1 |
|
|
/* $OpenBSD: sha2.c,v 1.26 2017/05/27 15:32:51 naddy Exp $ */ |
2 |
|
|
|
3 |
|
|
/* |
4 |
|
|
* FILE: sha2.c |
5 |
|
|
* AUTHOR: Aaron D. Gifford <me@aarongifford.com> |
6 |
|
|
* |
7 |
|
|
* Copyright (c) 2000-2001, Aaron D. Gifford |
8 |
|
|
* All rights reserved. |
9 |
|
|
* |
10 |
|
|
* Redistribution and use in source and binary forms, with or without |
11 |
|
|
* modification, are permitted provided that the following conditions |
12 |
|
|
* are met: |
13 |
|
|
* 1. Redistributions of source code must retain the above copyright |
14 |
|
|
* notice, this list of conditions and the following disclaimer. |
15 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
16 |
|
|
* notice, this list of conditions and the following disclaimer in the |
17 |
|
|
* documentation and/or other materials provided with the distribution. |
18 |
|
|
* 3. Neither the name of the copyright holder nor the names of contributors |
19 |
|
|
* may be used to endorse or promote products derived from this software |
20 |
|
|
* without specific prior written permission. |
21 |
|
|
* |
22 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND |
23 |
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
24 |
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
25 |
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE |
26 |
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
27 |
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
28 |
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
29 |
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
30 |
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
31 |
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
32 |
|
|
* SUCH DAMAGE. |
33 |
|
|
* |
34 |
|
|
* $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ |
35 |
|
|
*/ |
36 |
|
|
|
37 |
|
|
#include <sys/types.h> |
38 |
|
|
|
39 |
|
|
#include <string.h> |
40 |
|
|
#include <sha2.h> |
41 |
|
|
|
42 |
|
|
/* |
43 |
|
|
* UNROLLED TRANSFORM LOOP NOTE: |
44 |
|
|
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform |
45 |
|
|
* loop version for the hash transform rounds (defined using macros |
46 |
|
|
* later in this file). Either define on the command line, for example: |
47 |
|
|
* |
48 |
|
|
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c |
49 |
|
|
* |
50 |
|
|
* or define below: |
51 |
|
|
* |
52 |
|
|
* #define SHA2_UNROLL_TRANSFORM |
53 |
|
|
* |
54 |
|
|
*/ |
55 |
|
|
#ifndef SHA2_SMALL |
56 |
|
|
#if defined(__amd64__) || defined(__i386__) |
57 |
|
|
#define SHA2_UNROLL_TRANSFORM |
58 |
|
|
#endif |
59 |
|
|
#endif |
60 |
|
|
|
61 |
|
|
/*** SHA-224/256/384/512 Machine Architecture Definitions *****************/ |
62 |
|
|
/* |
63 |
|
|
* BYTE_ORDER NOTE: |
64 |
|
|
* |
65 |
|
|
* Please make sure that your system defines BYTE_ORDER. If your |
66 |
|
|
* architecture is little-endian, make sure it also defines |
67 |
|
|
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are |
68 |
|
|
* equivilent. |
69 |
|
|
* |
70 |
|
|
* If your system does not define the above, then you can do so by |
71 |
|
|
* hand like this: |
72 |
|
|
* |
73 |
|
|
* #define LITTLE_ENDIAN 1234 |
74 |
|
|
* #define BIG_ENDIAN 4321 |
75 |
|
|
* |
76 |
|
|
* And for little-endian machines, add: |
77 |
|
|
* |
78 |
|
|
* #define BYTE_ORDER LITTLE_ENDIAN |
79 |
|
|
* |
80 |
|
|
* Or for big-endian machines: |
81 |
|
|
* |
82 |
|
|
* #define BYTE_ORDER BIG_ENDIAN |
83 |
|
|
* |
84 |
|
|
* The FreeBSD machine this was written on defines BYTE_ORDER |
85 |
|
|
* appropriately by including <sys/types.h> (which in turn includes |
86 |
|
|
* <machine/endian.h> where the appropriate definitions are actually |
87 |
|
|
* made). |
88 |
|
|
*/ |
89 |
|
|
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) |
90 |
|
|
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN |
91 |
|
|
#endif |
92 |
|
|
|
93 |
|
|
|
94 |
|
|
/*** SHA-224/256/384/512 Various Length Definitions ***********************/ |
95 |
|
|
/* NOTE: Most of these are in sha2.h */ |
96 |
|
|
#define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8) |
97 |
|
|
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) |
98 |
|
|
#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) |
99 |
|
|
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) |
100 |
|
|
|
101 |
|
|
/*** ENDIAN SPECIFIC COPY MACROS **************************************/ |
102 |
|
|
#define BE_8_TO_32(dst, cp) do { \ |
103 |
|
|
(dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \ |
104 |
|
|
((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \ |
105 |
|
|
} while(0) |
106 |
|
|
|
107 |
|
|
#define BE_8_TO_64(dst, cp) do { \ |
108 |
|
|
(dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \ |
109 |
|
|
((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \ |
110 |
|
|
((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \ |
111 |
|
|
((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \ |
112 |
|
|
} while (0) |
113 |
|
|
|
114 |
|
|
#define BE_64_TO_8(cp, src) do { \ |
115 |
|
|
(cp)[0] = (src) >> 56; \ |
116 |
|
|
(cp)[1] = (src) >> 48; \ |
117 |
|
|
(cp)[2] = (src) >> 40; \ |
118 |
|
|
(cp)[3] = (src) >> 32; \ |
119 |
|
|
(cp)[4] = (src) >> 24; \ |
120 |
|
|
(cp)[5] = (src) >> 16; \ |
121 |
|
|
(cp)[6] = (src) >> 8; \ |
122 |
|
|
(cp)[7] = (src); \ |
123 |
|
|
} while (0) |
124 |
|
|
|
125 |
|
|
#define BE_32_TO_8(cp, src) do { \ |
126 |
|
|
(cp)[0] = (src) >> 24; \ |
127 |
|
|
(cp)[1] = (src) >> 16; \ |
128 |
|
|
(cp)[2] = (src) >> 8; \ |
129 |
|
|
(cp)[3] = (src); \ |
130 |
|
|
} while (0) |
131 |
|
|
|
132 |
|
|
/* |
133 |
|
|
* Macro for incrementally adding the unsigned 64-bit integer n to the |
134 |
|
|
* unsigned 128-bit integer (represented using a two-element array of |
135 |
|
|
* 64-bit words): |
136 |
|
|
*/ |
137 |
|
|
#define ADDINC128(w,n) do { \ |
138 |
|
|
(w)[0] += (u_int64_t)(n); \ |
139 |
|
|
if ((w)[0] < (n)) { \ |
140 |
|
|
(w)[1]++; \ |
141 |
|
|
} \ |
142 |
|
|
} while (0) |
143 |
|
|
|
144 |
|
|
/*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
145 |
|
|
/* |
146 |
|
|
* Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
147 |
|
|
* |
148 |
|
|
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
149 |
|
|
* S is a ROTATION) because the SHA-224/256/384/512 description document |
150 |
|
|
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
151 |
|
|
* same "backwards" definition. |
152 |
|
|
*/ |
153 |
|
|
/* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */ |
154 |
|
|
#define R(b,x) ((x) >> (b)) |
155 |
|
|
/* 32-bit Rotate-right (used in SHA-224 and SHA-256): */ |
156 |
|
|
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) |
157 |
|
|
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
158 |
|
|
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) |
159 |
|
|
|
160 |
|
|
/* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */ |
161 |
|
|
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
162 |
|
|
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
163 |
|
|
|
164 |
|
|
/* Four of six logical functions used in SHA-224 and SHA-256: */ |
165 |
|
|
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
166 |
|
|
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
167 |
|
|
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
168 |
|
|
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
169 |
|
|
|
170 |
|
|
/* Four of six logical functions used in SHA-384 and SHA-512: */ |
171 |
|
|
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
172 |
|
|
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
173 |
|
|
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) |
174 |
|
|
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) |
175 |
|
|
|
176 |
|
|
|
177 |
|
|
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
178 |
|
|
/* Hash constant words K for SHA-224 and SHA-256: */ |
179 |
|
|
static const u_int32_t K256[64] = { |
180 |
|
|
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
181 |
|
|
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
182 |
|
|
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
183 |
|
|
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
184 |
|
|
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
185 |
|
|
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
186 |
|
|
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
187 |
|
|
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
188 |
|
|
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
189 |
|
|
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
190 |
|
|
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
191 |
|
|
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
192 |
|
|
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
193 |
|
|
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
194 |
|
|
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
195 |
|
|
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
196 |
|
|
}; |
197 |
|
|
|
198 |
|
|
/* Initial hash value H for SHA-256: */ |
199 |
|
|
static const u_int32_t sha256_initial_hash_value[8] = { |
200 |
|
|
0x6a09e667UL, |
201 |
|
|
0xbb67ae85UL, |
202 |
|
|
0x3c6ef372UL, |
203 |
|
|
0xa54ff53aUL, |
204 |
|
|
0x510e527fUL, |
205 |
|
|
0x9b05688cUL, |
206 |
|
|
0x1f83d9abUL, |
207 |
|
|
0x5be0cd19UL |
208 |
|
|
}; |
209 |
|
|
|
210 |
|
|
/* Hash constant words K for SHA-384 and SHA-512: */ |
