl kern.cp_time2 failed");
266
			/* convert cp_time2 counts to percentages */
267
			(void) percentages(CPUSTATES, tmpstate, cp_time[i],
268
			    cp_old[i], cp_diff[i]);
269
		}
270
	} else {
271
		int cp_time_mib[] = {CTL_KERN, KERN_CPTIME};
272
		long cp_time_tmp[CPUSTATES];
273
274
		size = sizeof(cp_time_tmp);
275
		if (sysctl(cp_time_mib, 2, cp_time_tmp, &size, NULL, 0) < 0)
276
			warn("sysctl kern.cp_time failed");
277
		for (i = 0; i < CPUSTATES; i++)
278
			cp_time[0][i] = cp_time_tmp[i];
279
		/* convert cp_time counts to percentages */
280
		(void) percentages(CPUSTATES, cpu_states, cp_time[0],
281
		    cp_old[0], cp_diff[0]);
282
	}
283
284
	size = sizeof(sysload);
285
	if (sysctl(sysload_mib, 2, &sysload, &size, NULL, 0) < 0)
286
		warn("sysctl failed");
287
	infoloadp = si->load_avg;
288
	for (i = 0; i < 3; i++)
289
		*infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
290
291
292
	/* get total -- systemwide main memory usage structure */
293
	size = sizeof(uvmexp);
294
	if (sysctl(uvmexp_mib, 2, &uvmexp, &size, NULL, 0) < 0) {
295
		warn("sysctl failed");
296
		bzero(&uvmexp, sizeof(uvmexp));
297
	}
298
	size = sizeof(bcstats);
299
	if (sysctl(bcstats_mib, 3, &bcstats, &size, NULL, 0) < 0) {
300
		warn("sysctl failed");
301
		bzero(&bcstats, sizeof(bcstats));
302
	}
303
	/* convert memory stats to Kbytes */
304
	memory_stats[0] = -1;
305
	memory_stats[1] = pagetok(uvmexp.active);
306
	memory_stats[2] = pagetok(uvmexp.npages - uvmexp.free);
307
	memory_stats[3] = -1;
308
	memory_stats[4] = pagetok(uvmexp.free);
309
	memory_stats[5] = -1;
310
	memory_stats[6] = pagetok(bcstats.numbufpages);
311
	memory_stats[7] = -1;
312
313
	if (!swapmode(&memory_stats[8], &memory_stats[9])) {
314
		memory_stats[8] = 0;
315
		memory_stats[9] = 0;
316
	}
317
318
	/* set arrays and strings */
319
	si->cpustates = cpu_states;
320
	si->memory = memory_stats;
321
	si->last_pid = -1;
322
}
323
324
static struct handle handle;
325
326
struct kinfo_proc *
327
getprocs(int op, int arg, int *cnt)
328
{
329
	size_t size;
330
	int mib[6] = {CTL_KERN, KERN_PROC, 0, 0, sizeof(struct kinfo_proc), 0};
331
	static int maxslp_mib[] = {CTL_VM, VM_MAXSLP};
332
	static struct kinfo_proc *procbase;
333
	int st;
334
335
	mib[2] = op;
336
	mib[3] = arg;
337
338
	size = sizeof(maxslp);
339
	if (sysctl(maxslp_mib, 2, &maxslp, &size, NULL, 0) < 0) {
340
		warn("sysctl vm.maxslp failed");
341
		return (0);
342
	}
343
    retry:
344
	free(procbase);
345
	st = sysctl(mib, 6, NULL, &size, NULL, 0);
346
	if (st == -1) {
347
		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
348
		return (0);
349
	}
350
	size = 5 * size / 4;			/* extra slop */
351
	if ((procbase = malloc(size)) == NULL)
352
		return (0);
353
	mib[5] = (int)(size / sizeof(struct kinfo_proc));
354
	st = sysctl(mib, 6, procbase, &size, NULL, 0);
355
	if (st == -1) {
356
		if (errno == ENOMEM)
357
			goto retry;
358
		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
359
		return (0);
360
	}
361
