1 |
|
|
/* $OpenBSD: localtime.c,v 1.59 2016/09/19 12:48:21 millert Exp $ */ |
2 |
|
|
/* |
3 |
|
|
** This file is in the public domain, so clarified as of |
4 |
|
|
** 1996-06-05 by Arthur David Olson. |
5 |
|
|
*/ |
6 |
|
|
|
7 |
|
|
/* |
8 |
|
|
** Leap second handling from Bradley White. |
9 |
|
|
** POSIX-style TZ environment variable handling from Guy Harris. |
10 |
|
|
*/ |
11 |
|
|
|
12 |
|
|
#include <ctype.h> |
13 |
|
|
#include <errno.h> |
14 |
|
|
#include <fcntl.h> |
15 |
|
|
#include <float.h> /* for FLT_MAX and DBL_MAX */ |
16 |
|
|
#include <stdint.h> |
17 |
|
|
#include <stdlib.h> |
18 |
|
|
#include <string.h> |
19 |
|
|
#include <unistd.h> |
20 |
|
|
|
21 |
|
|
#include "private.h" |
22 |
|
|
#include "tzfile.h" |
23 |
|
|
#include "thread_private.h" |
24 |
|
|
|
25 |
|
|
#ifndef TZ_ABBR_MAX_LEN |
26 |
|
|
#define TZ_ABBR_MAX_LEN 16 |
27 |
|
|
#endif /* !defined TZ_ABBR_MAX_LEN */ |
28 |
|
|
|
29 |
|
|
#ifndef TZ_ABBR_CHAR_SET |
30 |
|
|
#define TZ_ABBR_CHAR_SET \ |
31 |
|
|
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" |
32 |
|
|
#endif /* !defined TZ_ABBR_CHAR_SET */ |
33 |
|
|
|
34 |
|
|
#ifndef TZ_ABBR_ERR_CHAR |
35 |
|
|
#define TZ_ABBR_ERR_CHAR '_' |
36 |
|
|
#endif /* !defined TZ_ABBR_ERR_CHAR */ |
37 |
|
|
|
38 |
|
|
#ifndef WILDABBR |
39 |
|
|
/* |
40 |
|
|
** Someone might make incorrect use of a time zone abbreviation: |
41 |
|
|
** 1. They might reference tzname[0] before calling tzset (explicitly |
42 |
|
|
** or implicitly). |
43 |
|
|
** 2. They might reference tzname[1] before calling tzset (explicitly |
44 |
|
|
** or implicitly). |
45 |
|
|
** 3. They might reference tzname[1] after setting to a time zone |
46 |
|
|
** in which Daylight Saving Time is never observed. |
47 |
|
|
** 4. They might reference tzname[0] after setting to a time zone |
48 |
|
|
** in which Standard Time is never observed. |
49 |
|
|
** 5. They might reference tm.TM_ZONE after calling offtime. |
50 |
|
|
** What's best to do in the above cases is open to debate; |
51 |
|
|
** for now, we just set things up so that in any of the five cases |
52 |
|
|
** WILDABBR is used. Another possibility: initialize tzname[0] to the |
53 |
|
|
** string "tzname[0] used before set", and similarly for the other cases. |
54 |
|
|
** And another: initialize tzname[0] to "ERA", with an explanation in the |
55 |
|
|
** manual page of what this "time zone abbreviation" means (doing this so |
56 |
|
|
** that tzname[0] has the "normal" length of three characters). |
57 |
|
|
*/ |
58 |
|
|
#define WILDABBR " " |
59 |
|
|
#endif /* !defined WILDABBR */ |
60 |
|
|
|
61 |
|
|
static char wildabbr[] = WILDABBR; |
62 |
|
|
|
63 |
|
|
static const char gmt[] = "GMT"; |
64 |
|
|
|
65 |
|
|
/* |
66 |
|
|
** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. |
67 |
|
|
** We default to US rules as of 1999-08-17. |
68 |
|
|
** POSIX 1003.1 section 8.1.1 says that the default DST rules are |
69 |
|
|
** implementation dependent; for historical reasons, US rules are a |
70 |
|
|
** common default. |
71 |
|
|
*/ |
72 |
|
|
#ifndef TZDEFRULESTRING |
73 |
|
|
#define TZDEFRULESTRING ",M4.1.0,M10.5.0" |
74 |
|
|
#endif /* !defined TZDEFDST */ |
75 |
|
|
|
76 |
|
|
struct ttinfo { /* time type information */ |
77 |
|
|
long tt_gmtoff; /* UTC offset in seconds */ |
78 |
|
|
int tt_isdst; /* used to set tm_isdst */ |
79 |
|
|
int tt_abbrind; /* abbreviation list index */ |
80 |
|
|
int tt_ttisstd; /* TRUE if transition is std time */ |
81 |
|
|
int tt_ttisgmt; /* TRUE if transition is UTC */ |
82 |
|
|
}; |
83 |
|
|
|
84 |
|
|
struct lsinfo { /* leap second information */ |
85 |
|
|
time_t ls_trans; /* transition time */ |
86 |
|
|
long ls_corr; /* correction to apply */ |
87 |
|
|
}; |
88 |
|
|
|
89 |
|
|
#define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) |
90 |
|
|
|
91 |
|
|
#ifdef TZNAME_MAX |
92 |
|
|
#define MY_TZNAME_MAX TZNAME_MAX |
93 |
|
|
#endif /* defined TZNAME_MAX */ |
94 |
|
|
#ifndef TZNAME_MAX |
95 |
|
|
#define MY_TZNAME_MAX 255 |
96 |
|
|
#endif /* !defined TZNAME_MAX */ |
97 |
|
|
|
98 |
|
|
struct state { |
99 |
|
|
int leapcnt; |
100 |
|
|
int timecnt; |
101 |
|
|
int typecnt; |
102 |
|
|
int charcnt; |
103 |
|
|
int goback; |
104 |
|
|
int goahead; |
105 |
|
|
time_t ats[TZ_MAX_TIMES]; |
106 |
|
|
unsigned char types[TZ_MAX_TIMES]; |
107 |
|
|
struct ttinfo ttis[TZ_MAX_TYPES]; |
108 |
|
|
char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), |
109 |
|
|
(2 * (MY_TZNAME_MAX + 1)))]; |
110 |
|
|
struct lsinfo lsis[TZ_MAX_LEAPS]; |
111 |
|
|
}; |
112 |
|
|
|
113 |
|
|
struct rule { |
114 |
|
|
int r_type; /* type of rule--see below */ |
115 |
|
|
int r_day; /* day number of rule */ |
116 |
|
|
int r_week; /* week number of rule */ |
117 |
|
|
int r_mon; /* month number of rule */ |
118 |
|
|
long r_time; /* transition time of rule */ |
119 |
|
|
}; |
120 |
|
|
|
121 |
|
|
#define JULIAN_DAY 0 /* Jn - Julian day */ |
122 |
|
|
#define DAY_OF_YEAR 1 /* n - day of year */ |
123 |
|
|
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ |
124 |
|
|
|
125 |
|
|
/* |
126 |
|
|
** Prototypes for static functions. |
127 |
|
|
*/ |
128 |
|
|
|
129 |
|
|
static long detzcode(const char * codep); |
130 |
|
|
static time_t detzcode64(const char * codep); |
131 |
|
|
static int differ_by_repeat(time_t t1, time_t t0); |
132 |
|
|
static const char * getzname(const char * strp); |
133 |
|
|
static const char * getqzname(const char * strp, const int delim); |
134 |
|
|
static const char * getnum(const char * strp, int * nump, int min, |
135 |
|
|
int max); |
136 |
|
|
static const char * getsecs(const char * strp, long * secsp); |
137 |
|
|
static const char * getoffset(const char * strp, long * offsetp); |
138 |
|
|
static const char * getrule(const char * strp, struct rule * rulep); |
139 |
|
|
static void gmtload(struct state * sp); |
140 |
|
|
static struct tm * gmtsub(const time_t * timep, long offset, |
141 |
|
|
struct tm * tmp); |
142 |
|
|
static struct tm * localsub(const time_t * timep, long offset, |
143 |
|
|
struct tm * tmp); |
144 |
|
|
static int increment_overflow(int * number, int delta); |
145 |
|
|
static int leaps_thru_end_of(int y); |
146 |
|
|
static int long_increment_overflow(long * number, int delta); |
147 |
|
|
static int long_normalize_overflow(long * tensptr, |
148 |
|
|
int * unitsptr, int base); |
149 |
|
|
static int normalize_overflow(int * tensptr, int * unitsptr, |
150 |
|
|
int base); |
151 |
|
|
static void settzname(void); |
152 |
|
|
static time_t time1(struct tm * tmp, |
153 |
|
|
struct tm * (*funcp)(const time_t *, |
154 |
|
|
long, struct tm *), |
155 |
|
|
long offset); |
156 |
|
|
static time_t time2(struct tm *tmp, |
157 |
|
|
struct tm * (*funcp)(const time_t *, |
158 |
|
|
long, struct tm*), |
159 |
|
|
long offset, int * okayp); |
160 |
|
|
static time_t time2sub(struct tm *tmp, |
161 |
|
|
struct tm * (*funcp)(const time_t *, |
162 |
|
|
long, struct tm*), |
163 |
|
|
long offset, int * okayp, int do_norm_secs); |
164 |
|
|
static struct tm * timesub(const time_t * timep, long offset, |
165 |
|
|
const struct state * sp, struct tm * tmp); |
166 |
|
|
static int tmcomp(const struct tm * atmp, |
167 |
|
|
const struct tm * btmp); |
168 |
|
|
static time_t transtime(time_t janfirst, int year, |
169 |
|
|
const struct rule * rulep, long offset); |
170 |
|
|
static int typesequiv(const struct state * sp, int a, int b); |
171 |
|
|
static int tzload(const char * name, struct state * sp, |
172 |
|
|
int doextend); |
173 |
|
|
static int tzparse(const char * name, struct state * sp, |
174 |
|
|
int lastditch); |
175 |
|
|
|
176 |
|
|
#ifdef STD_INSPIRED |
177 |
|
|
struct tm *offtime(const time_t *, long); |
178 |
|
|
time_t time2posix(time_t); |
179 |
|
|
time_t posix2time(time_t); |
180 |
|
|
PROTO_DEPRECATED(offtime); |
181 |
|
|
PROTO_DEPRECATED(time2posix); |
182 |
|
|
PROTO_DEPRECATED(posix2time); |
183 |
|
|
#endif |
184 |
|
|
|
185 |
|
|
static struct state * lclptr; |
186 |
|
|
static struct state * gmtptr; |
187 |
|
|
|
188 |
|
|
|
189 |
|
|
#ifndef TZ_STRLEN_MAX |
190 |
|
|
#define TZ_STRLEN_MAX 255 |
191 |
|
|
#endif /* !defined TZ_STRLEN_MAX */ |
192 |
|
|
|
193 |
|
|
static char lcl_TZname[TZ_STRLEN_MAX + 1]; |
194 |
|
|
static int lcl_is_set; |
195 |
|
|
static int gmt_is_set; |
196 |
|
|
_THREAD_PRIVATE_MUTEX(lcl); |
197 |
|
|
_THREAD_PRIVATE_MUTEX(gmt); |
198 |
|
|
|
199 |
|
|
char * tzname[2] = { |
200 |
|
|
wildabbr, |
201 |
|
|
wildabbr |
202 |
|
|
}; |
203 |
|
|
#if 0 |
204 |
|
|
DEF_WEAK(tzname); |
205 |
|
|
#endif |
206 |
|
|
|
207 |
|
|
/* |
208 |
|
|
** Section 4.12.3 of X3.159-1989 requires that |
209 |