211 |
|
|
static const u_int64_t K512[80] = { |
212 |
|
|
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, |
213 |
|
|
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, |
214 |
|
|
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, |
215 |
|
|
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, |
216 |
|
|
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, |
217 |
|
|
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, |
218 |
|
|
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, |
219 |
|
|
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, |
220 |
|
|
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, |
221 |
|
|
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, |
222 |
|
|
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, |
223 |
|
|
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, |
224 |
|
|
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, |
225 |
|
|
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, |
226 |
|
|
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, |
227 |
|
|
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, |
228 |
|
|
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, |
229 |
|
|
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, |
230 |
|
|
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, |
231 |
|
|
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, |
232 |
|
|
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, |
233 |
|
|
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, |
234 |
|
|
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, |
235 |
|
|
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, |
236 |
|
|
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, |
237 |
|
|
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, |
238 |
|
|
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, |
239 |
|
|
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, |
240 |
|
|
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, |
241 |
|
|
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, |
242 |
|
|
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, |
243 |
|
|
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, |
244 |
|
|
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, |
245 |
|
|
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, |
246 |
|
|
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, |
247 |
|
|
0x113f9804bef90daeULL, 0x1b710b35131c471bULL, |
248 |
|
|
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, |
249 |
|
|
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, |
250 |
|
|
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, |
251 |
|
|
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL |
252 |
|
|
}; |
253 |
|
|
|
254 |
|
|
/* Initial hash value H for SHA-512 */ |
255 |
|
|
static const u_int64_t sha512_initial_hash_value[8] = { |
256 |
|
|
0x6a09e667f3bcc908ULL, |
257 |
|
|
0xbb67ae8584caa73bULL, |
258 |
|
|
0x3c6ef372fe94f82bULL, |
259 |
|
|
0xa54ff53a5f1d36f1ULL, |
260 |
|
|
0x510e527fade682d1ULL, |
261 |
|
|
0x9b05688c2b3e6c1fULL, |
262 |
|
|
0x1f83d9abfb41bd6bULL, |
263 |
|
|
0x5be0cd19137e2179ULL |
264 |
|
|
}; |
265 |
|
|
|
266 |
|
|
#if !defined(SHA2_SMALL) |
267 |
|
|
/* Initial hash value H for SHA-224: */ |
268 |
|
|
static const u_int32_t sha224_initial_hash_value[8] = { |
269 |
|
|
0xc1059ed8UL, |
270 |
|
|
0x367cd507UL, |
271 |
|
|
0x3070dd17UL, |
272 |
|
|
0xf70e5939UL, |
273 |
|
|
0xffc00b31UL, |
274 |
|
|
0x68581511UL, |
275 |
|
|
0x64f98fa7UL, |
276 |
|
|
0xbefa4fa4UL |
277 |
|
|
}; |
278 |
|
|
|
279 |
|
|
/* Initial hash value H for SHA-384 */ |
280 |
|
|
static const u_int64_t sha384_initial_hash_value[8] = { |
281 |
|
|
0xcbbb9d5dc1059ed8ULL, |
282 |
|
|
0x629a292a367cd507ULL, |
283 |
|
|
0x9159015a3070dd17ULL, |
284 |
|
|
0x152fecd8f70e5939ULL, |
285 |
|
|
0x67332667ffc00b31ULL, |
286 |
|
|
0x8eb44a8768581511ULL, |
287 |
|
|
0xdb0c2e0d64f98fa7ULL, |
288 |
|
|
0x47b5481dbefa4fa4ULL |
289 |
|
|
}; |
290 |
|
|
|
291 |
|
|
/* Initial hash value H for SHA-512-256 */ |
292 |
|
|
static const u_int64_t sha512_256_initial_hash_value[8] = { |
293 |
|
|
0x22312194fc2bf72cULL, |
294 |
|
|
0x9f555fa3c84c64c2ULL, |
295 |
|
|
0x2393b86b6f53b151ULL, |
296 |
|
|
0x963877195940eabdULL, |
297 |
|
|
0x96283ee2a88effe3ULL, |
298 |
|
|
0xbe5e1e2553863992ULL, |
299 |
|
|
0x2b0199fc2c85b8aaULL, |
300 |
|
|
0x0eb72ddc81c52ca2ULL |
301 |
|
|
}; |
302 |
|
|
|
303 |
|
|
/*** SHA-224: *********************************************************/ |
304 |
|
|
void |
305 |
|
|
SHA224Init(SHA2_CTX *context) |
306 |
|
|
{ |
307 |
|
|
memcpy(context->state.st32, sha224_initial_hash_value, |