	*cnt = (int)(size / sizeof(struct kinfo_proc));
362
	return (procbase);
363
}
364
365
static char **
366
get_proc_args(struct kinfo_proc *kp)
367
{
368
	static char	**s;
369
	static size_t	siz = 1023;
370
	int		mib[4];
371
372
	if (!s && !(s = malloc(siz)))
373
		err(1, NULL);
374
375
	mib[0] = CTL_KERN;
376
	mib[1] = KERN_PROC_ARGS;
377
	mib[2] = kp->p_pid;
378
	mib[3] = KERN_PROC_ARGV;
379
	for (;;) {
380
		size_t space = siz;
381
		if (sysctl(mib, 4, s, &space, NULL, 0) == 0)
382
			break;
383
		if (errno != ENOMEM)
384
			return NULL;
385
		siz *= 2;
386
		if ((s = realloc(s, siz)) == NULL)
387
			err(1, NULL);
388
	}
389
	return s;
390
}
391
392
static int
393
cmd_matches(struct kinfo_proc *proc, char *term)
394
{
395
	extern int	show_args;
396
	char		**args = NULL;
397
398
	if (!term) {
399
		/* No command filter set */
400
		return 1;
401
	} else {
402
		/* Filter set, process name needs to contain term */
403
		if (strstr(proc->p_comm, term))
404
			return 1;
405
		/* If showing arguments, search those as well */
406
		if (show_args) {
407
			args = get_proc_args(proc);
408
409
			if (args == NULL) {
410
				/* Failed to get args, so can't search them */
411
				return 0;
412
			}
413
414
			while (*args != NULL) {
415
				if (strstr(*args, term))
416
					return 1;
417
				args++;
418
			}
419
		}
420
	}
421
	return 0;
422
}
423
424
caddr_t
425
get_process_info(struct system_info *si, struct process_select *sel,
426
    int (*compare) (const void *, const void *))
427
{
428
	int show_idle, show_system, show_threads, show_uid, show_pid, show_cmd;
429
	int hide_uid;
430
	int total_procs, active_procs;
431
	struct kinfo_proc **prefp, *pp;
432
	int what = KERN_PROC_KTHREAD;
433
434
	if (sel->threads)
435
		what |= KERN_PROC_SHOW_THREADS;
436
437
	if ((pbase = getprocs(what, 0, &nproc)) == NULL) {
438
		/* warnx("%s", kvm_geterr(kd)); */
439
		quit(23);
440
	}
441
	if (nproc > onproc)
442
		pref = reallocarray(pref, (onproc = nproc),
443
		    sizeof(struct kinfo_proc *));
444
	if (pref == NULL) {
445
		warnx("Out of memory.");
446
		quit(23);
447
	}
448
	/* get a pointer to the states summary array */
449
	si->procstates = process_states;
450
451
	/* set up flags which define what we are going to select */
452
	show_idle = sel->idle;
453
	show_system = sel->system;
454
	show_threads = sel->threads;
455
	show_uid = sel->uid != (uid_t)-1;
456
	hide_uid = sel->huid != (uid_t)-1;
457
	show_pid = sel->pid != (pid_t)-1;
458
	show_cmd = sel->command != NULL;
459
460
	/* count up process states and get pointers to interesting procs */
461
	total_procs = 0;
462
	active_procs = 0;
463
	memset((char *) process_states, 0, sizeof(process_states));
464
	prefp = pref;
465
	for (pp = pbase; pp < &pbase[nproc]; pp++) {
466
		/*
467
		 *  Place pointers to each valid proc structure in pref[].
468
		 *  Process slots that are actually in use have a non-zero
469
		 *  status field.  Processes with P_SYSTEM set are system
470
		 *  processes---these get ignored unless show_system is set.