|
|
** Except for the strftime function, these functions [asctime, |
210 |
|
|
** ctime, gmtime, localtime] return values in one of two static |
211 |
|
|
** objects: a broken-down time structure and an array of char. |
212 |
|
|
** Thanks to Paul Eggert for noting this. |
213 |
|
|
*/ |
214 |
|
|
|
215 |
|
|
static struct tm tm; |
216 |
|
|
|
217 |
|
|
#ifdef USG_COMPAT |
218 |
|
|
long timezone = 0; |
219 |
|
|
int daylight = 0; |
220 |
|
|
#endif /* defined USG_COMPAT */ |
221 |
|
|
|
222 |
|
|
#ifdef ALTZONE |
223 |
|
|
time_t altzone = 0; |
224 |
|
|
#endif /* defined ALTZONE */ |
225 |
|
|
|
226 |
|
|
static long |
227 |
|
|
detzcode(const char *codep) |
228 |
|
|
{ |
229 |
|
|
long result; |
230 |
|
|
int i; |
231 |
|
|
|
232 |
|
|
result = (codep[0] & 0x80) ? ~0L : 0; |
233 |
|
|
for (i = 0; i < 4; ++i) |
234 |
|
|
result = (result << 8) | (codep[i] & 0xff); |
235 |
|
|
return result; |
236 |
|
|
} |
237 |
|
|
|
238 |
|
|
static time_t |
239 |
|
|
detzcode64(const char *codep) |
240 |
|
|
{ |
241 |
|
|
time_t result; |
242 |
|
|
int i; |
243 |
|
|
|
244 |
|
|
result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0; |
245 |
|
|
for (i = 0; i < 8; ++i) |
246 |
|
|
result = result * 256 + (codep[i] & 0xff); |
247 |
|
|
return result; |
248 |
|
|
} |
249 |
|
|
|
250 |
|
|
static void |
251 |
|
|
settzname(void) |
252 |
|
|
{ |
253 |
|
|
struct state * const sp = lclptr; |
254 |
|
|
int i; |
255 |
|
|
|
256 |
|
|
tzname[0] = wildabbr; |
257 |
|
|
tzname[1] = wildabbr; |
258 |
|
|
#ifdef USG_COMPAT |
259 |
|
|
daylight = 0; |
260 |
|
|
timezone = 0; |
261 |
|
|
#endif /* defined USG_COMPAT */ |
262 |
|
|
#ifdef ALTZONE |
263 |
|
|
altzone = 0; |
264 |
|
|
#endif /* defined ALTZONE */ |
265 |
|
|
if (sp == NULL) { |
266 |
|
|
tzname[0] = tzname[1] = (char *)gmt; |
267 |
|
|
return; |
268 |
|
|
} |
269 |
|
|
/* |
270 |
|
|
** And to get the latest zone names into tzname. . . |
271 |
|
|
*/ |
272 |
|
|
for (i = 0; i < sp->timecnt; ++i) { |
273 |
|
|
const struct ttinfo *ttisp = &sp->ttis[sp->types[i]]; |
274 |
|
|
|
275 |
|
|
tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind]; |
276 |
|
|
#ifdef USG_COMPAT |
277 |
|
|
if (ttisp->tt_isdst) |
278 |
|
|
daylight = 1; |
279 |
|
|
if (!ttisp->tt_isdst) |
280 |
|
|
timezone = -(ttisp->tt_gmtoff); |
281 |
|
|
#endif /* defined USG_COMPAT */ |
282 |
|
|
#ifdef ALTZONE |
283 |
|
|
if (ttisp->tt_isdst) |
284 |
|
|
altzone = -(ttisp->tt_gmtoff); |
285 |
|
|
#endif /* defined ALTZONE */ |
286 |
|
|
} |
287 |
|
|
/* |
288 |
|
|
** Finally, scrub the abbreviations. |
289 |
|
|
** First, replace bogus characters. |
290 |
|
|
*/ |
291 |
|
|
for (i = 0; i < sp->charcnt; ++i) { |
292 |
|
|
if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) |
293 |
|
|
sp->chars[i] = TZ_ABBR_ERR_CHAR; |
294 |
|
|
} |
295 |
|
|
/* |
296 |
|
|
** Second, truncate long abbreviations. |
297 |
|
|
*/ |
298 |
|
|
for (i = 0; i < sp->typecnt; ++i) { |
299 |
|
|
const struct ttinfo *ttisp = &sp->ttis[i]; |
300 |
|
|
char *cp = &sp->chars[ttisp->tt_abbrind]; |
301 |
|
|
|
302 |
|
|
if (strlen(cp) > TZ_ABBR_MAX_LEN && |
303 |
|
|
strcmp(cp, GRANDPARENTED) != 0) |
304 |
|
|
*(cp + TZ_ABBR_MAX_LEN) = '\0'; |
305 |
|
|
} |
306 |
|
|
} |
307 |
|
|
|
308 |
|
|
static int |
309 |
|
|
differ_by_repeat(time_t t1, time_t t0) |
310 |
|
|
{ |
311 |
|
|
if (TYPE_BIT(time_t) - 1 < SECSPERREPEAT_BITS) |
312 |
|
|
return 0; |
313 |
|
|
return (int64_t)t1 - t0 == SECSPERREPEAT; |
314 |
|
|
} |
315 |
|
|
|
316 |
|
|
static int |
317 |
|
|
tzload(const char *name, struct state *sp, int doextend) |
318 |
|
|
{ |
319 |
|
|
const char * p; |
320 |
|
|
int i; |
321 |
|
|
int fid; |
322 |
|
|
int stored; |
323 |
|
|
int nread; |
324 |
|
|
typedef union { |
325 |
|
|
struct tzhead tzhead; |
326 |
|
|
char buf[2 * sizeof(struct tzhead) + |
327 |
|
|
2 * sizeof *sp + |
328 |
|
|
4 * TZ_MAX_TIMES]; |
329 |
|
|
} u_t; |
330 |
|
|
u_t * up; |
331 |
|
|
char fullname[PATH_MAX]; |
332 |
|
|
|
333 |
|
|
up = calloc(1, sizeof *up); |
334 |
|
|
if (up == NULL) |
335 |
|
|
return -1; |
336 |
|
|
|
337 |
|
|
sp->goback = sp->goahead = FALSE; |
338 |
|
|
if (name != NULL && issetugid() != 0) { |
339 |
|
|
if ((name[0] == ':' && (strchr(name, '/') || strstr(name, ".."))) || |
340 |
|
|
name[0] == '/' || strchr(name, '.')) |
341 |
|
|
name = NULL; |
342 |
|
|
} |
343 |
|
|
if (name == NULL && (name = TZDEFAULT) == NULL) |
344 |
|
|
goto oops; |
345 |
|
|
|
346 |
|
|
if (name[0] == ':') |
347 |
|
|
++name; |
348 |
|
|
if (name[0] != '/') { |
349 |
|
|
if ((p = TZDIR) == NULL) |
350 |
|
|
goto oops; |
351 |
|
|
if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) |
352 |
|
|
goto oops; |
353 |
|
|
strlcpy(fullname, p, sizeof fullname); |
354 |
|
|
strlcat(fullname, "/", sizeof fullname); |
355 |
|
|
strlcat(fullname, name, sizeof fullname); |
356 |
|
|
name = fullname; |
357 |
|
|
} |
358 |
|
|
if ((fid = open(name, O_RDONLY)) == -1) |
359 |
|
|
goto oops; |
360 |
|
|
|
361 |
|
|
nread = read(fid, up->buf, sizeof up->buf); |
362 |
|
|
if (close(fid) < 0 || nread <= 0) |
363 |
|
|
goto oops; |
364 |
|
|
for (stored = 4; stored <= 8; stored *= 2) { |
365 |
|
|
int ttisstdcnt; |
366 |
|
|
int ttisgmtcnt; |
367 |
|
|
|
368 |
|
|
ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt); |
369 |
|
|
ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt); |
370 |
|
|
sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt); |
371 |
|
|
sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt); |
372 |
|
|
sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt); |
373 |
|
|
sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt); |
374 |
|
|
p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt; |
375 |
|
|
if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || |
376 |
|
|
sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || |
377 |
|
|
sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || |
378 |
|
|
sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || |
379 |
|
|
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || |
380 |
|
|
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) |
381 |
|
|
goto oops; |
382 |
|
|
if (nread - (p - up->buf) < |
383 |
|
|
sp->timecnt * stored + /* ats */ |
384 |
|
|
sp->timecnt + /* types */ |
385 |
|
|
sp->typecnt * 6 + /* ttinfos */ |
386 |
|
|
sp->charcnt + /* chars */ |
387 |
|
|
sp->leapcnt * (stored + 4) + /* lsinfos */ |
388 |
|
|
ttisstdcnt + /* ttisstds */ |
389 |
|
|
ttisgmtcnt) /* ttisgmts */ |
390 |
|
|
goto oops; |
391 |
|
|
for (i = 0; i < sp->timecnt; ++i) { |
392 |
|
|
sp->ats[i] = (stored == 4) ? |
393 |
|
|
detzcode(p) : detzcode64(p); |
394 |
|
|
p += stored; |
395 |
|
|
} |
396 |
|
|
for (i = 0; i < sp->timecnt; ++i) { |
397 |
|
|
sp->types[i] = (unsigned char) *p++; |
398 |
|
|
if (sp->types[i] >= sp->typecnt) |
399 |
|
|
goto oops; |
400 |
|
|
} |
401 |
|
|
for (i = 0; i < sp->typecnt; ++i) { |
402 |
|
|
struct ttinfo * ttisp; |
403 |
|
|
|
404 |
|
|
ttisp = &sp->ttis[i]; |
405 |
|
|
ttisp->tt_gmtoff = detzcode(p); |
406 |
|
|
p += 4; |
407 |
|
|
ttisp->tt_isdst = (unsigned char) *p++; |
408 |
|
|
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) |
409 |
|
|
goto oops; |
410 |
|
|
ttisp->tt_abbrind = (unsigned char) *p++; |
411 |
|
|
if (ttisp->tt_abbrind < 0 || |
412 |
|
|
ttisp->tt_abbrind > sp->charcnt) |
413 |
|
|
goto oops; |
414 |
|
|
} |
415 |
|
|
for (i = 0; i < sp->charcnt; ++i) |
416 |
|
|
sp->chars[i] = *p++; |
417 |
|
|
sp->chars[i] = '\0'; /* ensure '\0' at end */ |
418 |
|
|
for (i = 0; i < sp->leapcnt; ++i) { |
419 |
|
|
struct lsinfo * lsisp; |
420 |
|
|
|
421 |
|
|
lsisp = &sp->lsis[i]; |
422 |
|
|
lsisp->ls_trans = (stored == 4) ? |
423 |
|
|
detzcode(p) : detzcode64(p); |
424 |
|
|
p += stored; |
425 |
|
|
lsisp->ls_corr = detzcode(p); |
426 |
|
|
p += 4; |
427 |
|
|
} |
428 |
|
|
for (i = 0; i < sp->typecnt; ++i) { |
429 |
|
|
struct ttinfo * ttisp; |
430 |
|
|
|
431 |
|
|
ttisp = &sp->ttis[i]; |
432 |
|
|
if (ttisstdcnt == 0) |
433 |
|
|
ttisp->tt_ttisstd = FALSE; |
434 |
|
|
else { |
435 |
|
|
ttisp->tt_ttisstd = *p++; |
436 |
|
|
if (ttisp->tt_ttisstd != TRUE && |
437 |
|
|
ttisp->tt_ttisstd != FALSE) |
438 |
|
|
goto oops; |
439 |
|
|
} |
440 |
|
|
} |
441 |
|
|
for (i = 0; i < sp->typecnt; ++i) { |
442 |
|
|
struct ttinfo * ttisp; |
443 |
|
|
|
444 |
|
|
ttisp = &sp->ttis[i]; |
445 |
|
|
if (ttisgmtcnt == 0) |
446 |
|
|
ttisp->tt_ttisgmt = FALSE; |
447 |
|
|
else { |
448 |
|
|
ttisp->tt_ttisgmt = *p++; |
449 |
|
|
if (ttisp->tt_ttisgmt != TRUE && |
450 |
|
|
ttisp->tt_ttisgmt != FALSE) |
451 |
|
|
goto oops; |
452 |
|
|
} |
453 |
|
|
} |
454 |
|
|
/* |
455 |
|
|