308 |
|
|
sizeof(sha224_initial_hash_value)); |
309 |
|
|
memset(context->buffer, 0, sizeof(context->buffer)); |
310 |
|
|
context->bitcount[0] = 0; |
311 |
|
|
} |
312 |
|
|
DEF_WEAK(SHA224Init); |
313 |
|
|
|
314 |
|
|
MAKE_CLONE(SHA224Transform, SHA256Transform); |
315 |
|
|
MAKE_CLONE(SHA224Update, SHA256Update); |
316 |
|
|
MAKE_CLONE(SHA224Pad, SHA256Pad); |
317 |
|
|
DEF_WEAK(SHA224Transform); |
318 |
|
|
DEF_WEAK(SHA224Update); |
319 |
|
|
DEF_WEAK(SHA224Pad); |
320 |
|
|
|
321 |
|
|
void |
322 |
|
|
SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context) |
323 |
|
|
{ |
324 |
|
|
SHA224Pad(context); |
325 |
|
|
|
326 |
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
327 |
|
|
int i; |
328 |
|
|
|
329 |
|
|
/* Convert TO host byte order */ |
330 |
|
|
for (i = 0; i < 7; i++) |
331 |
|
|
BE_32_TO_8(digest + i * 4, context->state.st32[i]); |
332 |
|
|
#else |
333 |
|
|
memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH); |
334 |
|
|
#endif |
335 |
|
|
explicit_bzero(context, sizeof(*context)); |
336 |
|
|
} |
337 |
|
|
DEF_WEAK(SHA224Final); |
338 |
|
|
#endif /* !defined(SHA2_SMALL) */ |
339 |
|
|
|
340 |
|
|
/*** SHA-256: *********************************************************/ |
341 |
|
|
void |
342 |
|
|
SHA256Init(SHA2_CTX *context) |
343 |
|
|
{ |
344 |
|
|
memcpy(context->state.st32, sha256_initial_hash_value, |
345 |
|
|
sizeof(sha256_initial_hash_value)); |
346 |
|
|
memset(context->buffer, 0, sizeof(context->buffer)); |
347 |
|
|
context->bitcount[0] = 0; |
348 |
|
|
} |
349 |
|
|
DEF_WEAK(SHA256Init); |
350 |
|
|
|
351 |
|
|
#ifdef SHA2_UNROLL_TRANSFORM |
352 |
|
|
|
353 |
|
|
/* Unrolled SHA-256 round macros: */ |
354 |
|
|
|
355 |
|
|
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ |
356 |
|
|
BE_8_TO_32(W256[j], data); \ |
357 |
|
|
data += 4; \ |
358 |
|
|
T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ |
359 |
|
|
(d) += T1; \ |
360 |
|
|
(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ |
361 |
|
|
j++; \ |
362 |
|
|
} while(0) |
363 |
|
|
|
364 |
|
|
#define ROUND256(a,b,c,d,e,f,g,h) do { \ |
365 |
|
|
s0 = W256[(j+1)&0x0f]; \ |
366 |
|
|
s0 = sigma0_256(s0); \ |
367 |
|
|
s1 = W256[(j+14)&0x0f]; \ |
368 |
|
|
s1 = sigma1_256(s1); \ |
369 |
|
|
T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ |
370 |
|
|
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
371 |
|
|
(d) += T1; \ |
372 |
|
|
(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ |
373 |
|
|
j++; \ |
374 |
|
|
} while(0) |
375 |
|
|
|
376 |
|
|
void |
377 |
|
|
SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) |
378 |
|
|
{ |
379 |
|
|
u_int32_t a, b, c, d, e, f, g, h, s0, s1; |
380 |
|
|
u_int32_t T1, W256[16]; |
381 |
|
|
int j; |
382 |
|
|
|
383 |
|
|
/* Initialize registers with the prev. intermediate value */ |
384 |
|
|
a = state[0]; |
385 |
|
|
b = state[1]; |
386 |
|
|
c = state[2]; |
387 |
|
|
d = state[3]; |
388 |
|
|
e = state[4]; |
389 |
|
|
f = state[5]; |
390 |
|
|
g = state[6]; |
391 |
|
|
h = state[7]; |
392 |
|
|
|
393 |
|
|
j = 0; |
394 |
|
|
do { |
395 |
|
|
/* Rounds 0 to 15 (unrolled): */ |
396 |
|
|
ROUND256_0_TO_15(a,b,c,d,e,f,g,h); |
397 |
|
|
ROUND256_0_TO_15(h,a,b,c,d,e,f,g); |
398 |
|
|
ROUND256_0_TO_15(g,h,a,b,c,d,e,f); |
399 |
|
|
ROUND256_0_TO_15(f,g,h,a,b,c,d,e); |
400 |
|
|
ROUND256_0_TO_15(e,f,g,h,a,b,c,d); |
401 |
|
|
ROUND256_0_TO_15(d,e,f,g,h,a,b,c); |
402 |
|
|
ROUND256_0_TO_15(c,d,e,f,g,h,a,b); |
403 |
|
|
ROUND256_0_TO_15(b,c,d,e,f,g,h,a); |
404 |
|
|
} while (j < 16); |
405 |
|
|
|
406 |
|
|
/* Now for the remaining rounds up to 63: */ |
407 |
|
|
do { |
408 |
|
|
ROUND256(a,b,c,d,e,f,g,h); |
409 |
|
|
ROUND256(h,a,b,c,d,e,f,g); |
410 |
|
|
ROUND256(g,h,a,b,c,d,e,f); |
411 |
|
|
ROUND256(f,g,h,a,b,c,d,e); |
412 |
|
|
ROUND256(e,f,g,h,a,b,c,d); |
413 |
|
|
ROUND256(d,e,f,g,h,a,b,c); |
414 |
|
|
ROUND256(c,d,e,f,g,h,a,b); |
415 |
|
|
ROUND256(b,c,d,e,f,g,h,a); |
416 |
|
|
} while (j < 64); |
417 |
|
|
|
418 |
|
|
/* Compute the current intermediate hash value */ |
419 |
|
|
state[0] += a; |
420 |
|
|
state[1] += b; |
421 |
|
|
state[2] += c; |
422 |
|
|
state[3] += d; |
423 |
|
|
state[4] += e; |
424 |
|
|
state[5] += f; |
425 |
|
|
state[6] += g; |
426 |
|
|
state[7] += h; |
427 |
|
|
|
428 |
|
|
/* Clean up */ |
429 |
|
|
a = b = c = d = e = f = g = h = T1 = 0; |
430 |
|
|
} |
431 |
|
|
|
432 |
|
|
#else /* SHA2_UNROLL_TRANSFORM */ |
433 |
|
|
|
434 |
|
|
void |
435 |
|
|
SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) |
436 |
|
|
{ |
437 |
|
|
u_int32_t a, b, c, d, e, f, g, h, s0, s1; |
438 |
|
|
u_int32_t T1, T2, W256[16]; |
439 |
|
|
int j; |
440 |
|
|
|
441 |
|
|
