GCC Code Coverage Report | |||||||||||||||||||||
|
|||||||||||||||||||||
Line | Branch | Exec | Source |
1 |
/* $OpenBSD: bn_mul.c,v 1.20 2015/02/09 15:49:22 jsing Exp $ */ |
||
2 |
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
||
3 |
* All rights reserved. |
||
4 |
* |
||
5 |
* This package is an SSL implementation written |
||
6 |
* by Eric Young (eay@cryptsoft.com). |
||
7 |
* The implementation was written so as to conform with Netscapes SSL. |
||
8 |
* |
||
9 |
* This library is free for commercial and non-commercial use as long as |
||
10 |
* the following conditions are aheared to. The following conditions |
||
11 |
* apply to all code found in this distribution, be it the RC4, RSA, |
||
12 |
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
||
13 |
* included with this distribution is covered by the same copyright terms |
||
14 |
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
||
15 |
* |
||
16 |
* Copyright remains Eric Young's, and as such any Copyright notices in |
||
17 |
* the code are not to be removed. |
||
18 |
* If this package is used in a product, Eric Young should be given attribution |
||
19 |
* as the author of the parts of the library used. |
||
20 |
* This can be in the form of a textual message at program startup or |
||
21 |
* in documentation (online or textual) provided with the package. |
||
22 |
* |
||
23 |
* Redistribution and use in source and binary forms, with or without |
||
24 |
* modification, are permitted provided that the following conditions |
||
25 |
* are met: |
||
26 |
* 1. Redistributions of source code must retain the copyright |
||
27 |
* notice, this list of conditions and the following disclaimer. |
||
28 |
* 2. Redistributions in binary form must reproduce the above copyright |
||
29 |
* notice, this list of conditions and the following disclaimer in the |
||
30 |
* documentation and/or other materials provided with the distribution. |
||
31 |
* 3. All advertising materials mentioning features or use of this software |
||
32 |
* must display the following acknowledgement: |
||
33 |
* "This product includes cryptographic software written by |
||
34 |
* Eric Young (eay@cryptsoft.com)" |
||
35 |
* The word 'cryptographic' can be left out if the rouines from the library |
||
36 |
* being used are not cryptographic related :-). |
||
37 |
* 4. If you include any Windows specific code (or a derivative thereof) from |
||
38 |
* the apps directory (application code) you must include an acknowledgement: |
||
39 |
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
||
40 |
* |
||
41 |
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
||
42 |
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
43 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||
44 |
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
||
45 |
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||
46 |
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
||
47 |
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||
48 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
49 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
||
50 |
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
||
51 |
* SUCH DAMAGE. |
||
52 |
* |
||
53 |
* The licence and distribution terms for any publically available version or |