** Out-of-sort ats should mean we're running on a |
456 |
|
|
** signed time_t system but using a data file with |
457 |
|
|
** unsigned values (or vice versa). |
458 |
|
|
*/ |
459 |
|
|
for (i = 0; i < sp->timecnt - 2; ++i) |
460 |
|
|
if (sp->ats[i] > sp->ats[i + 1]) { |
461 |
|
|
++i; |
462 |
|
|
/* |
463 |
|
|
** Ignore the end (easy). |
464 |
|
|
*/ |
465 |
|
|
sp->timecnt = i; |
466 |
|
|
break; |
467 |
|
|
} |
468 |
|
|
/* |
469 |
|
|
** If this is an old file, we're done. |
470 |
|
|
*/ |
471 |
|
|
if (up->tzhead.tzh_version[0] == '\0') |
472 |
|
|
break; |
473 |
|
|
nread -= p - up->buf; |
474 |
|
|
for (i = 0; i < nread; ++i) |
475 |
|
|
up->buf[i] = p[i]; |
476 |
|
|
/* |
477 |
|
|
** If this is a narrow integer time_t system, we're done. |
478 |
|
|
*/ |
479 |
|
|
if (stored >= sizeof(time_t)) |
480 |
|
|
break; |
481 |
|
|
} |
482 |
|
|
if (doextend && nread > 2 && |
483 |
|
|
up->buf[0] == '\n' && up->buf[nread - 1] == '\n' && |
484 |
|
|
sp->typecnt + 2 <= TZ_MAX_TYPES) { |
485 |
|
|
struct state ts; |
486 |
|
|
int result; |
487 |
|
|
|
488 |
|
|
up->buf[nread - 1] = '\0'; |
489 |
|
|
result = tzparse(&up->buf[1], &ts, FALSE); |
490 |
|
|
if (result == 0 && ts.typecnt == 2 && |
491 |
|
|
sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) { |
492 |
|
|
for (i = 0; i < 2; ++i) |
493 |
|
|
ts.ttis[i].tt_abbrind += |
494 |
|
|
sp->charcnt; |
495 |
|
|
for (i = 0; i < ts.charcnt; ++i) |
496 |
|
|
sp->chars[sp->charcnt++] = |
497 |
|
|
ts.chars[i]; |
498 |
|
|
i = 0; |
499 |
|
|
while (i < ts.timecnt && |
500 |
|
|
ts.ats[i] <= |
501 |
|
|
sp->ats[sp->timecnt - 1]) |
502 |
|
|
++i; |
503 |
|
|
while (i < ts.timecnt && |
504 |
|
|
sp->timecnt < TZ_MAX_TIMES) { |
505 |
|
|
sp->ats[sp->timecnt] = |
506 |
|
|
ts.ats[i]; |
507 |
|
|
sp->types[sp->timecnt] = |
508 |
|
|
sp->typecnt + |
509 |
|
|
ts.types[i]; |
510 |
|
|
++sp->timecnt; |
511 |
|
|
++i; |
512 |
|
|
} |
513 |
|
|
sp->ttis[sp->typecnt++] = ts.ttis[0]; |
514 |
|
|
sp->ttis[sp->typecnt++] = ts.ttis[1]; |
515 |
|
|
} |
516 |
|
|
} |
517 |
|
|
if (sp->timecnt > 1) { |
518 |
|
|
for (i = 1; i < sp->timecnt; ++i) { |
519 |
|
|
if (typesequiv(sp, sp->types[i], sp->types[0]) && |
520 |
|
|
differ_by_repeat(sp->ats[i], sp->ats[0])) { |
521 |
|
|
sp->goback = TRUE; |
522 |
|
|
break; |
523 |
|
|
} |
524 |
|
|
} |
525 |
|
|
for (i = sp->timecnt - 2; i >= 0; --i) { |
526 |
|
|
if (typesequiv(sp, sp->types[sp->timecnt - 1], |
527 |
|
|
sp->types[i]) && |
528 |
|
|
differ_by_repeat(sp->ats[sp->timecnt - 1], |
529 |
|
|
sp->ats[i])) { |
530 |
|
|
sp->goahead = TRUE; |
531 |
|
|
break; |
532 |
|
|
} |
533 |
|
|
} |
534 |
|
|
} |
535 |
|
|
free(up); |
536 |
|
|
return 0; |
537 |
|
|
oops: |
538 |
|
|
free(up); |
539 |
|
|
return -1; |
540 |
|
|
} |
541 |
|
|
|
542 |
|
|
static int |
543 |
|
|
typesequiv(const struct state *sp, int a, int b) |
544 |
|
|
{ |
545 |
|
|
int result; |
546 |
|
|
|
547 |
|
|
if (sp == NULL || |
548 |
|
|
a < 0 || a >= sp->typecnt || |
549 |
|
|
b < 0 || b >= sp->typecnt) |
550 |
|
|
result = FALSE; |
551 |
|
|
else { |
552 |
|
|
const struct ttinfo * ap = &sp->ttis[a]; |
553 |
|
|
const struct ttinfo * bp = &sp->ttis[b]; |
554 |
|
|
result = ap->tt_gmtoff == bp->tt_gmtoff && |
555 |
|
|
ap->tt_isdst == bp->tt_isdst && |
556 |
|
|
ap->tt_ttisstd == bp->tt_ttisstd && |
557 |
|
|
ap->tt_ttisgmt == bp->tt_ttisgmt && |
558 |
|
|
strcmp(&sp->chars[ap->tt_abbrind], |
559 |
|
|
&sp->chars[bp->tt_abbrind]) == 0; |
560 |
|
|
} |
561 |
|
|
return result; |
562 |
|
|
} |
563 |
|
|
|
564 |
|
|
static const int mon_lengths[2][MONSPERYEAR] = { |
565 |
|
|
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, |
566 |
|
|
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } |
567 |
|
|
}; |
568 |
|
|
|
569 |
|
|
static const int year_lengths[2] = { |
570 |
|
|
DAYSPERNYEAR, DAYSPERLYEAR |
571 |
|
|
}; |
572 |
|
|
|
573 |
|
|
/* |
574 |
|
|
** Given a pointer into a time zone string, scan until a character that is not |
575 |
|
|
** a valid character in a zone name is found. Return a pointer to that |
576 |
|
|
** character. |
577 |
|
|
*/ |
578 |
|
|
|
579 |
|
|
static const char * |
580 |
|
|
getzname(const char *strp) |
581 |
|
|
{ |
582 |
|
|
char c; |
583 |
|
|
|
584 |
|
|
while ((c = *strp) != '\0' && !isdigit((unsigned char)c) && c != ',' && c != '-' && |
585 |
|
|
c != '+') |
586 |
|
|
++strp; |
587 |
|
|
return strp; |
588 |
|
|
} |
589 |
|
|
|
590 |
|
|
/* |
591 |
|
|
** Given a pointer into an extended time zone string, scan until the ending |
592 |
|
|
** delimiter of the zone name is located. Return a pointer to the delimiter. |
593 |
|
|
** |
594 |
|
|
** As with getzname above, the legal character set is actually quite |
595 |
|
|
** restricted, with other characters producing undefined results. |
596 |
|
|
** We don't do any checking here; checking is done later in common-case code. |
597 |
|
|
*/ |
598 |
|
|
|
599 |
|
|
static const char * |
600 |
|
|
getqzname(const char *strp, const int delim) |
601 |
|
|
{ |
602 |
|
|
int c; |
603 |
|
|
|
604 |
|
|
while ((c = *strp) != '\0' && c != delim) |
605 |
|
|
++strp; |
606 |
|
|
return strp; |
607 |
|
|
} |
608 |
|
|
|
609 |
|
|
/* |
610 |
|
|
** Given a pointer into a time zone string, extract a number from that string. |
611 |
|
|
** Check that the number is within a specified range; if it is not, return |
612 |
|
|
** NULL. |
613 |
|
|
** Otherwise, return a pointer to the first character not part of the number. |
614 |
|
|
*/ |
615 |
|
|
|
616 |
|
|
static const char * |
617 |
|
|
getnum(const char *strp, int *nump, int min, int max) |
618 |
|
|
{ |
619 |
|
|
char c; |
620 |
|
|
int num; |
621 |
|
|
|
622 |
|
|
if (strp == NULL || !isdigit((unsigned char)(c = *strp))) |
623 |
|
|
return NULL; |
624 |
|
|
num = 0; |
625 |
|
|
do { |
626 |
|
|
num = num * 10 + (c - '0'); |
627 |
|
|
if (num > max) |
628 |
|
|
return NULL; /* illegal value */ |
629 |
|
|
c = *++strp; |
630 |
|
|
} while (isdigit((unsigned char)c)); |
631 |
|
|
if (num < min) |
632 |
|
|
return NULL; /* illegal value */ |
633 |
|
|
*nump = num; |
634 |
|
|
return strp; |
635 |
|
|
} |
636 |
|
|
|
637 |
|
|
/* |
638 |
|
|
** Given a pointer into a time zone string, extract a number of seconds, |
639 |
|
|
** in hh[:mm[:ss]] form, from the string. |
640 |
|
|
** If any error occurs, return NULL. |
641 |
|
|
** Otherwise, return a pointer to the first character not part of the number |
642 |
|
|
** of seconds. |
643 |
|
|
*/ |
644 |
|
|
|
645 |
|
|
static const char * |
646 |
|
|
getsecs(const char *strp, long *secsp) |
647 |
|
|
{ |
648 |
|
|
int num; |
649 |
|
|
|
650 |
|
|
/* |
651 |
|
|
** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like |
652 |
|
|
** "M10.4.6/26", which does not conform to Posix, |
653 |
|
|
** but which specifies the equivalent of |
654 |
|
|
** ``02:00 on the first Sunday on or after 23 Oct''. |
655 |
|
|
*/ |
656 |
|
|
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); |
657 |
|
|
if (strp == NULL) |
658 |
|
|
return NULL; |
659 |
|
|
*secsp = num * (long) SECSPERHOUR; |
660 |
|
|
if (*strp == ':') { |
661 |
|
|
++strp; |
662 |
|
|
strp = getnum(strp, &num, 0, MINSPERHOUR - 1); |
663 |
|
|
if (strp == NULL) |
664 |
|
|
return NULL; |
665 |
|
|
*secsp += num * SECSPERMIN; |
666 |
|
|
if (*strp == ':') { |
667 |
|
|
++strp; |
668 |
|
|
/* `SECSPERMIN' allows for leap seconds. */ |
669 |
|
|
strp = getnum(strp, &num, 0, SECSPERMIN); |
670 |
|
|
if (strp == NULL) |
671 |
|
|
return NULL; |
672 |
|
|
*secsp += num; |
673 |
|
|
} |
674 |
|
|
} |
675 |
|
|
return strp; |
676 |
|
|
} |
677 |
|
|
|
678 |
|
|
/* |
679 |
|
|
** Given a pointer into a time zone string, extract an offset, in |
680 |
|
|
** [+-]hh[:mm[:ss]] form, from the string. |
681 |
|
|
** If any error occurs, return NULL. |
682 |
|
|
** Otherwise, return a pointer to the first character not part of the time. |
683 |
|
|
*/ |
684 |
|
|
|
685 |
|
|
static const char * |
686 |
|
|
getoffset(const char *strp, long *offsetp) |
687 |
|
|
{ |
688 |
|
|
int neg = 0; |
689 |
|
|
|
690 |
|
|
if (*strp == '-') { |
691 |
|
|
neg = 1; |
692 |
|
|
++strp; |
693 |
|
|
} else if (*strp == '+') |
694 |
|
|
++strp; |
695 |
|
|
strp = getsecs(strp, offsetp); |
696 |
|
|
if (strp == NULL) |
697 |
|
|
return NULL; /* illegal time */ |
698 |
|
|
if (neg) |
699 |
|
|
*offsetp = -*offsetp; |
700 |
|
|
return strp; |
701 |
|
|
} |
702 |
|
|
|
703 |
|
|
/* |
704 |
|
|
** Given a pointer into a time zone string, extract a rule in the form |
705 |
|
|
** date[/time]. See POSIX section 8 for the format of "date" and "time". |
706 |
|
|
** If a valid rule is not found, return NULL. |
707 |
|
|