/* Initialize registers with the prev. intermediate value */ |
442 |
|
|
a = state[0]; |
443 |
|
|
b = state[1]; |
444 |
|
|
c = state[2]; |
445 |
|
|
d = state[3]; |
446 |
|
|
e = state[4]; |
447 |
|
|
f = state[5]; |
448 |
|
|
g = state[6]; |
449 |
|
|
h = state[7]; |
450 |
|
|
|
451 |
|
|
j = 0; |
452 |
|
|
do { |
453 |
|
|
BE_8_TO_32(W256[j], data); |
454 |
|
|
data += 4; |
455 |
|
|
/* Apply the SHA-256 compression function to update a..h */ |
456 |
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; |
457 |
|
|
T2 = Sigma0_256(a) + Maj(a, b, c); |
458 |
|
|
h = g; |
459 |
|
|
g = f; |
460 |
|
|
f = e; |
461 |
|
|
e = d + T1; |
462 |
|
|
d = c; |
463 |
|
|
c = b; |
464 |
|
|
b = a; |
465 |
|
|
a = T1 + T2; |
466 |
|
|
|
467 |
|
|
j++; |
468 |
|
|
} while (j < 16); |
469 |
|
|
|
470 |
|
|
do { |
471 |
|
|
/* Part of the message block expansion: */ |
472 |
|
|
s0 = W256[(j+1)&0x0f]; |
473 |
|
|
s0 = sigma0_256(s0); |
474 |
|
|
s1 = W256[(j+14)&0x0f]; |
475 |
|
|
s1 = sigma1_256(s1); |
476 |
|
|
|
477 |
|
|
/* Apply the SHA-256 compression function to update a..h */ |
478 |
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + |
479 |
|
|
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); |
480 |
|
|
T2 = Sigma0_256(a) + Maj(a, b, c); |
481 |
|
|
h = g; |
482 |
|
|
g = f; |
483 |
|
|
f = e; |
484 |
|
|
e = d + T1; |
485 |
|
|
d = c; |
486 |
|
|
c = b; |
487 |
|
|
b = a; |
488 |
|
|
a = T1 + T2; |
489 |
|
|
|
490 |
|
|
j++; |
491 |
|
|
} while (j < 64); |
492 |
|
|
|
493 |
|
|
/* Compute the current intermediate hash value */ |
494 |
|
|
state[0] += a; |
495 |
|
|
state[1] += b; |
496 |
|
|
state[2] += c; |
497 |
|
|
state[3] += d; |
498 |
|
|
state[4] += e; |
499 |
|
|
state[5] += f; |
500 |
|
|
state[6] += g; |
501 |
|
|
state[7] += h; |
502 |
|
|
|
503 |
|
|
/* Clean up */ |
504 |
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0; |
505 |
|
|
} |
506 |
|
|
|
507 |
|
|
#endif /* SHA2_UNROLL_TRANSFORM */ |
508 |
|
|
DEF_WEAK(SHA256Transform); |
509 |
|
|
|
510 |
|
|
void |
511 |
|
|
SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len) |
512 |
|
|
{ |
513 |
|
|
size_t freespace, usedspace; |
514 |
|
|
|
515 |
|
|
/* Calling with no data is valid (we do nothing) */ |
516 |
|
|
if (len == 0) |
517 |
|
|
return; |
518 |
|
|
|
519 |
|
|
usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; |
520 |
|
|
if (usedspace > 0) { |
521 |
|
|
/* Calculate how much free space is available in the buffer */ |
522 |
|
|
freespace = SHA256_BLOCK_LENGTH - usedspace; |
523 |
|
|
|
524 |
|
|
if (len >= freespace) { |
525 |
|
|
/* Fill the buffer completely and process it */ |
526 |
|
|
memcpy(&context->buffer[usedspace], data, freespace); |
527 |
|
|
context->bitcount[0] += freespace << 3; |
528 |
|
|
len -= freespace; |
529 |
|
|
data += freespace; |
530 |
|
|
SHA256Transform(context->state.st32, context->buffer); |
531 |
|
|
} else { |
532 |
|
|
/* The buffer is not yet full */ |
533 |
|
|
memcpy(&context->buffer[usedspace], data, len); |
534 |
|
|
context->bitcount[0] += len << 3; |
535 |
|
|
/* Clean up: */ |
536 |
|
|
usedspace = freespace = 0; |
537 |
|
|
return; |
538 |
|
|
} |
539 |
|
|
} |
540 |
|
|
while (len >= SHA256_BLOCK_LENGTH) { |
541 |
|
|
/* Process as many complete blocks as we can */ |
542 |
|
|
SHA256Transform(context->state.st32, data); |
543 |
|
|
context->bitcount[0] += SHA256_BLOCK_LENGTH << 3; |
544 |
|
|
len -= SHA256_BLOCK_LENGTH; |
545 |
|
|
data += SHA256_BLOCK_LENGTH; |
546 |
|
|
} |
547 |
|
|
if (len > 0) { |
548 |
|
|
/* There's left-overs, so save 'em */ |
549 |
|
|
memcpy(context->buffer, data, len); |
550 |
|
|
context->bitcount[0] += len << 3; |
551 |
|
|
} |
552 |
|
|
/* Clean up: */ |
553 |
|
|
usedspace = freespace = 0; |
554 |
|
|
} |
555 |
|
|
DEF_WEAK(SHA256Update); |
556 |
|
|
|
557 |
|
|
void |
558 |
|
|
SHA256Pad(SHA2_CTX *context) |
559 |
|
|
{ |
560 |
|
|
unsigned int usedspace; |
561 |
|
|
|
562 |
|
|
usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; |
563 |
|
|
if (usedspace > 0) { |
564 |
|
|
/* Begin padding with a 1 bit: */ |
565 |
|
|
context->buffer[usedspace++] = 0x80; |
566 |
|
|
|
567 |
|
|
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { |
568 |
|
|
/* Set-up for the last transform: */ |
569 |
|
|
memset(&context->buffer[usedspace], 0, |
570 |
|
|
SHA256_SHORT_BLOCK_LENGTH - usedspace); |
571 |
|
|
} else { |
572 |
|
|
if (usedspace < SHA256_BLOCK_LENGTH) { |
573 |
|
|
memset(&context->buffer[usedspace], 0, |
574 |
|
|
SHA256_BLOCK_LENGTH - usedspace); |
575 |
|
|
} |
576 |
|
|
/* Do second-to-last transform: */ |
577 |
|
|
SHA256Transform(context->state.st32, context->buffer); |
578 |
|
|
|
579 |
|
|
