GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libc/hash/sha1.c Lines: 0 59 0.0 %
Date: 2017-11-13 Branches: 0 10 0.0 %

Line Branch Exec Source
1
/*	$OpenBSD: sha1.c,v 1.26 2015/09/11 09:18:27 guenther Exp $	*/
2
3
/*
4
 * SHA-1 in C
5
 * By Steve Reid <steve@edmweb.com>
6
 * 100% Public Domain
7
 *
8
 * Test Vectors (from FIPS PUB 180-1)
9
 * "abc"
10
 *   A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
11
 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
12
 *   84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
13
 * A million repetitions of "a"
14
 *   34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
15
 */
16
17
#include <sys/types.h>
18
#include <string.h>
19
#include <sha1.h>
20
21
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
22
23
/*
24
 * blk0() and blk() perform the initial expand.
25
 * I got the idea of expanding during the round function from SSLeay
26
 */
27
#if BYTE_ORDER == LITTLE_ENDIAN
28
# define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
29
    |(rol(block->l[i],8)&0x00FF00FF))
30
#else
31
# define blk0(i) block->l[i]
32
#endif
33
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
34
    ^block->l[(i+2)&15]^block->l[i&15],1))
35
36
/*
37
 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
38
 */
39
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
40
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
41
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
42
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
43
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
44
45
typedef union {
46
	u_int8_t c[64];
47
	u_int32_t l[16];
48
} CHAR64LONG16;
49
50
/*
51
 * Hash a single 512-bit block. This is the core of the algorithm.
52
 */
53
void
54
SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH])
55
{
56
	u_int32_t a, b, c, d, e;
57
	u_int8_t workspace[SHA1_BLOCK_LENGTH];
58
	CHAR64LONG16 *block = (CHAR64LONG16 *)workspace;
59
60
	(void)memcpy(block, buffer, SHA1_BLOCK_LENGTH);
61
62
	/* Copy context->state[] to working vars */
63
	a = state[0];
64
	b = state[1];
65
	c = state[2];
66
	d = state[3];
67
	e = state[4];
68
69
	/* 4 rounds of 20 operations each. Loop unrolled. */
70
	R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
71
	R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
72
	R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
73
	R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
74
	R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
75
	R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
76
	R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
77
	R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
78
	R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
79
	R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
80
	R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
81
	R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
82
	R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
83
	R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
84
	R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
85
	R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
86
	R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
87
	R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
88
	R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
89
	R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
90
91
	/* Add the working vars back into context.state[] */
92
	state[0] += a;
93
	state[1] += b;
94
	state[2] += c;
95
	state[3] += d;
96
	state[4] += e;
97
98
	/* Wipe variables */
99
	a = b = c = d = e = 0;
100
}
101
DEF_WEAK(SHA1Transform);
102
103
104
/*
105
 * SHA1Init - Initialize new context
106
 */
107
void
108
SHA1Init(SHA1_CTX *context)
109
{
110
111
	/* SHA1 initialization constants */
112
	context->count = 0;
113
	context->state[0] = 0x67452301;
114
	context->state[1] = 0xEFCDAB89;
115
	context->state[2] = 0x98BADCFE;
116
	context->state[3] = 0x10325476;
117
	context->state[4] = 0xC3D2E1F0;
118
}
119
DEF_WEAK(SHA1Init);
120
121
122
/*
123
 * Run your data through this.
124
 */
125
void
126
SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len)
127
{
128
	size_t i, j;
129
130
	j = (size_t)((context->count >> 3) & 63);
131
	context->count += (len << 3);
132
	if ((j + len) > 63) {
133
		(void)memcpy(&context->buffer[j], data, (i = 64-j));
134
		SHA1Transform(context->state, context->buffer);
135
		for ( ; i + 63 < len; i += 64)
136
			SHA1Transform(context->state, (u_int8_t *)&data[i]);
137
		j = 0;
138
	} else {
139
		i = 0;
140
	}
141
	(void)memcpy(&context->buffer[j], &data[i], len - i);
142
}
143
DEF_WEAK(SHA1Update);
144
145
146
/*
147
 * Add padding and return the message digest.
148
 */
149
void
150
SHA1Pad(SHA1_CTX *context)
151
{
152
	u_int8_t finalcount[8];
153
	u_int i;
154
155
	for (i = 0; i < 8; i++) {
156
		finalcount[i] = (u_int8_t)((context->count >>
157
		    ((7 - (i & 7)) * 8)) & 255);	/* Endian independent */
158
	}
159
	SHA1Update(context, (u_int8_t *)"\200", 1);
160
	while ((context->count & 504) != 448)
161
		SHA1Update(context, (u_int8_t *)"\0", 1);
162
	SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
163
}
164
DEF_WEAK(SHA1Pad);
165
166
void
167
SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context)
168
{
169
	u_int i;
170
171
	SHA1Pad(context);
172
	for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
173
		digest[i] = (u_int8_t)
174
		   ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
175
	}
176
	explicit_bzero(context, sizeof(*context));
177
}
178
DEF_WEAK(SHA1Final);