** Otherwise, return a pointer to the first character not part of the rule. |
708 |
|
|
*/ |
709 |
|
|
|
710 |
|
|
static const char * |
711 |
|
|
getrule(const char *strp, struct rule *rulep) |
712 |
|
|
{ |
713 |
|
|
if (*strp == 'J') { |
714 |
|
|
/* |
715 |
|
|
** Julian day. |
716 |
|
|
*/ |
717 |
|
|
rulep->r_type = JULIAN_DAY; |
718 |
|
|
++strp; |
719 |
|
|
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); |
720 |
|
|
} else if (*strp == 'M') { |
721 |
|
|
/* |
722 |
|
|
** Month, week, day. |
723 |
|
|
*/ |
724 |
|
|
rulep->r_type = MONTH_NTH_DAY_OF_WEEK; |
725 |
|
|
++strp; |
726 |
|
|
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); |
727 |
|
|
if (strp == NULL) |
728 |
|
|
return NULL; |
729 |
|
|
if (*strp++ != '.') |
730 |
|
|
return NULL; |
731 |
|
|
strp = getnum(strp, &rulep->r_week, 1, 5); |
732 |
|
|
if (strp == NULL) |
733 |
|
|
return NULL; |
734 |
|
|
if (*strp++ != '.') |
735 |
|
|
return NULL; |
736 |
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); |
737 |
|
|
} else if (isdigit((unsigned char)*strp)) { |
738 |
|
|
/* |
739 |
|
|
** Day of year. |
740 |
|
|
*/ |
741 |
|
|
rulep->r_type = DAY_OF_YEAR; |
742 |
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); |
743 |
|
|
} else |
744 |
|
|
return NULL; /* invalid format */ |
745 |
|
|
if (strp == NULL) |
746 |
|
|
return NULL; |
747 |
|
|
if (*strp == '/') { |
748 |
|
|
/* |
749 |
|
|
** Time specified. |
750 |
|
|
*/ |
751 |
|
|
++strp; |
752 |
|
|
strp = getsecs(strp, &rulep->r_time); |
753 |
|
|
} else |
754 |
|
|
rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ |
755 |
|
|
return strp; |
756 |
|
|
} |
757 |
|
|
|
758 |
|
|
/* |
759 |
|
|
** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the |
760 |
|
|
** year, a rule, and the offset from UTC at the time that rule takes effect, |
761 |
|
|
** calculate the Epoch-relative time that rule takes effect. |
762 |
|
|
*/ |
763 |
|
|
|
764 |
|
|
static time_t |
765 |
|
|
transtime(time_t janfirst, int year, const struct rule *rulep, long offset) |
766 |
|
|
{ |
767 |
|
|
int leapyear; |
768 |
|
|
time_t value; |
769 |
|
|
int i; |
770 |
|
|
int d, m1, yy0, yy1, yy2, dow; |
771 |
|
|
|
772 |
|
|
value = 0; |
773 |
|
|
leapyear = isleap(year); |
774 |
|
|
switch (rulep->r_type) { |
775 |
|
|
|
776 |
|
|
case JULIAN_DAY: |
777 |
|
|
/* |
778 |
|
|
** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap |
779 |
|
|
** years. |
780 |
|
|
** In non-leap years, or if the day number is 59 or less, just |
781 |
|
|
** add SECSPERDAY times the day number-1 to the time of |
782 |
|
|
** January 1, midnight, to get the day. |
783 |
|
|
*/ |
784 |
|
|
value = janfirst + (rulep->r_day - 1) * SECSPERDAY; |
785 |
|
|
if (leapyear && rulep->r_day >= 60) |
786 |
|
|
value += SECSPERDAY; |
787 |
|
|
break; |
788 |
|
|
|
789 |
|
|
case DAY_OF_YEAR: |
790 |
|
|
/* |
791 |
|
|
** n - day of year. |
792 |
|
|
** Just add SECSPERDAY times the day number to the time of |
793 |
|
|
** January 1, midnight, to get the day. |
794 |
|
|
*/ |
795 |
|
|
value = janfirst + rulep->r_day * SECSPERDAY; |
796 |
|
|
break; |
797 |
|
|
|
798 |
|
|
case MONTH_NTH_DAY_OF_WEEK: |
799 |
|
|
/* |
800 |
|
|
** Mm.n.d - nth "dth day" of month m. |
801 |
|
|
*/ |
802 |
|
|
value = janfirst; |
803 |
|
|
for (i = 0; i < rulep->r_mon - 1; ++i) |
804 |
|
|
value += mon_lengths[leapyear][i] * SECSPERDAY; |
805 |
|
|
|
806 |
|
|
/* |
807 |
|
|
** Use Zeller's Congruence to get day-of-week of first day of |
808 |
|
|
** month. |
809 |
|
|
*/ |
810 |
|
|
m1 = (rulep->r_mon + 9) % 12 + 1; |
811 |
|
|
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; |
812 |
|
|
yy1 = yy0 / 100; |
813 |
|
|
yy2 = yy0 % 100; |
814 |
|
|
dow = ((26 * m1 - 2) / 10 + |
815 |
|
|
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; |
816 |
|
|
if (dow < 0) |
817 |
|
|
dow += DAYSPERWEEK; |
818 |
|
|
|
819 |
|
|
/* |
820 |
|
|
** "dow" is the day-of-week of the first day of the month. Get |
821 |
|
|
** the day-of-month (zero-origin) of the first "dow" day of the |
822 |
|
|
** month. |
823 |
|
|
*/ |
824 |
|
|
d = rulep->r_day - dow; |
825 |
|
|
if (d < 0) |
826 |
|
|
d += DAYSPERWEEK; |
827 |
|
|
for (i = 1; i < rulep->r_week; ++i) { |
828 |
|
|
if (d + DAYSPERWEEK >= |
829 |
|
|
mon_lengths[leapyear][rulep->r_mon - 1]) |
830 |
|
|
break; |
831 |
|
|
d += DAYSPERWEEK; |
832 |
|
|
} |
833 |
|
|
|
834 |
|
|
/* |
835 |
|
|
** "d" is the day-of-month (zero-origin) of the day we want. |
836 |
|
|
*/ |
837 |
|
|
value += d * SECSPERDAY; |
838 |
|
|
break; |
839 |
|
|
} |
840 |
|
|
|
841 |
|
|
/* |
842 |
|
|
** "value" is the Epoch-relative time of 00:00:00 UTC on the day in |
843 |
|
|
** question. To get the Epoch-relative time of the specified local |
844 |
|
|
** time on that day, add the transition time and the current offset |
845 |
|
|
** from UTC. |
846 |
|
|
*/ |
847 |
|
|
return value + rulep->r_time + offset; |
848 |
|
|
} |
849 |
|
|
|
850 |
|
|
/* |
851 |
|
|
** Given a POSIX section 8-style TZ string, fill in the rule tables as |
852 |
|
|
** appropriate. |
853 |
|
|
*/ |
854 |
|
|
|
855 |
|
|
static int |
856 |
|
|
tzparse(const char *name, struct state *sp, int lastditch) |
857 |
|
|
{ |
858 |
|
|
const char * stdname; |
859 |
|
|
const char * dstname; |
860 |
|
|
size_t stdlen; |
861 |
|
|
size_t dstlen; |
862 |
|
|
long stdoffset; |
863 |
|
|
long dstoffset; |
864 |
|
|
time_t * atp; |
865 |
|
|
unsigned char * typep; |
866 |
|
|
char * cp; |
867 |
|
|
int load_result; |
868 |
|
|
static struct ttinfo zttinfo; |
869 |
|
|
|
870 |
|
|
dstname = NULL; |
871 |
|
|
stdname = name; |
872 |
|
|
if (lastditch) { |
873 |
|
|
stdlen = strlen(name); /* length of standard zone name */ |
874 |
|
|
name += stdlen; |
875 |
|
|
if (stdlen >= sizeof sp->chars) |
876 |
|
|
stdlen = (sizeof sp->chars) - 1; |
877 |
|
|
stdoffset = 0; |
878 |
|
|
} else { |
879 |
|
|
if (*name == '<') { |
880 |
|
|
name++; |
881 |
|
|
stdname = name; |
882 |
|
|
name = getqzname(name, '>'); |
883 |
|
|
if (*name != '>') |
884 |
|
|
return (-1); |
885 |
|
|
stdlen = name - stdname; |
886 |
|
|
name++; |
887 |
|
|
} else { |
888 |
|
|
name = getzname(name); |
889 |
|
|
stdlen = name - stdname; |
890 |
|
|
} |
891 |
|
|
if (*name == '\0') |
892 |
|
|
return -1; |
893 |
|
|
name = getoffset(name, &stdoffset); |
894 |
|
|
if (name == NULL) |
895 |
|
|
return -1; |
896 |
|
|
} |
897 |
|
|
load_result = tzload(TZDEFRULES, sp, FALSE); |
898 |
|
|
if (load_result != 0) |
899 |
|
|
sp->leapcnt = 0; /* so, we're off a little */ |
900 |
|
|
if (*name != '\0') { |
901 |
|
|
if (*name == '<') { |
902 |
|
|
dstname = ++name; |
903 |
|
|
name = getqzname(name, '>'); |
904 |
|
|
if (*name != '>') |
905 |
|
|
return -1; |
906 |
|
|
dstlen = name - dstname; |
907 |
|
|
name++; |
908 |
|
|
} else { |
909 |
|
|
dstname = name; |
910 |
|
|
name = getzname(name); |
911 |
|
|
dstlen = name - dstname; /* length of DST zone name */ |
912 |
|
|
} |
913 |
|
|
if (*name != '\0' && *name != ',' && *name != ';') { |
914 |
|
|
name = getoffset(name, &dstoffset); |
915 |
|
|
if (name == NULL) |
916 |
|
|
return -1; |
917 |
|
|
} else |
918 |
|
|
dstoffset = stdoffset - SECSPERHOUR; |
919 |
|
|
if (*name == '\0' && load_result != 0) |
920 |
|
|
name = TZDEFRULESTRING; |
921 |
|
|
if (*name == ',' || *name == ';') { |
922 |
|
|
struct rule start; |
923 |
|
|
struct rule end; |
924 |
|
|
int year; |
925 |
|
|
time_t janfirst; |
926 |
|
|
time_t starttime; |
927 |
|
|
time_t endtime; |
928 |
|
|
|
929 |
|
|
++name; |
930 |
|
|
if ((name = getrule(name, &start)) == NULL) |
931 |
|
|
return -1; |
932 |
|
|
if (*name++ != ',') |
933 |
|
|
return -1; |
934 |
|
|
if ((name = getrule(name, &end)) == NULL) |
935 |
|
|
return -1; |
936 |
|
|
if (*name != '\0') |
937 |
|
|
return -1; |
938 |
|
|
sp->typecnt = 2; /* standard time and DST */ |
939 |
|
|
/* |
940 |
|
|
** Two transitions per year, from EPOCH_YEAR forward. |
941 |
|
|
*/ |
942 |
|
|
sp->ttis[0] = sp->ttis[1] = zttinfo; |
943 |
|
|
sp->ttis[0].tt_gmtoff = -dstoffset; |
944 |
|
|
sp->ttis[0].tt_isdst = 1; |
945 |
|
|
sp->ttis[0].tt_abbrind = stdlen + 1; |
946 |
|
|
sp->ttis[1].tt_gmtoff = -stdoffset; |
947 |
|
|
sp->ttis[1].tt_isdst = 0; |
948 |
|
|
sp->ttis[1].tt_abbrind = 0; |
949 |
|
|
atp = sp->ats; |
950 |
|
|
typep = sp->types; |
951 |
|
|
janfirst = 0; |
952 |
|
|
sp->timecnt = 0; |
953 |
|
|
for (year = EPOCH_YEAR; |
954 |
|
|
sp->timecnt + 2 <= TZ_MAX_TIMES; |
955 |
|
|
++year) { |
956 |
|
|
time_t newfirst; |
957 |
|
|
|
958 |
|
|
starttime = transtime(janfirst, year, &start, |
959 |
|
|
stdoffset); |
960 |
|
|
endtime = transtime(janfirst, year, &end, |
961 |
|
|
dstoffset); |
962 |
|
|