/* Prepare for last transform: */ |
580 |
|
|
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); |
581 |
|
|
} |
582 |
|
|
} else { |
583 |
|
|
/* Set-up for the last transform: */ |
584 |
|
|
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); |
585 |
|
|
|
586 |
|
|
/* Begin padding with a 1 bit: */ |
587 |
|
|
*context->buffer = 0x80; |
588 |
|
|
} |
589 |
|
|
/* Store the length of input data (in bits) in big endian format: */ |
590 |
|
|
BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], |
591 |
|
|
context->bitcount[0]); |
592 |
|
|
|
593 |
|
|
/* Final transform: */ |
594 |
|
|
SHA256Transform(context->state.st32, context->buffer); |
595 |
|
|
|
596 |
|
|
/* Clean up: */ |
597 |
|
|
usedspace = 0; |
598 |
|
|
} |
599 |
|
|
DEF_WEAK(SHA256Pad); |
600 |
|
|
|
601 |
|
|
void |
602 |
|
|
SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context) |
603 |
|
|
{ |
604 |
|
|
SHA256Pad(context); |
605 |
|
|
|
606 |
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
607 |
|
|
int i; |
608 |
|
|
|
609 |
|
|
/* Convert TO host byte order */ |
610 |
|
|
for (i = 0; i < 8; i++) |
611 |
|
|
BE_32_TO_8(digest + i * 4, context->state.st32[i]); |
612 |
|
|
#else |
613 |
|
|
memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH); |
614 |
|
|
#endif |
615 |
|
|
explicit_bzero(context, sizeof(*context)); |
616 |
|
|
} |
617 |
|
|
DEF_WEAK(SHA256Final); |
618 |
|
|
|
619 |
|
|
|
620 |
|
|
/*** SHA-512: *********************************************************/ |
621 |
|
|
void |
622 |
|
|
SHA512Init(SHA2_CTX *context) |
623 |
|
|
{ |
624 |
|
|
memcpy(context->state.st64, sha512_initial_hash_value, |
625 |
|
|
sizeof(sha512_initial_hash_value)); |
626 |
|
|
memset(context->buffer, 0, sizeof(context->buffer)); |
627 |
|
|
context->bitcount[0] = context->bitcount[1] = 0; |
628 |
|
|
} |
629 |
|
|
DEF_WEAK(SHA512Init); |
630 |
|
|
|
631 |
|
|
#ifdef SHA2_UNROLL_TRANSFORM |
632 |
|
|
|
633 |
|
|
/* Unrolled SHA-512 round macros: */ |
634 |
|
|
|
635 |
|
|
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ |
636 |
|
|
BE_8_TO_64(W512[j], data); \ |
637 |
|
|
data += 8; \ |
638 |
|
|
T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ |
639 |
|
|
(d) += T1; \ |
640 |
|
|
(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ |
641 |
|
|
j++; \ |
642 |
|
|
} while(0) |
643 |
|
|
|
644 |
|
|
|
645 |
|
|
#define ROUND512(a,b,c,d,e,f,g,h) do { \ |
646 |
|
|
s0 = W512[(j+1)&0x0f]; \ |
647 |
|
|
s0 = sigma0_512(s0); \ |
648 |
|
|
s1 = W512[(j+14)&0x0f]; \ |
649 |
|
|
s1 = sigma1_512(s1); \ |
650 |
|
|
T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ |
651 |
|
|
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
652 |
|
|
(d) += T1; \ |
653 |
|
|
(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ |
654 |
|
|
j++; \ |
655 |
|
|
} while(0) |
656 |
|
|
|
657 |
|
|
void |
658 |
|
|
SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) |
659 |
|
|
{ |
660 |
|
|
u_int64_t a, b, c, d, e, f, g, h, s0, s1; |
661 |
|
|
u_int64_t T1, W512[16]; |
662 |
|
|
int j; |
663 |
|
|
|
664 |
|
|
/* Initialize registers with the prev. intermediate value */ |
665 |
|
|
a = state[0]; |
666 |
|
|
b = state[1]; |
667 |
|
|
c = state[2]; |
668 |
|
|
d = state[3]; |
669 |
|
|
e = state[4]; |
670 |
|
|
f = state[5]; |
671 |
|
|
g = state[6]; |
672 |
|
|
h = state[7]; |
673 |
|
|
|
674 |
|
|
j = 0; |
675 |
|
|
do { |
676 |
|
|
/* Rounds 0 to 15 (unrolled): */ |
677 |
|
|
ROUND512_0_TO_15(a,b,c,d,e,f,g,h); |
678 |
|
|
ROUND512_0_TO_15(h,a,b,c,d,e,f,g); |
679 |
|
|
ROUND512_0_TO_15(g,h,a,b,c,d,e,f); |
680 |
|
|
ROUND512_0_TO_15(f,g,h,a,b,c,d,e); |
681 |
|
|
ROUND512_0_TO_15(e,f,g,h,a,b,c,d); |
682 |
|
|
ROUND512_0_TO_15(d,e,f,g,h,a,b,c); |
683 |
|
|
ROUND512_0_TO_15(c,d,e,f,g,h,a,b); |
684 |
|
|
ROUND512_0_TO_15(b,c,d,e,f,g,h,a); |
685 |
|
|
} while (j < 16); |
686 |
|
|
|
687 |
|
|
/* Now for the remaining rounds up to 79: */ |
688 |
|
|
do { |
689 |
|
|
ROUND512(a,b,c,d,e,f,g,h); |
690 |
|
|
ROUND512(h,a,b,c,d,e,f,g); |
691 |
|
|
ROUND512(g,h,a,b,c,d,e,f); |
692 |
|
|
ROUND512(f,g,h,a,b,c,d,e); |
693 |
|
|
ROUND512(e,f,g,h,a,b,c,d); |
694 |
|
|
ROUND512(d,e,f,g,h,a,b,c); |
695 |
|
|
ROUND512(c,d,e,f,g,h,a,b); |
696 |
|
|
ROUND512(b,c,d,e,f,g,h,a); |
697 |
|
|
} while (j < 80); |
698 |
|
|
|
699 |
|
|
/* Compute the current intermediate hash value */ |
700 |
|
|
state[0] += a; |
701 |
|
|
state[1] += b; |
702 |
|
|
state[2] += c; |
703 |
|
|
state[3] += d; |
704 |
|
|
state[4] += e; |
705 |
|
|
state[5] += f; |
706 |
|
|
state[6] += g; |
707 |
|
|
state[7] += h; |
708 |
|
|
|
709 |
|
|
/* Clean up */ |
710 |
|
|
a = b = c = d = e = f = g = h = T1 = 0; |
711 |
|
|
} |
712 |
|
|
|
713 |
|
|
