GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libcompiler_rt/fp_lib.h Lines: 0 33 0.0 %
Date: 2017-11-13 Branches: 0 4 0.0 %

Line Branch Exec Source
1
//===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is dual licensed under the MIT and the University of Illinois Open
6
// Source Licenses. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file is a configuration header for soft-float routines in compiler-rt.
11
// This file does not provide any part of the compiler-rt interface, but defines
12
// many useful constants and utility routines that are used in the
13
// implementation of the soft-float routines in compiler-rt.
14
//
15
// Assumes that float, double and long double correspond to the IEEE-754
16
// binary32, binary64 and binary 128 types, respectively, and that integer
17
// endianness matches floating point endianness on the target platform.
18
//
19
//===----------------------------------------------------------------------===//
20
21
#ifndef FP_LIB_HEADER
22
#define FP_LIB_HEADER
23
24
#include <stdint.h>
25
#include <stdbool.h>
26
#include <limits.h>
27
#include "int_lib.h"
28
29
// x86_64 FreeBSD prior v9.3 define fixed-width types incorrectly in
30
// 32-bit mode.
31
#if defined(__FreeBSD__) && defined(__i386__)
32
# include <sys/param.h>
33
# if __FreeBSD_version < 903000  // v9.3
34
#  define uint64_t unsigned long long
35
#  define int64_t long long
36
#  undef UINT64_C
37
#  define UINT64_C(c) (c ## ULL)
38
# endif
39
#endif
40
41
#if defined SINGLE_PRECISION
42
43
typedef uint32_t rep_t;
44
typedef int32_t srep_t;
45
typedef float fp_t;
46
#define REP_C UINT32_C
47
#define significandBits 23
48
49
static __inline int rep_clz(rep_t a) {
50
    return __builtin_clz(a);
51
}
52
53
// 32x32 --> 64 bit multiply
54
static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
55
    const uint64_t product = (uint64_t)a*b;
56
    *hi = product >> 32;
57
    *lo = product;
58
}
59
COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b);
60
61
#elif defined DOUBLE_PRECISION
62
63
typedef uint64_t rep_t;
64
typedef int64_t srep_t;
65
typedef double fp_t;
66
#define REP_C UINT64_C
67
#define significandBits 52
68
69
static __inline int rep_clz(rep_t a) {
70
#if defined __LP64__
71
    return __builtin_clzl(a);
72
#else
73
    if (a & REP_C(0xffffffff00000000))
74
        return __builtin_clz(a >> 32);
75
    else
76
        return 32 + __builtin_clz(a & REP_C(0xffffffff));
77
#endif
78
}
79
80
#define loWord(a) (a & 0xffffffffU)
81
#define hiWord(a) (a >> 32)
82
83
// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
84
// many 64-bit platforms have this operation, but they tend to have hardware
85
// floating-point, so we don't bother with a special case for them here.
86
static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
87
    // Each of the component 32x32 -> 64 products
88
    const uint64_t plolo = loWord(a) * loWord(b);
89
    const uint64_t plohi = loWord(a) * hiWord(b);
90
    const uint64_t philo = hiWord(a) * loWord(b);
91
    const uint64_t phihi = hiWord(a) * hiWord(b);
92
    // Sum terms that contribute to lo in a way that allows us to get the carry
93
    const uint64_t r0 = loWord(plolo);
94
    const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
95
    *lo = r0 + (r1 << 32);
96
    // Sum terms contributing to hi with the carry from lo
97
    *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
98
}
99
#undef loWord
100
#undef hiWord
101
102
COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b);
103
104
#elif defined QUAD_PRECISION
105
#if __LDBL_MANT_DIG__ == 113
106
#define CRT_LDBL_128BIT
107
typedef __uint128_t rep_t;
108
typedef __int128_t srep_t;
109
typedef long double fp_t;
110
#define REP_C (__uint128_t)
111
// Note: Since there is no explicit way to tell compiler the constant is a
112
// 128-bit integer, we let the constant be casted to 128-bit integer
113
#define significandBits 112
114
115
static __inline int rep_clz(rep_t a) {
116
    const union
117
        {
118
             __uint128_t ll;
119
#if _YUGA_BIG_ENDIAN
120
             struct { uint64_t high, low; } s;
121
#else
122
             struct { uint64_t low, high; } s;
123
#endif
124
        } uu = { .ll = a };
125
126
    uint64_t word;
127
    uint64_t add;
128
129
    if (uu.s.high){
130
        word = uu.s.high;
131
        add = 0;
132
    }
133
    else{
134
        word = uu.s.low;
135
        add = 64;
136
    }
137
    return __builtin_clzll(word) + add;
138
}
139
140
#define Word_LoMask   UINT64_C(0x00000000ffffffff)
141
#define Word_HiMask   UINT64_C(0xffffffff00000000)
142
#define Word_FullMask UINT64_C(0xffffffffffffffff)
143
#define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask)
144
#define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask)
145
#define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask)
146
#define Word_4(a) (uint64_t)(a & Word_LoMask)
147
148
// 128x128 -> 256 wide multiply for platforms that don't have such an operation;
149
// many 64-bit platforms have this operation, but they tend to have hardware
150
// floating-point, so we don't bother with a special case for them here.