||
54 |
* derivative of this code cannot be changed. i.e. this code cannot simply be |
||
55 |
* copied and put under another distribution licence |
||
56 |
* [including the GNU Public Licence.] |
||
57 |
*/ |
||
58 |
|||
59 |
#ifndef BN_DEBUG |
||
60 |
# undef NDEBUG /* avoid conflicting definitions */ |
||
61 |
# define NDEBUG |
||
62 |
#endif |
||
63 |
|||
64 |
#include <assert.h> |
||
65 |
#include <stdio.h> |
||
66 |
#include <string.h> |
||
67 |
|||
68 |
#include <openssl/opensslconf.h> |
||
69 |
|||
70 |
#include "bn_lcl.h" |
||
71 |
|||
72 |
#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) |
||
73 |
/* Here follows specialised variants of bn_add_words() and |
||
74 |
bn_sub_words(). They have the property performing operations on |
||
75 |
arrays of different sizes. The sizes of those arrays is expressed through |
||
76 |
cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl, |
||
77 |
which is the delta between the two lengths, calculated as len(a)-len(b). |
||
78 |
All lengths are the number of BN_ULONGs... For the operations that require |
||
79 |
a result array as parameter, it must have the length cl+abs(dl). |
||
80 |
These functions should probably end up in bn_asm.c as soon as there are |
||
81 |
assembler counterparts for the systems that use assembler files. */ |
||
82 |
|||
83 |
BN_ULONG |
||
84 |
bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, |
||
85 |
int dl) |
||
86 |
{ |
||
87 |
BN_ULONG c, t; |
||
88 |
|||
89 |
assert(cl >= 0); |
||
90 |
1249468 |
c = bn_sub_words(r, a, b, cl); |
|
91 |
|||
92 |
✓✓ | 624734 |
if (dl == 0) |
93 |
605355 |
return c; |
|
94 |
|||
95 |
19379 |
r += cl; |
|
96 |
19379 |
a += cl; |
|
97 |
19379 |
b += cl; |
|
98 |
|||
99 |
✓✓ | 19379 |
if (dl < 0) { |
100 |
#ifdef BN_COUNT |
||
101 |
fprintf(stderr, |
||
102 |
" bn_sub_part_words %d + %d (dl < 0, c = %d)\n", |
||
103 |
cl, dl, c); |
||
104 |
#endif |
||
105 |
220 |
for (;;) { |
|
106 |
220 |
t = b[0]; |
|
107 |
220 |
r[0] = (0 - t - c) & BN_MASK2; |
|
108 |
✗✓ | 220 |
if (t != 0) |
109 |
c = 1; |
||
110 |
✓✗ | 220 |
if (++dl >= 0) |
111 |
break; |
||
112 |
|||
113 |
220 |
t = b[1]; |
|
114 |
220 |
r[1] = (0 - t - c) & BN_MASK2; |
|
115 |
✗✓ | 220 |
if (t != 0) |
116 |
c = 1; |
||
117 |
✓✗ | 220 |
if (++dl >= 0) |
118 |
break; |
||
119 |
|||
120 |
220 |
t = b[2]; |
|
121 |
220 |
r[2] = (0 - t - c) & BN_MASK2; |
|
122 |
✗✓ | 220 |
if (t != 0) |
123 |
c = 1; |
||
124 |
✓✓ | 220 |
if (++dl >= 0) |
125 |
break; |
||
126 |
|||
127 |
196 |
t = b[3]; |
|
128 |
196 |
r[3] = (0 - t - c) & BN_MASK2; |
|
129 |
✗✓ | 196 |
if (t != 0) |
130 |
c = 1; |
||
131 |
✓✗ | 196 |
if (++dl >= 0) |
132 |
break; |
||
133 |
|||
134 |
196 |
b += 4; |
|
135 |
196 |
r += 4; |
|
136 |
} |
||
137 |
} else { |
||
138 |
int save_dl = dl; |
||
139 |
#ifdef BN_COUNT |
||
140 |
fprintf(stderr, |
||
141 |
" bn_sub_part_words %d + %d (dl > 0, c = %d)\n", |
||
142 |
cl, dl, c); |
||
143 |
#endif |
||
144 |
✓✓ | 44560 |
while (c) { |
145 |
14276 |
t = a[0]; |
|
146 |
14276 |
r[0] = (t - c) & BN_MASK2; |
|
147 |
✓✓ | 14276 |
if (t != 0) |
148 |
14273 |
c = 0; |
|
149 |
✓✓ | 14276 |
if (--dl <= 0) |
150 |
break; |
||
151 |
|||
152 |
2929 |
t = a[1]; |
|
153 |
2929 |
r[1] = (t - c) & BN_MASK2; |
|
154 |
✓✓ | 2929 |