471
		 */
472
		if (show_threads && pp->p_tid == -1)
473
			continue;
474
		if (pp->p_stat != 0 &&
475
		    (show_system || (pp->p_flag & P_SYSTEM) == 0) &&
476
		    (show_threads || (pp->p_flag & P_THREAD) == 0)) {
477
			total_procs++;
478
			process_states[(unsigned char) pp->p_stat]++;
479
			if ((pp->p_psflags & PS_ZOMBIE) == 0 &&
480
			    (show_idle || pp->p_pctcpu != 0 ||
481
			    pp->p_stat == SRUN) &&
482
			    (!hide_uid || pp->p_ruid != sel->huid) &&
483
			    (!show_uid || pp->p_ruid == sel->uid) &&
484
			    (!show_pid || pp->p_pid == sel->pid) &&
485
			    (!show_cmd || cmd_matches(pp, sel->command))) {
486
				*prefp++ = pp;
487
				active_procs++;
488
			}
489
		}
490
	}
491
492
	/* if requested, sort the "interesting" processes */
493
	if (compare != NULL)
494
		qsort((char *) pref, active_procs,
495
		    sizeof(struct kinfo_proc *), compare);
496
	/* remember active and total counts */
497
	si->p_total = total_procs;
498
	si->p_active = pref_len = active_procs;
499
500
	/* pass back a handle */
501
	handle.next_proc = pref;
502
	handle.remaining = active_procs;
503
	return ((caddr_t) & handle);
504
}
505
506
char fmt[MAX_COLS];	/* static area where result is built */
507
508
static char *
509
state_abbr(struct kinfo_proc *pp)
510
{
511
	static char buf[10];
512
513
	if (ncpu > 1 && pp->p_cpuid != KI_NOCPU)
514
		snprintf(buf, sizeof buf, "%s/%llu",
515
		    state_abbrev[(unsigned char)pp->p_stat], pp->p_cpuid);
516
	else
517
		snprintf(buf, sizeof buf, "%s",
518
		    state_abbrev[(unsigned char)pp->p_stat]);
519
	return buf;
520
}
521
522
static char *
523
format_comm(struct kinfo_proc *kp)
524
{
525
	static char	buf[MAX_COLS];
526
	char		**p, **s;
527
	extern int	show_args;
528
529
	if (!show_args)
530
		return (kp->p_comm);
531
532
	s = get_proc_args(kp);
533
	if (s == NULL)
534
		return kp->p_comm;
535
536
	buf[0] = '\0';
537
	for (p = s; *p != NULL; p++) {
538
		if (p != s)
539
			strlcat(buf, " ", sizeof(buf));
540
		strlcat(buf, *p, sizeof(buf));
541
	}
542
	if (buf[0] == '\0')
543
		return (kp->p_comm);
544
	return (buf);
545
}
546
547
char *
548
format_next_process(caddr_t hndl, char *(*get_userid)(uid_t), pid_t *pid,
549
    int show_threads)
550
{
551
	char *p_wait;
552
	struct kinfo_proc *pp;
553
	struct handle *hp;
554
	int cputime;
555
	double pct;
556
	char buf[16];
557
558
	/* find and remember the next proc structure */
559
	hp = (struct handle *) hndl;
560
	pp = *(hp->next_proc++);
561
	hp->remaining--;
562
563
	cputime = pp->p_rtime_sec + ((pp->p_rtime_usec + 500000) / 1000000);
564
565
	/* calculate the base for cpu percentages */
566
	pct = (double)pp->p_pctcpu / fscale;
567
568
	if (pp->p_wmesg[0])
569
		p_wait = pp->p_wmesg;
570
	else
571
		p_wait = "-";
572
573
	if (show_threads)
574
		snprintf(buf, sizeof(buf), "%8d", pp->p_tid);
575
	else
576
		snprintf(buf, sizeof(buf), "%s", (*get_userid)(pp->p_ruid));
577
578
	/* format this entry */
579
	snprintf(fmt, sizeof(fmt), Proc_format, pp->p_pid, buf,
580
	    pp->p_priority - PZERO, pp->p_nice - NZERO,
581
	    format_k(pagetok(PROCSIZE(pp))),
582
	    format_k(pagetok(pp->p_vm_rssize)),
583
	    (pp->p_stat == SSLEEP && pp->p_slptime > maxslp) ?
584
	    "idle" : state_abbr(pp),
585
	    p_wait, format_time(cputime), 100.0 * pct,
586
	    printable(format_comm(pp)));
587
588
	*pid = pp->p_pid;
589
	/* return the result */
590
	return (fmt);
591
}
592
593
/* comparison routine for qsort */
594
static unsigned char sorted_state[] =
595
{
596
	0,			/* not used		 */
597
	4,			/* start		 */
598
	5,			/* run			 */
599
	2,			/* sleep		 */
600
	3,			/* stop			 */
601
	1			/* zombie		 */
602
};
603
604
/*
605
 *  proc_compares - comparison functions for "qsort"
606
 */
607
608
/*
609
 * First, the possible comparison keys.  These are defined in such a way
610
 * that they can be merely listed in the source code to define the actual
611
 * desired ordering.