151
static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
152
153
    const uint64_t product11 = Word_1(a) * Word_1(b);
154
    const uint64_t product12 = Word_1(a) * Word_2(b);
155
    const uint64_t product13 = Word_1(a) * Word_3(b);
156
    const uint64_t product14 = Word_1(a) * Word_4(b);
157
    const uint64_t product21 = Word_2(a) * Word_1(b);
158
    const uint64_t product22 = Word_2(a) * Word_2(b);
159
    const uint64_t product23 = Word_2(a) * Word_3(b);
160
    const uint64_t product24 = Word_2(a) * Word_4(b);
161
    const uint64_t product31 = Word_3(a) * Word_1(b);
162
    const uint64_t product32 = Word_3(a) * Word_2(b);
163
    const uint64_t product33 = Word_3(a) * Word_3(b);
164
    const uint64_t product34 = Word_3(a) * Word_4(b);
165
    const uint64_t product41 = Word_4(a) * Word_1(b);
166
    const uint64_t product42 = Word_4(a) * Word_2(b);
167
    const uint64_t product43 = Word_4(a) * Word_3(b);
168
    const uint64_t product44 = Word_4(a) * Word_4(b);
169
170
    const __uint128_t sum0 = (__uint128_t)product44;
171
    const __uint128_t sum1 = (__uint128_t)product34 +
172
                             (__uint128_t)product43;
173
    const __uint128_t sum2 = (__uint128_t)product24 +
174
                             (__uint128_t)product33 +
175
                             (__uint128_t)product42;
176
    const __uint128_t sum3 = (__uint128_t)product14 +
177
                             (__uint128_t)product23 +
178
                             (__uint128_t)product32 +
179
                             (__uint128_t)product41;
180
    const __uint128_t sum4 = (__uint128_t)product13 +
181
                             (__uint128_t)product22 +
182
                             (__uint128_t)product31;
183
    const __uint128_t sum5 = (__uint128_t)product12 +
184
                             (__uint128_t)product21;
185
    const __uint128_t sum6 = (__uint128_t)product11;
186
187
    const __uint128_t r0 = (sum0 & Word_FullMask) +
188
                           ((sum1 & Word_LoMask) << 32);
189
    const __uint128_t r1 = (sum0 >> 64) +
190
                           ((sum1 >> 32) & Word_FullMask) +
191
                           (sum2 & Word_FullMask) +
192
                           ((sum3 << 32) & Word_HiMask);
193
194
    *lo = r0 + (r1 << 64);
195
    *hi = (r1 >> 64) +
196
          (sum1 >> 96) +
197
          (sum2 >> 64) +
198
          (sum3 >> 32) +
199
          sum4 +
200
          (sum5 << 32) +
201
          (sum6 << 64);
202
}
203
#undef Word_1
204
#undef Word_2
205
#undef Word_3
206
#undef Word_4
207
#undef Word_HiMask
208
#undef Word_LoMask
209
#undef Word_FullMask
210
#endif // __LDBL_MANT_DIG__ == 113
211
#else
212
#error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined.
213
#endif
214
215
#if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || defined(CRT_LDBL_128BIT)
216
#define typeWidth       (sizeof(rep_t)*CHAR_BIT)
217
#define exponentBits    (typeWidth - significandBits - 1)
218
#define maxExponent     ((1 << exponentBits) - 1)
219
#define exponentBias    (maxExponent >> 1)
220
221
#define implicitBit     (REP_C(1) << significandBits)
222
#define significandMask (implicitBit - 1U)
223
#define signBit         (REP_C(1) << (significandBits + exponentBits))
224
#define absMask         (signBit - 1U)
225
#define exponentMask    (absMask ^ significandMask)
226
#define oneRep          ((rep_t)exponentBias << significandBits)
227
#define infRep          exponentMask
228
#define quietBit        (implicitBit >> 1)
229
#define qnanRep         (exponentMask | quietBit)
230
231
static __inline rep_t toRep(fp_t x) {
232
    const union { fp_t f; rep_t i; } rep = {.f = x};
233
    return rep.i;
234
}
235
236
static __inline fp_t fromRep(rep_t x) {
237
    const union { fp_t f; rep_t i; } rep = {.i = x};
238
    return rep.f;
239
}
240
241
static __inline int normalize(rep_t *significand) {
242
    const int shift = rep_clz(*significand) - rep_clz(implicitBit);
243
    *significand <<= shift;
244
    return 1 - shift;
245
}
246
247
static __inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) {
248
    *hi = *hi << count | *lo >> (typeWidth - count);
249
    *lo = *lo << count;
250
}
251
252
static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, unsigned int count) {
253
    if (count < typeWidth) {
254
        const bool sticky = *lo << (typeWidth - count);
255
        *lo = *hi << (typeWidth - count) | *lo >> count | sticky;
256
        *hi = *hi >> count;
257
    }
258
    else if (count < 2*typeWidth) {
259
        const bool sticky = *hi << (2*typeWidth - count) | *lo;
260
        *lo = *hi >> (count - typeWidth) | sticky;
261
        *hi = 0;
262
    } else {
263
        const bool sticky = *hi | *lo;
264
        *lo = sticky;
265
        *hi = 0;
266
    }
267
}
268
#endif
269
270
#endif // FP_LIB_HEADER