if (starttime > endtime) { |
963 |
|
|
*atp++ = endtime; |
964 |
|
|
*typep++ = 1; /* DST ends */ |
965 |
|
|
*atp++ = starttime; |
966 |
|
|
*typep++ = 0; /* DST begins */ |
967 |
|
|
} else { |
968 |
|
|
*atp++ = starttime; |
969 |
|
|
*typep++ = 0; /* DST begins */ |
970 |
|
|
*atp++ = endtime; |
971 |
|
|
*typep++ = 1; /* DST ends */ |
972 |
|
|
} |
973 |
|
|
sp->timecnt += 2; |
974 |
|
|
newfirst = janfirst; |
975 |
|
|
newfirst += year_lengths[isleap(year)] * |
976 |
|
|
SECSPERDAY; |
977 |
|
|
if (newfirst <= janfirst) |
978 |
|
|
break; |
979 |
|
|
janfirst = newfirst; |
980 |
|
|
} |
981 |
|
|
} else { |
982 |
|
|
long theirstdoffset; |
983 |
|
|
long theirdstoffset; |
984 |
|
|
long theiroffset; |
985 |
|
|
int isdst; |
986 |
|
|
int i; |
987 |
|
|
int j; |
988 |
|
|
|
989 |
|
|
if (*name != '\0') |
990 |
|
|
return -1; |
991 |
|
|
/* |
992 |
|
|
** Initial values of theirstdoffset and theirdstoffset. |
993 |
|
|
*/ |
994 |
|
|
theirstdoffset = 0; |
995 |
|
|
for (i = 0; i < sp->timecnt; ++i) { |
996 |
|
|
j = sp->types[i]; |
997 |
|
|
if (!sp->ttis[j].tt_isdst) { |
998 |
|
|
theirstdoffset = |
999 |
|
|
-sp->ttis[j].tt_gmtoff; |
1000 |
|
|
break; |
1001 |
|
|
} |
1002 |
|
|
} |
1003 |
|
|
theirdstoffset = 0; |
1004 |
|
|
for (i = 0; i < sp->timecnt; ++i) { |
1005 |
|
|
j = sp->types[i]; |
1006 |
|
|
if (sp->ttis[j].tt_isdst) { |
1007 |
|
|
theirdstoffset = |
1008 |
|
|
-sp->ttis[j].tt_gmtoff; |
1009 |
|
|
break; |
1010 |
|
|
} |
1011 |
|
|
} |
1012 |
|
|
/* |
1013 |
|
|
** Initially we're assumed to be in standard time. |
1014 |
|
|
*/ |
1015 |
|
|
isdst = FALSE; |
1016 |
|
|
theiroffset = theirstdoffset; |
1017 |
|
|
/* |
1018 |
|
|
** Now juggle transition times and types |
1019 |
|
|
** tracking offsets as you do. |
1020 |
|
|
*/ |
1021 |
|
|
for (i = 0; i < sp->timecnt; ++i) { |
1022 |
|
|
j = sp->types[i]; |
1023 |
|
|
sp->types[i] = sp->ttis[j].tt_isdst; |
1024 |
|
|
if (sp->ttis[j].tt_ttisgmt) { |
1025 |
|
|
/* No adjustment to transition time */ |
1026 |
|
|
} else { |
1027 |
|
|
/* |
1028 |
|
|
** If summer time is in effect, and the |
1029 |
|
|
** transition time was not specified as |
1030 |
|
|
** standard time, add the summer time |
1031 |
|
|
** offset to the transition time; |
1032 |
|
|
** otherwise, add the standard time |
1033 |
|
|
** offset to the transition time. |
1034 |
|
|
*/ |
1035 |
|
|
/* |
1036 |
|
|
** Transitions from DST to DDST |
1037 |
|
|
** will effectively disappear since |
1038 |
|
|
** POSIX provides for only one DST |
1039 |
|
|
** offset. |
1040 |
|
|
*/ |
1041 |
|
|
if (isdst && !sp->ttis[j].tt_ttisstd) { |
1042 |
|
|
sp->ats[i] += dstoffset - |
1043 |
|
|
theirdstoffset; |
1044 |
|
|
} else { |
1045 |
|
|
sp->ats[i] += stdoffset - |
1046 |
|
|
theirstdoffset; |
1047 |
|
|
} |
1048 |
|
|
} |
1049 |
|
|
theiroffset = -sp->ttis[j].tt_gmtoff; |
1050 |
|
|
if (sp->ttis[j].tt_isdst) |
1051 |
|
|
theirdstoffset = theiroffset; |
1052 |
|
|
else |
1053 |
|
|
theirstdoffset = theiroffset; |
1054 |
|
|
} |
1055 |
|
|
/* |
1056 |
|
|
** Finally, fill in ttis. |
1057 |
|
|
*/ |
1058 |
|
|
sp->ttis[0] = sp->ttis[1] = zttinfo; |
1059 |
|
|
sp->ttis[0].tt_gmtoff = -stdoffset; |
1060 |
|
|
sp->ttis[0].tt_isdst = FALSE; |
1061 |
|
|
sp->ttis[0].tt_abbrind = 0; |
1062 |
|
|
sp->ttis[1].tt_gmtoff = -dstoffset; |
1063 |
|
|
sp->ttis[1].tt_isdst = TRUE; |
1064 |
|
|
sp->ttis[1].tt_abbrind = stdlen + 1; |
1065 |
|
|
sp->typecnt = 2; |
1066 |
|
|
} |
1067 |
|
|
} else { |
1068 |
|
|
dstlen = 0; |
1069 |
|
|
sp->typecnt = 1; /* only standard time */ |
1070 |
|
|
sp->timecnt = 0; |
1071 |
|
|
sp->ttis[0] = zttinfo; |
1072 |
|
|
sp->ttis[0].tt_gmtoff = -stdoffset; |
1073 |
|
|
sp->ttis[0].tt_isdst = 0; |
1074 |
|
|
sp->ttis[0].tt_abbrind = 0; |
1075 |
|
|
} |
1076 |
|
|
sp->charcnt = stdlen + 1; |
1077 |
|
|
if (dstlen != 0) |
1078 |
|
|
sp->charcnt += dstlen + 1; |
1079 |
|
|
if ((size_t) sp->charcnt > sizeof sp->chars) |
1080 |
|
|
return -1; |
1081 |
|
|
cp = sp->chars; |
1082 |
|
|
strlcpy(cp, stdname, stdlen + 1); |
1083 |
|
|
cp += stdlen + 1; |
1084 |
|
|
if (dstlen != 0) { |
1085 |
|
|
strlcpy(cp, dstname, dstlen + 1); |
1086 |
|
|
} |
1087 |
|
|
return 0; |
1088 |
|
|
} |
1089 |
|
|
|
1090 |
|
|
static void |
1091 |
|
|
gmtload(struct state *sp) |
1092 |
|
|
{ |
1093 |
|
|
if (tzload(gmt, sp, TRUE) != 0) |
1094 |
|
|
(void) tzparse(gmt, sp, TRUE); |
1095 |
|
|
} |
1096 |
|
|
|
1097 |
|
|
static void |
1098 |
|
|
tzsetwall_basic(void) |
1099 |
|
|
{ |
1100 |
|
|
if (lcl_is_set < 0) |
1101 |
|
|
return; |
1102 |
|
|
lcl_is_set = -1; |
1103 |
|
|
|
1104 |
|
|
if (lclptr == NULL) { |
1105 |
|
|
lclptr = calloc(1, sizeof *lclptr); |
1106 |
|
|
if (lclptr == NULL) { |
1107 |
|
|
settzname(); /* all we can do */ |
1108 |
|
|
return; |
1109 |
|
|
} |
1110 |
|
|
} |
1111 |
|
|
if (tzload(NULL, lclptr, TRUE) != 0) |
1112 |
|
|
gmtload(lclptr); |
1113 |
|
|
settzname(); |
1114 |
|
|
} |
1115 |
|
|
|
1116 |
|
|
#ifndef STD_INSPIRED |
1117 |
|
|
/* |
1118 |
|
|
** A non-static declaration of tzsetwall in a system header file |
1119 |
|
|
** may cause a warning about this upcoming static declaration... |
1120 |
|
|
*/ |
1121 |
|
|
static |
1122 |
|
|
#endif /* !defined STD_INSPIRED */ |
1123 |
|
|
void |
1124 |
|
|
tzsetwall(void) |
1125 |
|
|
{ |
1126 |
|
|
_THREAD_PRIVATE_MUTEX_LOCK(lcl); |
1127 |
|
|
tzsetwall_basic(); |
1128 |
|
|
_THREAD_PRIVATE_MUTEX_UNLOCK(lcl); |
1129 |
|
|
} |
1130 |
|
|
|
1131 |
|
|
static void |
1132 |
|
|
tzset_basic(void) |
1133 |
|
|
{ |
1134 |
|
|
const char * name; |
1135 |
|
|
|
1136 |
|
|
name = getenv("TZ"); |
1137 |
|
|
if (name == NULL) { |
1138 |
|
|
tzsetwall_basic(); |
1139 |
|
|
return; |
1140 |
|
|
} |
1141 |
|
|
|
1142 |
|
|
if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) |
1143 |
|
|
return; |
1144 |
|
|
lcl_is_set = strlen(name) < sizeof lcl_TZname; |
1145 |
|
|
if (lcl_is_set) |
1146 |
|
|
strlcpy(lcl_TZname, name, sizeof lcl_TZname); |
1147 |
|
|
|
1148 |
|
|
if (lclptr == NULL) { |
1149 |
|
|
lclptr = calloc(1, sizeof *lclptr); |
1150 |
|
|
if (lclptr == NULL) { |
1151 |
|
|
settzname(); /* all we can do */ |
1152 |
|
|
return; |
1153 |
|
|
} |
1154 |
|
|
} |
1155 |
|
|
if (*name == '\0') { |
1156 |
|
|
/* |
1157 |
|
|
** User wants it fast rather than right. |
1158 |
|
|
*/ |
1159 |
|
|
lclptr->leapcnt = 0; /* so, we're off a little */ |
1160 |
|
|
lclptr->timecnt = 0; |
1161 |
|
|
lclptr->typecnt = 0; |
1162 |
|
|
lclptr->ttis[0].tt_isdst = 0; |
1163 |
|
|
lclptr->ttis[0].tt_gmtoff = 0; |
1164 |
|
|
lclptr->ttis[0].tt_abbrind = 0; |
1165 |
|
|
strlcpy(lclptr->chars, gmt, sizeof lclptr->chars); |
1166 |
|
|
} else if (tzload(name, lclptr, TRUE) != 0) { |
1167 |
|
|
if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0) |
1168 |
|
|
gmtload(lclptr); |
1169 |
|
|
} |
1170 |
|
|
settzname(); |
1171 |
|
|
} |
1172 |
|
|
|
1173 |
|
|
void |
1174 |
|
|
tzset(void) |
1175 |
|
|
{ |
1176 |
|
|
_THREAD_PRIVATE_MUTEX_LOCK(lcl); |
1177 |
|
|
tzset_basic(); |
1178 |
|
|
_THREAD_PRIVATE_MUTEX_UNLOCK(lcl); |
1179 |
|
|
} |
1180 |
|
|
DEF_WEAK(tzset); |
1181 |
|
|
|
1182 |
|
|
/* |
1183 |
|
|
** The easy way to behave "as if no library function calls" localtime |
1184 |
|
|
** is to not call it--so we drop its guts into "localsub", which can be |
1185 |
|
|
** freely called. (And no, the PANS doesn't require the above behavior-- |
1186 |
|
|
** but it *is* desirable.) |
1187 |
|
|
** |
1188 |
|
|
** The unused offset argument is for the benefit of mktime variants. |
1189 |
|
|
*/ |
1190 |
|
|
|
1191 |
|
|
static struct tm * |
1192 |
|
|
localsub(const time_t *timep, long offset, struct tm *tmp) |
1193 |
|
|
{ |
1194 |
|
|
struct state * sp; |
1195 |
|
|
const struct ttinfo * ttisp; |
1196 |
|
|
int i; |
1197 |
|
|
struct tm * result; |
1198 |
|
|
const time_t t = *timep; |
1199 |
|
|
|
1200 |
|
|
sp = lclptr; |
1201 |
|
|
if (sp == NULL) |
1202 |
|
|
return gmtsub(timep, offset, tmp); |
1203 |
|
|
if ((sp->goback && t < sp->ats[0]) || |
1204 |
|
|
(sp->goahead && t > sp->ats[sp->timecnt - 1])) { |
1205 |
|
|
time_t newt = t; |
1206 |
|
|
time_t seconds; |
1207 |
|
|
time_t tcycles; |
1208 |
|
|
int_fast64_t icycles; |
1209 |
|
|
|
1210 |
|
|
if (t < sp->ats[0]) |
1211 |
|
|
seconds = sp->ats[0] - t; |
1212 |
|
|
else |
1213 |
|
|
seconds = t - sp->ats[sp->timecnt - 1]; |
1214 |
|
|
--seconds; |
1215 |
|
|
tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR; |
1216 |
|
|
++tcycles; |
1217 |
|
|
icycles = tcycles; |
1218 |
|
|
if (tcycles - icycles >= 1 || icycles - tcycles >= 1) |
1219 |
|
|
return NULL; |
1220 |
|
|
seconds = icycles; |
1221 |
|
|
seconds *= YEARSPERREPEAT; |
1222 |
|
|
seconds *= AVGSECSPERYEAR; |
