GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libcompiler_rt/fp_trunc_impl.inc Lines: 0 29 0.0 %
Date: 2017-11-13 Branches: 0 16 0.0 %

Line Branch Exec Source
1
//= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is dual licensed under the MIT and the University of Illinois Open
6
// Source Licenses. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file implements a fairly generic conversion from a wider to a narrower
11
// IEEE-754 floating-point type in the default (round to nearest, ties to even)
12
// rounding mode.  The constants and types defined following the includes below
13
// parameterize the conversion.
14
//
15
// This routine can be trivially adapted to support conversions to
16
// half-precision or from quad-precision. It does not support types that don't
17
// use the usual IEEE-754 interchange formats; specifically, some work would be
18
// needed to adapt it to (for example) the Intel 80-bit format or PowerPC
19
// double-double format.
20
//
21
// Note please, however, that this implementation is only intended to support
22
// *narrowing* operations; if you need to convert to a *wider* floating-point
23
// type (e.g. float -> double), then this routine will not do what you want it
24
// to.
25
//
26
// It also requires that integer types at least as large as both formats
27
// are available on the target platform; this may pose a problem when trying
28
// to add support for quad on some 32-bit systems, for example.
29
//
30
// Finally, the following assumptions are made:
31
//
32
// 1. floating-point types and integer types have the same endianness on the
33
//    target platform
34
//
35
// 2. quiet NaNs, if supported, are indicated by the leading bit of the
36
//    significand field being set
37
//
38
//===----------------------------------------------------------------------===//
39
40
#include "fp_trunc.h"
41
42
static __inline dst_t __truncXfYf2__(src_t a) {
43
    // Various constants whose values follow from the type parameters.
44
    // Any reasonable optimizer will fold and propagate all of these.
45
    const int srcBits = sizeof(src_t)*CHAR_BIT;
46
    const int srcExpBits = srcBits - srcSigBits - 1;
47
    const int srcInfExp = (1 << srcExpBits) - 1;
48
    const int srcExpBias = srcInfExp >> 1;
49
50
    const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
51
    const src_rep_t srcSignificandMask = srcMinNormal - 1;
52
    const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
53
    const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
54
    const src_rep_t srcAbsMask = srcSignMask - 1;
55
    const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
56
    const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
57
    const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
58
    const src_rep_t srcNaNCode = srcQNaN - 1;
59
60
    const int dstBits = sizeof(dst_t)*CHAR_BIT;
61
    const int dstExpBits = dstBits - dstSigBits - 1;
62
    const int dstInfExp = (1 << dstExpBits) - 1;
63
    const int dstExpBias = dstInfExp >> 1;
64
65
    const int underflowExponent = srcExpBias + 1 - dstExpBias;
66
    const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
67
    const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
68
    const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
69
70
    const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
71
    const dst_rep_t dstNaNCode = dstQNaN - 1;
72
73
    // Break a into a sign and representation of the absolute value
74
    const src_rep_t aRep = srcToRep(a);
75
    const src_rep_t aAbs = aRep & srcAbsMask;
76
    const src_rep_t sign = aRep & srcSignMask;
77
    dst_rep_t absResult;
78
79
    if (aAbs - underflow < aAbs - overflow) {
80
        // The exponent of a is within the range of normal numbers in the
81
        // destination format.  We can convert by simply right-shifting with
82
        // rounding and adjusting the exponent.
83
        absResult = aAbs >> (srcSigBits - dstSigBits);
84
        absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
85
86
        const src_rep_t roundBits = aAbs & roundMask;
87
        // Round to nearest
88
        if (roundBits > halfway)
89
            absResult++;
90
        // Ties to even
91
        else if (roundBits == halfway)
92
            absResult += absResult & 1;
93
    }
94
    else if (aAbs > srcInfinity) {
95
        // a is NaN.
96
        // Conjure the result by beginning with infinity, setting the qNaN
97
        // bit and inserting the (truncated) trailing NaN field.
98
        absResult = (dst_rep_t)dstInfExp << dstSigBits;
99
        absResult |= dstQNaN;
100
        absResult |= ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode;
101
    }
102
    else if (aAbs >= overflow) {
103
        // a overflows to infinity.
104
        absResult = (dst_rep_t)dstInfExp << dstSigBits;
105
    }
106
    else {
107
        // a underflows on conversion to the destination type or is an exact
108
        // zero.  The result may be a denormal or zero.  Extract the exponent
109
        // to get the shift amount for the denormalization.
110
        const int aExp = aAbs >> srcSigBits;
111
        const int shift = srcExpBias - dstExpBias - aExp + 1;
112
113
        const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal;
114
115
        // Right shift by the denormalization amount with sticky.
116
        if (shift > srcSigBits) {
117
            absResult = 0;
118
        } else {
119
            const bool sticky = significand << (srcBits - shift);
120
            src_rep_t denormalizedSignificand = significand >> shift | sticky;
121
            absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
122
            const src_rep_t roundBits = denormalizedSignificand & roundMask;
123
            // Round to nearest
124
            if (roundBits > halfway)
125
                absResult++;
126
            // Ties to even
127
            else if (roundBits == halfway)
128
                absResult += absResult & 1;
129
        }
130
    }
131
132
    // Apply the signbit to (dst_t)abs(a).
133
    const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
134
    return dstFromRep(result);
135
}