GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libcompiler_rt/fp_extend_impl.inc Lines: 0 17 0.0 %
Date: 2017-11-13 Branches: 0 6 0.0 %

Line Branch Exec Source
1
//=-lib/fp_extend_impl.inc - low precision -> high precision conversion -*-- -//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is dual licensed under the MIT and the University of Illinois Open
6
// Source Licenses. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file implements a fairly generic conversion from a narrower to a wider
11
// IEEE-754 floating-point type.  The constants and types defined following the
12
// includes below parameterize the conversion.
13
//
14
// It does not support types that don't use the usual IEEE-754 interchange
15
// formats; specifically, some work would be needed to adapt it to
16
// (for example) the Intel 80-bit format or PowerPC double-double format.
17
//
18
// Note please, however, that this implementation is only intended to support
19
// *widening* operations; if you need to convert to a *narrower* floating-point
20
// type (e.g. double -> float), then this routine will not do what you want it
21
// to.
22
//
23
// It also requires that integer types at least as large as both formats
24
// are available on the target platform; this may pose a problem when trying
25
// to add support for quad on some 32-bit systems, for example.  You also may
26
// run into trouble finding an appropriate CLZ function for wide source types;
27
// you will likely need to roll your own on some platforms.
28
//
29
// Finally, the following assumptions are made:
30
//
31
// 1. floating-point types and integer types have the same endianness on the
32
//    target platform
33
//
34
// 2. quiet NaNs, if supported, are indicated by the leading bit of the
35
//    significand field being set
36
//
37
//===----------------------------------------------------------------------===//
38
39
#include "fp_extend.h"
40
41
static __inline dst_t __extendXfYf2__(src_t a) {
42
    // Various constants whose values follow from the type parameters.
43
    // Any reasonable optimizer will fold and propagate all of these.
44
    const int srcBits = sizeof(src_t)*CHAR_BIT;
45
    const int srcExpBits = srcBits - srcSigBits - 1;
46
    const int srcInfExp = (1 << srcExpBits) - 1;
47
    const int srcExpBias = srcInfExp >> 1;
48
49
    const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
50
    const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
51
    const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
52
    const src_rep_t srcAbsMask = srcSignMask - 1;
53
    const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
54
    const src_rep_t srcNaNCode = srcQNaN - 1;
55
56
    const int dstBits = sizeof(dst_t)*CHAR_BIT;
57
    const int dstExpBits = dstBits - dstSigBits - 1;
58
    const int dstInfExp = (1 << dstExpBits) - 1;
59
    const int dstExpBias = dstInfExp >> 1;
60
61
    const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
62
63
    // Break a into a sign and representation of the absolute value
64
    const src_rep_t aRep = srcToRep(a);
65
    const src_rep_t aAbs = aRep & srcAbsMask;
66
    const src_rep_t sign = aRep & srcSignMask;
67
    dst_rep_t absResult;
68
69
    // If sizeof(src_rep_t) < sizeof(int), the subtraction result is promoted
70
    // to (signed) int.  To avoid that, explicitly cast to src_rep_t.
71
    if ((src_rep_t)(aAbs - srcMinNormal) < srcInfinity - srcMinNormal) {
72
        // a is a normal number.
73
        // Extend to the destination type by shifting the significand and
74
        // exponent into the proper position and rebiasing the exponent.
75
        absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits);
76
        absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits;
77
    }
78
79
    else if (aAbs >= srcInfinity) {
80
        // a is NaN or infinity.
81
        // Conjure the result by beginning with infinity, then setting the qNaN
82
        // bit (if needed) and right-aligning the rest of the trailing NaN
83
        // payload field.
84
        absResult = (dst_rep_t)dstInfExp << dstSigBits;
85
        absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
86
        absResult |= (dst_rep_t)(aAbs & srcNaNCode) << (dstSigBits - srcSigBits);
87
    }
88
89
    else if (aAbs) {
90
        // a is denormal.
91
        // renormalize the significand and clear the leading bit, then insert
92
        // the correct adjusted exponent in the destination type.
93
        const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal);
94
        absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale);
95
        absResult ^= dstMinNormal;
96
        const int resultExponent = dstExpBias - srcExpBias - scale + 1;
97
        absResult |= (dst_rep_t)resultExponent << dstSigBits;
98
    }
99
100
    else {
101
        // a is zero.
102
        absResult = 0;
103
    }
104
105
    // Apply the signbit to (dst_t)abs(a).
106
    const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
107
    return dstFromRep(result);
108
}