1223 |
|
|
if (t < sp->ats[0]) |
1224 |
|
|
newt += seconds; |
1225 |
|
|
else |
1226 |
|
|
newt -= seconds; |
1227 |
|
|
if (newt < sp->ats[0] || |
1228 |
|
|
newt > sp->ats[sp->timecnt - 1]) |
1229 |
|
|
return NULL; /* "cannot happen" */ |
1230 |
|
|
result = localsub(&newt, offset, tmp); |
1231 |
|
|
if (result == tmp) { |
1232 |
|
|
time_t newy; |
1233 |
|
|
|
1234 |
|
|
newy = tmp->tm_year; |
1235 |
|
|
if (t < sp->ats[0]) |
1236 |
|
|
newy -= icycles * YEARSPERREPEAT; |
1237 |
|
|
else |
1238 |
|
|
newy += icycles * YEARSPERREPEAT; |
1239 |
|
|
tmp->tm_year = newy; |
1240 |
|
|
if (tmp->tm_year != newy) |
1241 |
|
|
return NULL; |
1242 |
|
|
} |
1243 |
|
|
return result; |
1244 |
|
|
} |
1245 |
|
|
if (sp->timecnt == 0 || t < sp->ats[0]) { |
1246 |
|
|
i = 0; |
1247 |
|
|
while (sp->ttis[i].tt_isdst) { |
1248 |
|
|
if (++i >= sp->typecnt) { |
1249 |
|
|
i = 0; |
1250 |
|
|
break; |
1251 |
|
|
} |
1252 |
|
|
} |
1253 |
|
|
} else { |
1254 |
|
|
int lo = 1; |
1255 |
|
|
int hi = sp->timecnt; |
1256 |
|
|
|
1257 |
|
|
while (lo < hi) { |
1258 |
|
|
int mid = (lo + hi) >> 1; |
1259 |
|
|
|
1260 |
|
|
if (t < sp->ats[mid]) |
1261 |
|
|
hi = mid; |
1262 |
|
|
else |
1263 |
|
|
lo = mid + 1; |
1264 |
|
|
} |
1265 |
|
|
i = (int) sp->types[lo - 1]; |
1266 |
|
|
} |
1267 |
|
|
ttisp = &sp->ttis[i]; |
1268 |
|
|
/* |
1269 |
|
|
** To get (wrong) behavior that's compatible with System V Release 2.0 |
1270 |
|
|
** you'd replace the statement below with |
1271 |
|
|
** t += ttisp->tt_gmtoff; |
1272 |
|
|
** timesub(&t, 0L, sp, tmp); |
1273 |
|
|
*/ |
1274 |
|
|
result = timesub(&t, ttisp->tt_gmtoff, sp, tmp); |
1275 |
|
|
tmp->tm_isdst = ttisp->tt_isdst; |
1276 |
|
|
tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; |
1277 |
|
|
#ifdef TM_ZONE |
1278 |
|
|
tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; |
1279 |
|
|
#endif /* defined TM_ZONE */ |
1280 |
|
|
return result; |
1281 |
|
|
} |
1282 |
|
|
|
1283 |
|
|
/* |
1284 |
|
|
** Re-entrant version of localtime. |
1285 |
|
|
*/ |
1286 |
|
|
|
1287 |
|
|
struct tm * |
1288 |
|
|
localtime_r(const time_t *timep, struct tm *p_tm) |
1289 |
|
|
{ |
1290 |
|
|
_THREAD_PRIVATE_MUTEX_LOCK(lcl); |
1291 |
|
|
tzset_basic(); |
1292 |
|
|
p_tm = localsub(timep, 0L, p_tm); |
1293 |
|
|
_THREAD_PRIVATE_MUTEX_UNLOCK(lcl); |
1294 |
|
|
return p_tm; |
1295 |
|
|
} |
1296 |
|
|
DEF_WEAK(localtime_r); |
1297 |
|
|
|
1298 |
|
|
struct tm * |
1299 |
|
|
localtime(const time_t *timep) |
1300 |
|
|
{ |
1301 |
|
|
_THREAD_PRIVATE_KEY(localtime); |
1302 |
|
|
struct tm * p_tm = (struct tm*)_THREAD_PRIVATE(localtime, tm, NULL); |
1303 |
|
|
|
1304 |
|
|
if (p_tm == NULL) |
1305 |
|
|
return NULL; |
1306 |
|
|
return localtime_r(timep, p_tm); |
1307 |
|
|
} |
1308 |
|
|
DEF_STRONG(localtime); |
1309 |
|
|
|
1310 |
|
|
/* |
1311 |
|
|
** gmtsub is to gmtime as localsub is to localtime. |
1312 |
|
|
*/ |
1313 |
|
|
|
1314 |
|
|
static struct tm * |
1315 |
|
|
gmtsub(const time_t *timep, long offset, struct tm *tmp) |
1316 |
|
|
{ |
1317 |
|
|
struct tm * result; |
1318 |
|
|
|
1319 |
|
|
_THREAD_PRIVATE_MUTEX_LOCK(gmt); |
1320 |
|
|
if (!gmt_is_set) { |
1321 |
|
|
gmt_is_set = TRUE; |
1322 |
|
|
gmtptr = calloc(1, sizeof(*gmtptr)); |
1323 |
|
|
if (gmtptr != NULL) |
1324 |
|
|
gmtload(gmtptr); |
1325 |
|
|
} |
1326 |
|
|
_THREAD_PRIVATE_MUTEX_UNLOCK(gmt); |
1327 |
|
|
result = timesub(timep, offset, gmtptr, tmp); |
1328 |
|
|
#ifdef TM_ZONE |
1329 |
|
|
/* |
1330 |
|
|
** Could get fancy here and deliver something such as |
1331 |
|
|
** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero, |
1332 |
|
|
** but this is no time for a treasure hunt. |
1333 |
|
|
*/ |
1334 |
|
|
if (offset != 0) |
1335 |
|
|
tmp->TM_ZONE = wildabbr; |
1336 |
|
|
else { |
1337 |
|
|
if (gmtptr == NULL) |
1338 |
|
|
tmp->TM_ZONE = (char *)gmt; |
1339 |
|
|
else |
1340 |
|
|
tmp->TM_ZONE = gmtptr->chars; |
1341 |
|
|
} |
1342 |
|
|
#endif /* defined TM_ZONE */ |
1343 |
|
|
return result; |
1344 |
|
|
} |
1345 |
|
|
|
1346 |
|
|
/* |
1347 |
|
|
** Re-entrant version of gmtime. |
1348 |
|
|
*/ |
1349 |
|
|
|
1350 |
|
|
struct tm * |
1351 |
|
|
gmtime_r(const time_t *timep, struct tm *p_tm) |
1352 |
|
|
{ |
1353 |
|
|
return gmtsub(timep, 0L, p_tm); |
1354 |
|
|
} |
1355 |
|
|
DEF_WEAK(gmtime_r); |
1356 |
|
|
|
1357 |
|
|
struct tm * |
1358 |
|
|
gmtime(const time_t *timep) |
1359 |
|
|
{ |
1360 |
|
|
_THREAD_PRIVATE_KEY(gmtime); |
1361 |
|
|
struct tm * p_tm = (struct tm*) _THREAD_PRIVATE(gmtime, tm, NULL); |
1362 |
|
|
|
1363 |
|
|
if (p_tm == NULL) |
1364 |
|
|
return NULL; |
1365 |
|
|
return gmtime_r(timep, p_tm); |
1366 |
|
|
|
1367 |
|
|
} |
1368 |
|
|
DEF_WEAK(gmtime); |
1369 |
|
|
|
1370 |
|
|
#ifdef STD_INSPIRED |
1371 |
|
|
|
1372 |
|
|
struct tm * |
1373 |
|
|
offtime(const time_t *timep, long offset) |
1374 |
|
|
{ |
1375 |
|
|
return gmtsub(timep, offset, &tm); |
1376 |
|
|
} |
1377 |
|
|
|
1378 |
|
|
#endif /* defined STD_INSPIRED */ |
1379 |
|
|
|
1380 |
|
|
/* |
1381 |
|
|
** Return the number of leap years through the end of the given year |
1382 |
|
|
** where, to make the math easy, the answer for year zero is defined as zero. |
1383 |
|
|
*/ |
1384 |
|
|
|
1385 |
|
|
static int |
1386 |
|
|
leaps_thru_end_of(int y) |
1387 |
|
|
{ |
1388 |
|
|
return (y >= 0) ? (y / 4 - y / 100 + y / 400) : |
1389 |
|
|
-(leaps_thru_end_of(-(y + 1)) + 1); |
1390 |
|
|
} |
1391 |
|
|
|
1392 |
|
|
static struct tm * |
1393 |
|
|
timesub(const time_t *timep, long offset, const struct state *sp, struct tm *tmp) |
1394 |
|
|
{ |
1395 |
|
|
const struct lsinfo * lp; |
1396 |
|
|
time_t tdays; |
1397 |
|
|
int idays; /* unsigned would be so 2003 */ |
1398 |
|
|
long rem; |
1399 |
|
|
int y; |
1400 |
|
|
const int * ip; |
1401 |
|
|
long corr; |
1402 |
|
|
int hit; |
1403 |
|
|
int i; |
1404 |
|
|
long seconds; |
1405 |
|
|
|
1406 |
|
|
corr = 0; |
1407 |
|
|
hit = 0; |
1408 |
|
|
i = (sp == NULL) ? 0 : sp->leapcnt; |
1409 |
|
|
while (--i >= 0) { |
1410 |
|
|
lp = &sp->lsis[i]; |
1411 |
|
|
if (*timep >= lp->ls_trans) { |
1412 |
|
|
if (*timep == lp->ls_trans) { |
1413 |
|
|
hit = ((i == 0 && lp->ls_corr > 0) || |
1414 |
|
|
lp->ls_corr > sp->lsis[i - 1].ls_corr); |
1415 |
|
|
if (hit) { |
1416 |
|
|
while (i > 0 && |
1417 |
|
|
sp->lsis[i].ls_trans == |
1418 |
|
|
sp->lsis[i - 1].ls_trans + 1 && |
1419 |
|
|
sp->lsis[i].ls_corr == |
1420 |
|
|
sp->lsis[i - 1].ls_corr + 1) { |
1421 |
|
|
++hit; |
1422 |
|
|
--i; |
1423 |
|
|
} |
1424 |
|
|
} |
1425 |
|
|
} |
1426 |
|
|
corr = lp->ls_corr; |
1427 |
|
|
break; |
1428 |
|
|
} |
1429 |
|
|
} |
1430 |
|
|
y = EPOCH_YEAR; |
1431 |
|
|
tdays = *timep / SECSPERDAY; |
1432 |
|
|
rem = *timep - tdays * SECSPERDAY; |
1433 |
|
|
while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { |
1434 |
|
|
int newy; |
1435 |
|
|
time_t tdelta; |
1436 |
|
|
int idelta; |
1437 |
|
|
int leapdays; |
1438 |
|
|
|
1439 |
|
|
tdelta = tdays / DAYSPERLYEAR; |
1440 |
|
|
idelta = tdelta; |
1441 |
|
|
if (tdelta - idelta >= 1 || idelta - tdelta >= 1) |
1442 |
|
|
return NULL; |
1443 |
|
|
if (idelta == 0) |
1444 |
|
|
idelta = (tdays < 0) ? -1 : 1; |
1445 |
|
|
newy = y; |
1446 |
|
|
if (increment_overflow(&newy, idelta)) |
1447 |
|
|
return NULL; |
1448 |
|
|
leapdays = leaps_thru_end_of(newy - 1) - |
1449 |
|
|
leaps_thru_end_of(y - 1); |
1450 |
|
|
tdays -= ((time_t) newy - y) * DAYSPERNYEAR; |
1451 |
|
|
tdays -= leapdays; |
1452 |
|
|
y = newy; |
1453 |
|
|
} |
1454 |
|
|
|
1455 |
|
|
seconds = tdays * SECSPERDAY + 0.5; |
1456 |
|
|
tdays = seconds / SECSPERDAY; |
1457 |
|
|
rem += seconds - tdays * SECSPERDAY; |
1458 |
|
|
|
1459 |
|
|
/* |
1460 |
|
|
** Given the range, we can now fearlessly cast... |
1461 |
|
|
*/ |
1462 |
|
|
idays = tdays; |
1463 |
|
|
rem += offset - corr; |
1464 |
|
|
while (rem < 0) { |
1465 |
|
|
rem += SECSPERDAY; |
1466 |
|
|
--idays; |
1467 |
|
|
} |
1468 |
|
|
while (rem >= SECSPERDAY) { |
1469 |
|
|
rem -= SECSPERDAY; |
1470 |
|
|
++idays; |
1471 |
|
|
} |
1472 |
|
|
while (idays < 0) { |
1473 |
|
|
if (increment_overflow(&y, -1)) |
1474 |
|
|
return NULL; |
1475 |
|
|
idays += year_lengths[isleap(y)]; |
1476 |
|
|
} |
1477 |
|
|
while (idays >= year_lengths[isleap(y)]) { |
1478 |
|
|
idays -= year_lengths[isleap(y)]; |
1479 |
|
|
if (increment_overflow(&y, 1)) |
1480 |
|
|
return NULL; |
1481 |
|
|
} |
1482 |
|
|
tmp->tm_year = y; |
1483 |
|
|
if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) |
1484 |
|
|
return NULL; |
1485 |
|
|
tmp->tm_yday = idays; |
1486 |
|
|
/* |
1487 |
|
|
** The "extra" mods below avoid overflow problems. |
1488 |
|
|
*/ |
1489 |
|
|
tmp->tm_wday = EPOCH_WDAY + |