612
 */
613
614
#define ORDERKEY_PCTCPU \
615
	if ((result = (int)(p2->p_pctcpu - p1->p_pctcpu)) == 0)
616
#define ORDERKEY_CPUTIME \
617
	if ((result = p2->p_rtime_sec - p1->p_rtime_sec) == 0) \
618
		if ((result = p2->p_rtime_usec - p1->p_rtime_usec) == 0)
619
#define ORDERKEY_STATE \
620
	if ((result = sorted_state[(unsigned char)p2->p_stat] - \
621
	    sorted_state[(unsigned char)p1->p_stat])  == 0)
622
#define ORDERKEY_PRIO \
623
	if ((result = p2->p_priority - p1->p_priority) == 0)
624
#define ORDERKEY_RSSIZE \
625
	if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0)
626
#define ORDERKEY_MEM \
627
	if ((result = PROCSIZE(p2) - PROCSIZE(p1)) == 0)
628
#define ORDERKEY_PID \
629
	if ((result = p1->p_pid - p2->p_pid) == 0)
630
#define ORDERKEY_CMD \
631
	if ((result = strcmp(p1->p_comm, p2->p_comm)) == 0)
632
633
/* compare_cpu - the comparison function for sorting by cpu percentage */
634
static int
635
compare_cpu(const void *v1, const void *v2)
636
{
637
	struct proc **pp1 = (struct proc **) v1;
638
	struct proc **pp2 = (struct proc **) v2;
639
	struct kinfo_proc *p1, *p2;
640
	int result;
641
642
	/* remove one level of indirection */
643
	p1 = *(struct kinfo_proc **) pp1;
644
	p2 = *(struct kinfo_proc **) pp2;
645
646
	ORDERKEY_PCTCPU
647
	ORDERKEY_CPUTIME
648
	ORDERKEY_STATE
649
	ORDERKEY_PRIO
650
	ORDERKEY_RSSIZE
651
	ORDERKEY_MEM
652
		;
653
	return (result);
654
}
655
656
/* compare_size - the comparison function for sorting by total memory usage */
657
static int
658
compare_size(const void *v1, const void *v2)
659
{
660
	struct proc **pp1 = (struct proc **) v1;
661
	struct proc **pp2 = (struct proc **) v2;
662
	struct kinfo_proc *p1, *p2;
663
	int result;
664
665
	/* remove one level of indirection */
666
	p1 = *(struct kinfo_proc **) pp1;
667
	p2 = *(struct kinfo_proc **) pp2;
668
669
	ORDERKEY_MEM
670
	ORDERKEY_RSSIZE
671
	ORDERKEY_PCTCPU
672
	ORDERKEY_CPUTIME
673
	ORDERKEY_STATE
674
	ORDERKEY_PRIO
675
		;
676
	return (result);
677
}
678
679
/* compare_res - the comparison function for sorting by resident set size */
680
static int
681
compare_res(const void *v1, const void *v2)
682
{
683
	struct proc **pp1 = (struct proc **) v1;
684
	struct proc **pp2 = (struct proc **) v2;
685
	struct kinfo_proc *p1, *p2;
686
	int result;
687
688
	/* remove one level of indirection */
689
	p1 = *(struct kinfo_proc **) pp1;
690
	p2 = *(struct kinfo_proc **) pp2;
691
692
	ORDERKEY_RSSIZE
693
	ORDERKEY_MEM
694
	ORDERKEY_PCTCPU
695
	ORDERKEY_CPUTIME
696
	ORDERKEY_STATE
697
	ORDERKEY_PRIO
698
		;
699
	return (result);
700
}
701
702
/* compare_time - the comparison function for sorting by CPU time */
703
static int
704
compare_time(const void *v1, const void *v2)
705
{
706
	struct proc **pp1 = (struct proc **) v1;
707
	struct proc **pp2 = (struct proc **) v2;
708
	struct kinfo_proc *p1, *p2;
709
	int result;
710
711
	/* remove one level of indirection */
712
	p1 = *(struct kinfo_proc **) pp1;
713
	p2 = *(struct kinfo_proc **) pp2;
714
715
	ORDERKEY_CPUTIME
716
	ORDERKEY_PCTCPU
717
	ORDERKEY_STATE
718
	ORDERKEY_PRIO
719
	ORDERKEY_MEM
720
	ORDERKEY_RSSIZE
721
		;
722
	return (result);
723
}
724
725
/* compare_prio - the comparison function for sorting by CPU time */
726
static int
727
compare_prio(const void *v1, const void *v2)