#else /* SHA2_UNROLL_TRANSFORM */ |
714 |
|
|
|
715 |
|
|
void |
716 |
|
|
SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) |
717 |
|
|
{ |
718 |
|
|
u_int64_t a, b, c, d, e, f, g, h, s0, s1; |
719 |
|
|
u_int64_t T1, T2, W512[16]; |
720 |
|
|
int j; |
721 |
|
|
|
722 |
|
|
/* Initialize registers with the prev. intermediate value */ |
723 |
|
|
a = state[0]; |
724 |
|
|
b = state[1]; |
725 |
|
|
c = state[2]; |
726 |
|
|
d = state[3]; |
727 |
|
|
e = state[4]; |
728 |
|
|
f = state[5]; |
729 |
|
|
g = state[6]; |
730 |
|
|
h = state[7]; |
731 |
|
|
|
732 |
|
|
j = 0; |
733 |
|
|
do { |
734 |
|
|
BE_8_TO_64(W512[j], data); |
735 |
|
|
data += 8; |
736 |
|
|
/* Apply the SHA-512 compression function to update a..h */ |
737 |
|
|
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; |
738 |
|
|
T2 = Sigma0_512(a) + Maj(a, b, c); |
739 |
|
|
h = g; |
740 |
|
|
g = f; |
741 |
|
|
f = e; |
742 |
|
|
e = d + T1; |
743 |
|
|
d = c; |
744 |
|
|
c = b; |
745 |
|
|
b = a; |
746 |
|
|
a = T1 + T2; |
747 |
|
|
|
748 |
|
|
j++; |
749 |
|
|
} while (j < 16); |
750 |
|
|
|
751 |
|
|
do { |
752 |
|
|
/* Part of the message block expansion: */ |
753 |
|
|
s0 = W512[(j+1)&0x0f]; |
754 |
|
|
s0 = sigma0_512(s0); |
755 |
|
|
s1 = W512[(j+14)&0x0f]; |
756 |
|
|
s1 = sigma1_512(s1); |
757 |
|
|
|
758 |
|
|
/* Apply the SHA-512 compression function to update a..h */ |
759 |
|
|
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + |
760 |
|
|
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); |
761 |
|
|
T2 = Sigma0_512(a) + Maj(a, b, c); |
762 |
|
|
h = g; |
763 |
|
|
g = f; |
764 |
|
|
f = e; |
765 |
|
|
e = d + T1; |
766 |
|
|
d = c; |
767 |
|
|
c = b; |
768 |
|
|
b = a; |
769 |
|
|
a = T1 + T2; |
770 |
|
|
|
771 |
|
|
j++; |
772 |
|
|
} while (j < 80); |
773 |
|
|
|
774 |
|
|
/* Compute the current intermediate hash value */ |
775 |
|
|
state[0] += a; |
776 |
|
|
state[1] += b; |
777 |
|
|
state[2] += c; |
778 |
|
|
state[3] += d; |
779 |
|
|
state[4] += e; |
780 |
|
|
state[5] += f; |
781 |
|
|
state[6] += g; |
782 |
|
|
state[7] += h; |
783 |
|
|
|
784 |
|
|
/* Clean up */ |
785 |
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0; |
786 |
|
|
} |
787 |
|
|
|
788 |
|
|
#endif /* SHA2_UNROLL_TRANSFORM */ |
789 |
|
|
DEF_WEAK(SHA512Transform); |
790 |
|
|
|
791 |
|
|
void |
792 |
|
|
SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len) |
793 |
|
|
{ |
794 |
|
|
size_t freespace, usedspace; |
795 |
|
|
|
796 |
|
|
/* Calling with no data is valid (we do nothing) */ |
797 |
|
|
if (len == 0) |
798 |
|
|
return; |
799 |
|
|
|
800 |
|
|
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; |
801 |
|
|
if (usedspace > 0) { |
802 |
|
|
/* Calculate how much free space is available in the buffer */ |
803 |
|
|
freespace = SHA512_BLOCK_LENGTH - usedspace; |
804 |
|
|
|
805 |
|
|
if (len >= freespace) { |
806 |
|
|
/* Fill the buffer completely and process it */ |
807 |
|
|
memcpy(&context->buffer[usedspace], data, freespace); |
808 |
|
|
ADDINC128(context->bitcount, freespace << 3); |
809 |
|
|
len -= freespace; |
810 |
|
|
data += freespace; |
811 |
|
|
SHA512Transform(context->state.st64, context->buffer); |
812 |
|
|
} else { |
813 |
|
|
/* The buffer is not yet full */ |
814 |
|
|
memcpy(&context->buffer[usedspace], data, len); |
815 |
|
|
ADDINC128(context->bitcount, len << 3); |
816 |
|
|
/* Clean up: */ |
817 |
|
|
usedspace = freespace = 0; |
818 |
|
|
return; |
819 |
|
|
} |
820 |
|
|
} |
821 |
|
|
while (len >= SHA512_BLOCK_LENGTH) { |
822 |
|
|
/* Process as many complete blocks as we can */ |
823 |
|
|
SHA512Transform(context->state.st64, data); |
824 |
|
|
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); |
825 |
|
|
len -= SHA512_BLOCK_LENGTH; |
826 |
|
|
data += SHA512_BLOCK_LENGTH; |
827 |
|
|
} |
828 |
|
|
if (len > 0) { |
829 |
|
|
/* There's left-overs, so save 'em */ |
830 |
|
|
memcpy(context->buffer, data, len); |
831 |
|
|
ADDINC128(context->bitcount, len << 3); |
832 |
|
|
} |
833 |
|
|
/* Clean up: */ |
834 |
|
|
usedspace = freespace = 0; |
835 |
|
|
} |
836 |
|
|
DEF_WEAK(SHA512Update); |
837 |
|
|
|
838 |
|
|
void |
839 |
|
|
SHA512Pad(SHA2_CTX *context) |
840 |
|
|
{ |
841 |
|
|
unsigned int usedspace; |
842 |
|
|
|
843 |
|
|
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; |
844 |
|
|
if (usedspace > 0) { |
845 |
|
|
/* Begin padding with a 1 bit: */ |
846 |
|
|
context->buffer[usedspace++] = 0x80; |
847 |
|
|
|
848 |
|
|
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { |
849 |
|
|
/* Set-up for the last transform: */ |
850 |
|
|
memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); |
851 |
|
|
} else { |
852 |
|
|