1490 |
|
|
((y - EPOCH_YEAR) % DAYSPERWEEK) * |
1491 |
|
|
(DAYSPERNYEAR % DAYSPERWEEK) + |
1492 |
|
|
leaps_thru_end_of(y - 1) - |
1493 |
|
|
leaps_thru_end_of(EPOCH_YEAR - 1) + |
1494 |
|
|
idays; |
1495 |
|
|
tmp->tm_wday %= DAYSPERWEEK; |
1496 |
|
|
if (tmp->tm_wday < 0) |
1497 |
|
|
tmp->tm_wday += DAYSPERWEEK; |
1498 |
|
|
tmp->tm_hour = (int) (rem / SECSPERHOUR); |
1499 |
|
|
rem %= SECSPERHOUR; |
1500 |
|
|
tmp->tm_min = (int) (rem / SECSPERMIN); |
1501 |
|
|
/* |
1502 |
|
|
** A positive leap second requires a special |
1503 |
|
|
** representation. This uses "... ??:59:60" et seq. |
1504 |
|
|
*/ |
1505 |
|
|
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; |
1506 |
|
|
ip = mon_lengths[isleap(y)]; |
1507 |
|
|
for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) |
1508 |
|
|
idays -= ip[tmp->tm_mon]; |
1509 |
|
|
tmp->tm_mday = (int) (idays + 1); |
1510 |
|
|
tmp->tm_isdst = 0; |
1511 |
|
|
#ifdef TM_GMTOFF |
1512 |
|
|
tmp->TM_GMTOFF = offset; |
1513 |
|
|
#endif /* defined TM_GMTOFF */ |
1514 |
|
|
return tmp; |
1515 |
|
|
} |
1516 |
|
|
|
1517 |
|
|
char * |
1518 |
|
|
ctime(const time_t *timep) |
1519 |
|
|
{ |
1520 |
|
|
/* |
1521 |
|
|
** Section 4.12.3.2 of X3.159-1989 requires that |
1522 |
|
|
** The ctime function converts the calendar time pointed to by timer |
1523 |
|
|
** to local time in the form of a string. It is equivalent to |
1524 |
|
|
** asctime(localtime(timer)) |
1525 |
|
|
*/ |
1526 |
|
|
return asctime(localtime(timep)); |
1527 |
|
|
} |
1528 |
|
|
|
1529 |
|
|
char * |
1530 |
|
|
ctime_r(const time_t *timep, char *buf) |
1531 |
|
|
{ |
1532 |
|
|
struct tm mytm; |
1533 |
|
|
|
1534 |
|
|
return asctime_r(localtime_r(timep, &mytm), buf); |
1535 |
|
|
} |
1536 |
|
|
|
1537 |
|
|
/* |
1538 |
|
|
** Adapted from code provided by Robert Elz, who writes: |
1539 |
|
|
** The "best" way to do mktime I think is based on an idea of Bob |
1540 |
|
|
** Kridle's (so its said...) from a long time ago. |
1541 |
|
|
** It does a binary search of the time_t space. Since time_t's are |
1542 |
|
|
** just 32 bits, its a max of 32 iterations (even at 64 bits it |
1543 |
|
|
** would still be very reasonable). |
1544 |
|
|
*/ |
1545 |
|
|
|
1546 |
|
|
#ifndef WRONG |
1547 |
|
|
#define WRONG (-1) |
1548 |
|
|
#endif /* !defined WRONG */ |
1549 |
|
|
|
1550 |
|
|
/* |
1551 |
|
|
** Normalize logic courtesy Paul Eggert. |
1552 |
|
|
*/ |
1553 |
|
|
|
1554 |
|
|
static int |
1555 |
|
|
increment_overflow(int *ip, int j) |
1556 |
|
|
{ |
1557 |
|
|
int const i = *ip; |
1558 |
|
|
|
1559 |
|
|
/* |
1560 |
|
|
** If i >= 0 there can only be overflow if i + j > INT_MAX |
1561 |
|
|
** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow. |
1562 |
|
|
** If i < 0 there can only be overflow if i + j < INT_MIN |
1563 |
|
|
** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow. |
1564 |
|
|
*/ |
1565 |
|
|
if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i)) |
1566 |
|
|
return TRUE; |
1567 |
|
|
*ip += j; |
1568 |
|
|
return FALSE; |
1569 |
|
|
} |
1570 |
|
|
|
1571 |
|
|
static int |
1572 |
|
|
long_increment_overflow(long *lp, int m) |
1573 |
|
|
{ |
1574 |
|
|
long const l = *lp; |
1575 |
|
|
|
1576 |
|
|
if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l)) |
1577 |
|
|
return TRUE; |
1578 |
|
|
*lp += m; |
1579 |
|
|
return FALSE; |
1580 |
|
|
} |
1581 |
|
|
|
1582 |
|
|
static int |
1583 |
|
|
normalize_overflow(int *tensptr, int *unitsptr, int base) |
1584 |
|
|
{ |
1585 |
|
|
int tensdelta; |
1586 |
|
|
|
1587 |
|
|
tensdelta = (*unitsptr >= 0) ? |
1588 |
|
|
(*unitsptr / base) : |
1589 |
|
|
(-1 - (-1 - *unitsptr) / base); |
1590 |
|
|
*unitsptr -= tensdelta * base; |
1591 |
|
|
return increment_overflow(tensptr, tensdelta); |
1592 |
|
|
} |
1593 |
|
|
|
1594 |
|
|
static int |
1595 |
|
|
long_normalize_overflow(long *tensptr, int *unitsptr, int base) |
1596 |
|
|
{ |
1597 |
|
|
int tensdelta; |
1598 |
|
|
|
1599 |
|
|
tensdelta = (*unitsptr >= 0) ? |
1600 |
|
|
(*unitsptr / base) : |
1601 |
|
|
(-1 - (-1 - *unitsptr) / base); |
1602 |
|
|
*unitsptr -= tensdelta * base; |
1603 |
|
|
return long_increment_overflow(tensptr, tensdelta); |
1604 |
|
|
} |
1605 |
|
|
|
1606 |
|
|
static int |
1607 |
|
|
tmcomp(const struct tm *atmp, const struct tm *btmp) |
1608 |
|
|
{ |
1609 |
|
|
int result; |
1610 |
|
|
|
1611 |
|
|
if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && |
1612 |
|
|
(result = (atmp->tm_mon - btmp->tm_mon)) == 0 && |
1613 |
|
|
(result = (atmp->tm_mday - btmp->tm_mday)) == 0 && |
1614 |
|
|
(result = (atmp->tm_hour - btmp->tm_hour)) == 0 && |
1615 |
|
|
(result = (atmp->tm_min - btmp->tm_min)) == 0) |
1616 |
|
|
result = atmp->tm_sec - btmp->tm_sec; |
1617 |
|
|
return result; |
1618 |
|
|
} |
1619 |
|
|
|
1620 |
|
|
static time_t |
1621 |
|
|
time2sub(struct tm *tmp, struct tm *(*funcp)(const time_t *, long, struct tm *), |
1622 |
|
|
long offset, int *okayp, int do_norm_secs) |
1623 |
|
|
{ |
1624 |
|
|
const struct state * sp; |
1625 |
|
|
int dir; |
1626 |
|
|
int i, j; |
1627 |
|
|
int saved_seconds; |
1628 |
|
|
long li; |
1629 |
|
|
time_t lo; |
1630 |
|
|
time_t hi; |
1631 |
|
|
long y; |
1632 |
|
|
time_t newt; |
1633 |
|
|
time_t t; |
1634 |
|
|
struct tm yourtm, mytm; |
1635 |
|
|
|
1636 |
|
|
*okayp = FALSE; |
1637 |
|
|
yourtm = *tmp; |
1638 |
|
|
if (do_norm_secs) { |
1639 |
|
|
if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, |
1640 |
|
|
SECSPERMIN)) |
1641 |
|
|
return WRONG; |
1642 |
|
|
} |
1643 |
|
|
if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) |
1644 |
|
|
return WRONG; |
1645 |
|
|
if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) |
1646 |
|
|
return WRONG; |
1647 |
|
|
y = yourtm.tm_year; |
1648 |
|
|
if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR)) |
1649 |
|
|
return WRONG; |
1650 |
|
|
/* |
1651 |
|
|
** Turn y into an actual year number for now. |
1652 |
|
|
** It is converted back to an offset from TM_YEAR_BASE later. |
1653 |
|
|
*/ |
1654 |
|
|
if (long_increment_overflow(&y, TM_YEAR_BASE)) |
1655 |
|
|
return WRONG; |
1656 |
|
|
while (yourtm.tm_mday <= 0) { |
1657 |
|
|
if (long_increment_overflow(&y, -1)) |
1658 |
|
|
return WRONG; |
1659 |
|
|
li = y + (1 < yourtm.tm_mon); |
1660 |
|
|
yourtm.tm_mday += year_lengths[isleap(li)]; |
1661 |
|
|
} |
1662 |
|
|
while (yourtm.tm_mday > DAYSPERLYEAR) { |
1663 |
|
|
li = y + (1 < yourtm.tm_mon); |
1664 |
|
|
yourtm.tm_mday -= year_lengths[isleap(li)]; |
1665 |
|
|
if (long_increment_overflow(&y, 1)) |
1666 |
|
|
return WRONG; |
1667 |
|
|
} |
1668 |
|
|
for ( ; ; ) { |
1669 |
|
|
i = mon_lengths[isleap(y)][yourtm.tm_mon]; |
1670 |
|
|
if (yourtm.tm_mday <= i) |
1671 |
|
|
break; |
1672 |
|
|
yourtm.tm_mday -= i; |
1673 |
|
|
if (++yourtm.tm_mon >= MONSPERYEAR) { |
1674 |
|
|
yourtm.tm_mon = 0; |
1675 |
|
|
if (long_increment_overflow(&y, 1)) |
1676 |
|
|
return WRONG; |
1677 |
|
|
} |
1678 |
|
|
} |
1679 |
|
|
if (long_increment_overflow(&y, -TM_YEAR_BASE)) |
1680 |
|
|
return WRONG; |
1681 |
|
|
yourtm.tm_year = y; |
1682 |
|
|
if (yourtm.tm_year != y) |
1683 |
|
|
return WRONG; |
1684 |
|
|
if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) |
1685 |
|
|
saved_seconds = 0; |
1686 |
|
|
else if (y + TM_YEAR_BASE < EPOCH_YEAR) { |
1687 |
|
|
/* |
1688 |
|
|
** We can't set tm_sec to 0, because that might push the |
1689 |
|
|
** time below the minimum representable time. |
1690 |
|
|
** Set tm_sec to 59 instead. |
1691 |
|
|
** This assumes that the minimum representable time is |
1692 |
|
|
** not in the same minute that a leap second was deleted from, |
1693 |
|
|
** which is a safer assumption than using 58 would be. |
1694 |
|
|
*/ |
1695 |
|
|
if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) |
1696 |
|
|
return WRONG; |
1697 |
|
|
saved_seconds = yourtm.tm_sec; |
1698 |
|
|
yourtm.tm_sec = SECSPERMIN - 1; |
1699 |
|
|
} else { |
1700 |
|
|
saved_seconds = yourtm.tm_sec; |
1701 |
|
|
yourtm.tm_sec = 0; |
1702 |
|
|
} |
1703 |
|
|
/* |
1704 |
|
|
** Do a binary search (this works whatever time_t's type is). |
1705 |
|
|
*/ |
1706 |
|
|
lo = 1; |
1707 |
|
|
for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) |
1708 |
|
|
lo *= 2; |
1709 |
|
|
hi = -(lo + 1); |
1710 |
|
|
for ( ; ; ) { |
1711 |
|
|
t = lo / 2 + hi / 2; |
1712 |
|
|
if (t < lo) |
1713 |
|
|
t = lo; |
1714 |
|
|
else if (t > hi) |
1715 |
|
|
t = hi; |
1716 |
|
|
if ((*funcp)(&t, offset, &mytm) == NULL) { |
1717 |
|
|
/* |
1718 |
|
|
** Assume that t is too extreme to be represented in |
1719 |
|
|
** a struct tm; arrange things so that it is less |
1720 |
|
|
** extreme on the next pass. |
1721 |
|
|
*/ |