728
{
729
	struct proc   **pp1 = (struct proc **) v1;
730
	struct proc   **pp2 = (struct proc **) v2;
731
	struct kinfo_proc *p1, *p2;
732
	int result;
733
734
	/* remove one level of indirection */
735
	p1 = *(struct kinfo_proc **) pp1;
736
	p2 = *(struct kinfo_proc **) pp2;
737
738
	ORDERKEY_PRIO
739
	ORDERKEY_PCTCPU
740
	ORDERKEY_CPUTIME
741
	ORDERKEY_STATE
742
	ORDERKEY_RSSIZE
743
	ORDERKEY_MEM
744
		;
745
	return (result);
746
}
747
748
static int
749
compare_pid(const void *v1, const void *v2)
750
{
751
	struct proc **pp1 = (struct proc **) v1;
752
	struct proc **pp2 = (struct proc **) v2;
753
	struct kinfo_proc *p1, *p2;
754
	int result;
755
756
	/* remove one level of indirection */
757
	p1 = *(struct kinfo_proc **) pp1;
758
	p2 = *(struct kinfo_proc **) pp2;
759
760
	ORDERKEY_PID
761
	ORDERKEY_PCTCPU
762
	ORDERKEY_CPUTIME
763
	ORDERKEY_STATE
764
	ORDERKEY_PRIO
765
	ORDERKEY_RSSIZE
766
	ORDERKEY_MEM
767
		;
768
	return (result);
769
}
770
771
static int
772
compare_cmd(const void *v1, const void *v2)
773
{
774
	struct proc **pp1 = (struct proc **) v1;
775
	struct proc **pp2 = (struct proc **) v2;
776
	struct kinfo_proc *p1, *p2;
777
	int result;
778
779
	/* remove one level of indirection */
780
	p1 = *(struct kinfo_proc **) pp1;
781
	p2 = *(struct kinfo_proc **) pp2;
782
783
	ORDERKEY_CMD
784
	ORDERKEY_PCTCPU
785
	ORDERKEY_CPUTIME
786
	ORDERKEY_STATE
787
	ORDERKEY_PRIO
788
	ORDERKEY_RSSIZE
789
	ORDERKEY_MEM
790
		;
791
	return (result);
792
}
793
794
795
int (*proc_compares[])(const void *, const void *) = {
796
	compare_cpu,
797
	compare_size,
798
	compare_res,
799
	compare_time,
800
	compare_prio,
801
	compare_pid,
802
	compare_cmd,
803
	NULL
804
};
805
806
/*
807
 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
808
 *		the process does not exist.
809
 *		It is EXTREMELY IMPORTANT that this function work correctly.
810
 *		If top runs setuid root (as in SVR4), then this function
811
 *		is the only thing that stands in the way of a serious
812
 *		security problem.  It validates requests for the "kill"
813
 *		and "renice" commands.
814
 */
815
uid_t
816
proc_owner(pid_t pid)
817
{
818
	struct kinfo_proc **prefp, *pp;
819
	int cnt;
820
821
	prefp = pref;
822
	cnt = pref_len;
823
	while (--cnt >= 0) {
824
		pp = *prefp++;
825
		if (pp->p_pid == pid)
826
			return ((uid_t)pp->p_ruid);
827
	}
828
	return (uid_t)(-1);
829
}
830
831
/*
832
 * swapmode is rewritten by Tobias Weingartner <weingart@openbsd.org>
833
 * to be based on the new swapctl(2) system call.
834
 */
835
static int
836
swapmode(int *used, int *total)
837
{
838
	struct swapent *swdev;
839
	int nswap, rnswap, i;
840
841
	nswap = swapctl(SWAP_NSWAP, 0, 0);
842
	if (nswap == 0)
843
		return 0;
844
845
	swdev = calloc(nswap, sizeof(*swdev));
846
	if (swdev == NULL)
847
		return 0;
848
849
	rnswap = swapctl(SWAP_STATS, swdev, nswap);
850
	if (rnswap == -1) {
851
		free(swdev);
852
		return 0;
853
	}
854
855
	/* if rnswap != nswap, then what? */
856
857
	/* Total things up */
858
	*total = *used = 0;
859
	for (i = 0; i < nswap; i++) {
860
		if (swdev[i].se_flags & SWF_ENABLE) {
861
			*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
862
			*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
863
		}
864
	}
865
	free(swdev);
866
	return 1;
867
}