if (usedspace < SHA512_BLOCK_LENGTH) { |
853 |
|
|
memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); |
854 |
|
|
} |
855 |
|
|
/* Do second-to-last transform: */ |
856 |
|
|
SHA512Transform(context->state.st64, context->buffer); |
857 |
|
|
|
858 |
|
|
/* And set-up for the last transform: */ |
859 |
|
|
memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); |
860 |
|
|
} |
861 |
|
|
} else { |
862 |
|
|
/* Prepare for final transform: */ |
863 |
|
|
memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); |
864 |
|
|
|
865 |
|
|
/* Begin padding with a 1 bit: */ |
866 |
|
|
*context->buffer = 0x80; |
867 |
|
|
} |
868 |
|
|
/* Store the length of input data (in bits) in big endian format: */ |
869 |
|
|
BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], |
870 |
|
|
context->bitcount[1]); |
871 |
|
|
BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], |
872 |
|
|
context->bitcount[0]); |
873 |
|
|
|
874 |
|
|
/* Final transform: */ |
875 |
|
|
SHA512Transform(context->state.st64, context->buffer); |
876 |
|
|
|
877 |
|
|
/* Clean up: */ |
878 |
|
|
usedspace = 0; |
879 |
|
|
} |
880 |
|
|
DEF_WEAK(SHA512Pad); |
881 |
|
|
|
882 |
|
|
void |
883 |
|
|
SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context) |
884 |
|
|
{ |
885 |
|
|
SHA512Pad(context); |
886 |
|
|
|
887 |
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
888 |
|
|
int i; |
889 |
|
|
|
890 |
|
|
/* Convert TO host byte order */ |
891 |
|
|
for (i = 0; i < 8; i++) |
892 |
|
|
BE_64_TO_8(digest + i * 8, context->state.st64[i]); |
893 |
|
|
#else |
894 |
|
|
memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH); |
895 |
|
|
#endif |
896 |
|
|
explicit_bzero(context, sizeof(*context)); |
897 |
|
|
} |
898 |
|
|
DEF_WEAK(SHA512Final); |
899 |
|
|
|
900 |
|
|
#if !defined(SHA2_SMALL) |
901 |
|
|
|
902 |
|
|
/*** SHA-384: *********************************************************/ |
903 |
|
|
void |
904 |
|
|
SHA384Init(SHA2_CTX *context) |
905 |
|
|
{ |
906 |
|
|
memcpy(context->state.st64, sha384_initial_hash_value, |
907 |
|
|
sizeof(sha384_initial_hash_value)); |
908 |
|
|
memset(context->buffer, 0, sizeof(context->buffer)); |
909 |
|
|
context->bitcount[0] = context->bitcount[1] = 0; |
910 |
|
|
} |
911 |
|
|
DEF_WEAK(SHA384Init); |
912 |
|
|
|
913 |
|
|
MAKE_CLONE(SHA384Transform, SHA512Transform); |
914 |
|
|
MAKE_CLONE(SHA384Update, SHA512Update); |
915 |
|
|
MAKE_CLONE(SHA384Pad, SHA512Pad); |
916 |
|
|
DEF_WEAK(SHA384Transform); |
917 |
|
|
DEF_WEAK(SHA384Update); |
918 |
|
|
DEF_WEAK(SHA384Pad); |
919 |
|
|
|
920 |
|
|
void |
921 |
|
|
SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context) |
922 |
|
|
{ |
923 |
|
|
SHA384Pad(context); |
924 |
|
|
|
925 |
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
926 |
|
|
int i; |
927 |
|
|
|
928 |
|
|
/* Convert TO host byte order */ |
929 |
|
|
for (i = 0; i < 6; i++) |
930 |
|
|
BE_64_TO_8(digest + i * 8, context->state.st64[i]); |
931 |
|
|
#else |
932 |
|
|
memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH); |
933 |
|
|
#endif |
934 |
|
|
/* Zero out state data */ |
935 |
|
|
explicit_bzero(context, sizeof(*context)); |
936 |
|
|
} |
937 |
|
|
DEF_WEAK(SHA384Final); |
938 |
|
|
|
939 |
|
|
/*** SHA-512/256: *********************************************************/ |
940 |
|
|
void |
941 |
|
|
SHA512_256Init(SHA2_CTX *context) |
942 |
|
|
{ |
943 |
|
|
memcpy(context->state.st64, sha512_256_initial_hash_value, |
944 |
|
|
sizeof(sha512_256_initial_hash_value)); |
945 |
|
|
memset(context->buffer, 0, sizeof(context->buffer)); |
946 |
|
|
context->bitcount[0] = context->bitcount[1] = 0; |
947 |
|
|
} |
948 |
|
|
DEF_WEAK(SHA512_256Init); |
949 |
|
|
|
950 |
|
|
MAKE_CLONE(SHA512_256Transform, SHA512Transform); |
951 |
|
|
MAKE_CLONE(SHA512_256Update, SHA512Update); |
952 |
|
|
MAKE_CLONE(SHA512_256Pad, SHA512Pad); |
953 |
|
|
DEF_WEAK(SHA512_256Transform); |
954 |
|
|
DEF_WEAK(SHA512_256Update); |
955 |
|
|
DEF_WEAK(SHA512_256Pad); |
956 |
|
|
|
957 |
|
|
void |
958 |
|
|
SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context) |
959 |
|
|
{ |
960 |
|
|
SHA512_256Pad(context); |
961 |
|
|
|
962 |
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
963 |
|
|
int i; |
964 |
|
|
|
965 |
|
|
/* Convert TO host byte order */ |
966 |
|
|
for (i = 0; i < 4; i++) |
967 |
|
|
BE_64_TO_8(digest + i * 8, context->state.st64[i]); |
968 |
|
|
#else |
969 |
|
|
memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH); |
970 |
|
|
#endif |
971 |
|
|
/* Zero out state data */ |
972 |
|
|
explicit_bzero(context, sizeof(*context)); |
973 |
|
|
} |
974 |
|
|
DEF_WEAK(SHA512_256Final); |
975 |
|
|
#endif /* !defined(SHA2_SMALL) */ |