1722 |
|
|
dir = (t > 0) ? 1 : -1; |
1723 |
|
|
} else |
1724 |
|
|
dir = tmcomp(&mytm, &yourtm); |
1725 |
|
|
if (dir != 0) { |
1726 |
|
|
if (t == lo) { |
1727 |
|
|
++t; |
1728 |
|
|
if (t <= lo) |
1729 |
|
|
return WRONG; |
1730 |
|
|
++lo; |
1731 |
|
|
} else if (t == hi) { |
1732 |
|
|
--t; |
1733 |
|
|
if (t >= hi) |
1734 |
|
|
return WRONG; |
1735 |
|
|
--hi; |
1736 |
|
|
} |
1737 |
|
|
if (lo > hi) |
1738 |
|
|
return WRONG; |
1739 |
|
|
if (dir > 0) |
1740 |
|
|
hi = t; |
1741 |
|
|
else |
1742 |
|
|
lo = t; |
1743 |
|
|
continue; |
1744 |
|
|
} |
1745 |
|
|
if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) |
1746 |
|
|
break; |
1747 |
|
|
/* |
1748 |
|
|
** Right time, wrong type. |
1749 |
|
|
** Hunt for right time, right type. |
1750 |
|
|
** It's okay to guess wrong since the guess |
1751 |
|
|
** gets checked. |
1752 |
|
|
*/ |
1753 |
|
|
sp = (const struct state *) |
1754 |
|
|
((funcp == localsub) ? lclptr : gmtptr); |
1755 |
|
|
if (sp == NULL) |
1756 |
|
|
return WRONG; |
1757 |
|
|
for (i = sp->typecnt - 1; i >= 0; --i) { |
1758 |
|
|
if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) |
1759 |
|
|
continue; |
1760 |
|
|
for (j = sp->typecnt - 1; j >= 0; --j) { |
1761 |
|
|
if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) |
1762 |
|
|
continue; |
1763 |
|
|
newt = t + sp->ttis[j].tt_gmtoff - |
1764 |
|
|
sp->ttis[i].tt_gmtoff; |
1765 |
|
|
if ((*funcp)(&newt, offset, &mytm) == NULL) |
1766 |
|
|
continue; |
1767 |
|
|
if (tmcomp(&mytm, &yourtm) != 0) |
1768 |
|
|
continue; |
1769 |
|
|
if (mytm.tm_isdst != yourtm.tm_isdst) |
1770 |
|
|
continue; |
1771 |
|
|
/* |
1772 |
|
|
** We have a match. |
1773 |
|
|
*/ |
1774 |
|
|
t = newt; |
1775 |
|
|
goto label; |
1776 |
|
|
} |
1777 |
|
|
} |
1778 |
|
|
return WRONG; |
1779 |
|
|
} |
1780 |
|
|
label: |
1781 |
|
|
newt = t + saved_seconds; |
1782 |
|
|
if ((newt < t) != (saved_seconds < 0)) |
1783 |
|
|
return WRONG; |
1784 |
|
|
t = newt; |
1785 |
|
|
if ((*funcp)(&t, offset, tmp)) |
1786 |
|
|
*okayp = TRUE; |
1787 |
|
|
return t; |
1788 |
|
|
} |
1789 |
|
|
|
1790 |
|
|
static time_t |
1791 |
|
|
time2(struct tm *tmp, struct tm * (*funcp)(const time_t *, long, struct tm *), |
1792 |
|
|
long offset, int *okayp) |
1793 |
|
|
{ |
1794 |
|
|
time_t t; |
1795 |
|
|
|
1796 |
|
|
/* |
1797 |
|
|
** First try without normalization of seconds |
1798 |
|
|
** (in case tm_sec contains a value associated with a leap second). |
1799 |
|
|
** If that fails, try with normalization of seconds. |
1800 |
|
|
*/ |
1801 |
|
|
t = time2sub(tmp, funcp, offset, okayp, FALSE); |
1802 |
|
|
return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE); |
1803 |
|
|
} |
1804 |
|
|
|
1805 |
|
|
static time_t |
1806 |
|
|
time1(struct tm *tmp, struct tm * (*funcp)(const time_t *, long, struct tm *), |
1807 |
|
|
long offset) |
1808 |
|
|
{ |
1809 |
|
|
time_t t; |
1810 |
|
|
const struct state * sp; |
1811 |
|
|
int samei, otheri; |
1812 |
|
|
int sameind, otherind; |
1813 |
|
|
int i; |
1814 |
|
|
int nseen; |
1815 |
|
|
int seen[TZ_MAX_TYPES]; |
1816 |
|
|
int types[TZ_MAX_TYPES]; |
1817 |
|
|
int okay; |
1818 |
|
|
|
1819 |
|
|
if (tmp == NULL) { |
1820 |
|
|
errno = EINVAL; |
1821 |
|
|
return WRONG; |
1822 |
|
|
} |
1823 |
|
|
if (tmp->tm_isdst > 1) |
1824 |
|
|
tmp->tm_isdst = 1; |
1825 |
|
|
t = time2(tmp, funcp, offset, &okay); |
1826 |
|
|
#ifdef PCTS |
1827 |
|
|
/* |
1828 |
|
|
** PCTS code courtesy Grant Sullivan. |
1829 |
|
|
*/ |
1830 |
|
|
if (okay) |
1831 |
|
|
return t; |
1832 |
|
|
if (tmp->tm_isdst < 0) |
1833 |
|
|
tmp->tm_isdst = 0; /* reset to std and try again */ |
1834 |
|
|
#endif /* defined PCTS */ |
1835 |
|
|
#ifndef PCTS |
1836 |
|
|
if (okay || tmp->tm_isdst < 0) |
1837 |
|
|
return t; |
1838 |
|
|
#endif /* !defined PCTS */ |
1839 |
|
|
/* |
1840 |
|
|
** We're supposed to assume that somebody took a time of one type |
1841 |
|
|
** and did some math on it that yielded a "struct tm" that's bad. |
1842 |
|
|
** We try to divine the type they started from and adjust to the |
1843 |
|
|
** type they need. |
1844 |
|
|
*/ |
1845 |
|
|
sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr); |
1846 |
|
|
if (sp == NULL) |
1847 |
|
|
return WRONG; |
1848 |
|
|
for (i = 0; i < sp->typecnt; ++i) |
1849 |
|
|
seen[i] = FALSE; |
1850 |
|
|
nseen = 0; |
1851 |
|
|
for (i = sp->timecnt - 1; i >= 0; --i) { |
1852 |
|
|
if (!seen[sp->types[i]]) { |
1853 |
|
|
seen[sp->types[i]] = TRUE; |
1854 |
|
|
types[nseen++] = sp->types[i]; |
1855 |
|
|
} |
1856 |
|
|
} |
1857 |
|
|
for (sameind = 0; sameind < nseen; ++sameind) { |
1858 |
|
|
samei = types[sameind]; |
1859 |
|
|
if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) |
1860 |
|
|
continue; |
1861 |
|
|
for (otherind = 0; otherind < nseen; ++otherind) { |
1862 |
|
|
otheri = types[otherind]; |
1863 |
|
|
if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) |
1864 |
|
|
continue; |
1865 |
|
|
tmp->tm_sec += sp->ttis[otheri].tt_gmtoff - |
1866 |
|
|
sp->ttis[samei].tt_gmtoff; |
1867 |
|
|
tmp->tm_isdst = !tmp->tm_isdst; |
1868 |
|
|
t = time2(tmp, funcp, offset, &okay); |
1869 |
|
|
if (okay) |
1870 |
|
|
return t; |
1871 |
|
|
tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff - |
1872 |
|
|
sp->ttis[samei].tt_gmtoff; |
1873 |
|
|
tmp->tm_isdst = !tmp->tm_isdst; |
1874 |
|
|
} |
1875 |
|
|
} |
1876 |
|
|
return WRONG; |
1877 |
|
|
} |
1878 |
|
|
|
1879 |
|
|
time_t |
1880 |
|
|
mktime(struct tm *tmp) |
1881 |
|
|
{ |
1882 |
|
|
time_t ret; |
1883 |
|
|
|
1884 |
|
|
_THREAD_PRIVATE_MUTEX_LOCK(lcl); |
1885 |
|
|
tzset_basic(); |
1886 |
|
|
ret = time1(tmp, localsub, 0L); |
1887 |
|
|
_THREAD_PRIVATE_MUTEX_UNLOCK(lcl); |
1888 |
|
|
return ret; |
1889 |
|
|
} |
1890 |
|
|
DEF_STRONG(mktime); |
1891 |
|
|
|
1892 |
|
|
#ifdef STD_INSPIRED |
1893 |
|
|
|
1894 |
|
|
time_t |
1895 |
|
|
timelocal(struct tm *tmp) |
1896 |
|
|
{ |
1897 |
|
|
if (tmp != NULL) |
1898 |
|
|
tmp->tm_isdst = -1; /* in case it wasn't initialized */ |
1899 |
|
|
return mktime(tmp); |
1900 |
|
|
} |
1901 |
|
|
|
1902 |
|
|
time_t |
1903 |
|
|
timegm(struct tm *tmp) |
1904 |
|
|
{ |
1905 |
|
|
if (tmp != NULL) |
1906 |
|
|
tmp->tm_isdst = 0; |
1907 |
|
|
return time1(tmp, gmtsub, 0L); |
1908 |
|
|
} |
1909 |
|
|
|
1910 |
|
|
time_t |
1911 |
|
|
timeoff(struct tm *tmp, long offset) |
1912 |
|
|
{ |
1913 |
|
|
if (tmp != NULL) |
1914 |
|
|
tmp->tm_isdst = 0; |
1915 |
|
|
return time1(tmp, gmtsub, offset); |
1916 |
|
|
} |
1917 |
|
|
|
1918 |
|
|
#endif /* defined STD_INSPIRED */ |
1919 |
|
|
|
1920 |
|
|
/* |
1921 |
|
|
** XXX--is the below the right way to conditionalize?? |
1922 |
|
|
*/ |
1923 |
|
|
|
1924 |
|
|
#ifdef STD_INSPIRED |
1925 |
|
|
|
1926 |
|
|
/* |
1927 |
|
|
** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 |
1928 |
|
|
** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which |
1929 |
|
|
** is not the case if we are accounting for leap seconds. |
1930 |
|
|
** So, we provide the following conversion routines for use |
1931 |
|
|
** when exchanging timestamps with POSIX conforming systems. |
1932 |
|
|
*/ |
1933 |
|
|
|
1934 |
|
|
static long |
1935 |
|
|
leapcorr(time_t *timep) |
1936 |
|
|
{ |
1937 |
|
|
struct state * sp; |
1938 |
|
|
struct lsinfo * lp; |
1939 |
|
|
int i; |
1940 |
|
|
|
1941 |
|
|
sp = lclptr; |
1942 |
|
|
i = sp->leapcnt; |
1943 |
|
|
while (--i >= 0) { |
1944 |
|
|
lp = &sp->lsis[i]; |
1945 |
|
|
if (*timep >= lp->ls_trans) |
1946 |
|
|
return lp->ls_corr; |
1947 |
|
|
} |
1948 |
|
|
return 0; |
1949 |
|
|
} |
1950 |
|
|
|
1951 |
|
|
time_t |
1952 |
|
|
time2posix(time_t t) |
1953 |
|
|
{ |
1954 |
|
|
tzset(); |
1955 |
|
|
return t - leapcorr(&t); |
1956 |
|
|
} |
1957 |
|
|
|
1958 |
|
|
time_t |
1959 |
|
|
posix2time(time_t t) |
1960 |
|
|
{ |
1961 |
|
|
time_t x; |
1962 |
|
|
time_t y; |
1963 |
|
|
|
1964 |
|
|
tzset(); |
1965 |
|
|
/* |
1966 |
|
|
** For a positive leap second hit, the result |
1967 |
|
|
** is not unique. For a negative leap second |
1968 |
|
|
** hit, the corresponding time doesn't exist, |
1969 |
|
|
** so we return an adjacent second. |
1970 |
|
|
*/ |
1971 |
|
|
x = t + leapcorr(&t); |
1972 |
|
|
y = x - leapcorr(&x); |
1973 |
|
|
if (y < t) { |
1974 |
|
|
do { |
1975 |
|
|
x++; |
1976 |
|
|
y = x - leapcorr(&x); |
1977 |
|
|
} while (y < t); |
1978 |
|
|
if (t != y) |
1979 |
|
|
return x - 1; |
1980 |
|
|
} else if (y > t) { |
1981 |
|
|
do { |
1982 |
|
|
--x; |
1983 |
|
|
y = x - leapcorr(&x); |
1984 |
|
|
} while (y > t); |
1985 |
|
|
if (t != y) |
1986 |
|
|
return x + 1; |
1987 |
|
|
} |
1988 |
|
|
return x; |
1989 |
|
|
} |
1990 |
|
|
|
1991 |
|
|
#endif /* defined STD_INSPIRED */ |