if (t != 0) |
155 |
2923 |
c = 0; |
|
156 |
✓✗ | 2929 |
if (--dl <= 0) |
157 |
break; |
||
158 |
|||
159 |
2929 |
t = a[2]; |
|
160 |
2929 |
r[2] = (t - c) & BN_MASK2; |
|
161 |
✓✗ | 2929 |
if (t != 0) |
162 |
2929 |
c = 0; |
|
163 |
✓✗ | 2929 |
if (--dl <= 0) |
164 |
break; |
||
165 |
|||
166 |
2929 |
t = a[3]; |
|
167 |
2929 |
r[3] = (t - c) & BN_MASK2; |
|
168 |
✓✓ | 2929 |
if (t != 0) |
169 |
2925 |
c = 0; |
|
170 |
✓✓ | 2929 |
if (--dl <= 0) |
171 |
break; |
||
172 |
|||
173 |
save_dl = dl; |
||
174 |
2925 |
a += 4; |
|
175 |
2925 |
r += 4; |
|
176 |
} |
||
177 |
✓✓ | 19355 |
if (dl > 0) { |
178 |
#ifdef BN_COUNT |
||
179 |
fprintf(stderr, |
||
180 |
" bn_sub_part_words %d + %d (dl > 0, c == 0)\n", |
||
181 |
cl, dl); |
||
182 |
#endif |
||
183 |
✗✓ | 8004 |
if (save_dl > dl) { |
184 |
switch (save_dl - dl) { |
||
185 |
case 1: |
||
186 |
r[1] = a[1]; |
||
187 |
if (--dl <= 0) |
||
188 |
break; |
||
189 |
case 2: |
||
190 |
r[2] = a[2]; |
||
191 |
if (--dl <= 0) |
||
192 |
break; |
||
193 |
case 3: |
||
194 |
r[3] = a[3]; |
||
195 |
if (--dl <= 0) |
||
196 |
break; |
||
197 |
} |
||
198 |
a += 4; |
||
199 |
r += 4; |
||
200 |
} |
||
201 |
} |
||
202 |
✓✓ | 19355 |
if (dl > 0) { |
203 |
#ifdef BN_COUNT |
||
204 |
fprintf(stderr, |
||
205 |
" bn_sub_part_words %d + %d (dl > 0, copy)\n", |
||
206 |
cl, dl); |
||
207 |
#endif |
||
208 |
31928 |
for (;;) { |
|
209 |
31928 |
r[0] = a[0]; |
|
210 |
✓✓ | 31928 |
if (--dl <= 0) |
211 |
break; |
||
212 |
27741 |
r[1] = a[1]; |
|
213 |
✓✓ | 27741 |
if (--dl <= 0) |
214 |
break; |
||
215 |
27157 |
r[2] = a[2]; |
|
216 |
✓✓ | 27157 |
if (--dl <= 0) |
217 |
break; |
||
218 |
26673 |
r[3] = a[3]; |
|
219 |
✓✓ | 26673 |
if (--dl <= 0) |
220 |
break; |
||
221 |
|||
222 |
23924 |
a += 4; |
|
223 |
23924 |
r += 4; |
|
224 |
} |
||
225 |
} |
||
226 |
} |
||
227 |
19379 |
return c; |
|
228 |
624734 |
} |
|
229 |
#endif |
||
230 |
|||
231 |
BN_ULONG |
||
232 |
bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, |
||
233 |
int dl) |
||
234 |
{ |
||
235 |
BN_ULONG c, l, t; |
||
236 |
|||
237 |
assert(cl >= 0); |
||
238 |
c = bn_add_words(r, a, b, cl); |
||
239 |
|||
240 |
if (dl == 0) |
||
241 |
return c; |
||
242 |
|||
243 |
r += cl; |
||
244 |
a += cl; |
||
245 |
b += cl; |
||
246 |
|||
247 |
if (dl < 0) { |
||
248 |
int save_dl = dl; |
||
249 |
#ifdef BN_COUNT |
||
250 |
fprintf(stderr, |
||
251 |
" bn_add_part_words %d + %d (dl < 0, c = %d)\n", |
||
252 |
cl, dl, c); |
||
253 |
#endif |
||
254 |
while (c) { |
||
255 |
l = (c + b[0]) & BN_MASK2; |
||
256 |
c = (l < c); |
||
257 |
r[0] = l; |
||
258 |
if (++dl >= 0) |
||
259 |
break; |
||
260 |
|||
261 |
l = (c + b[1]) & BN_MASK2; |
||
262 |
c = (l < c); |
||
263 |
r[1] = l; |
||
264 |
if (++dl >= 0) |
||
265 |
break; |
||
266 |
|||
267 |
l = (c + b[2]) & BN_MASK2; |
||
268 |
c = (l < c); |
||
269 |
r[2] = l; |
||
270 |
if (++dl >= 0) |
||
271 |
break; |
||
272 |
|||
273 |
l = (c + b[3]) & BN_MASK2; |
||
274 |
c = (l < c); |
||
275 |
r[3] = l; |
||
276 |
if (++dl >= 0) |
||
277 |
break; |
||
278 |
|||
279 |
save_dl = dl; |
||
280 |
b += 4; |
||
281 |
r += 4; |
||
282 |
} |
||
283 |
if (dl < 0) { |
||
284 |
#ifdef BN_COUNT |
||
285 |
fprintf(stderr, |
||
286 |
" bn_add_part_words %d + %d (dl < 0, c == 0)\n", |
||
287 |
cl, dl); |
||
288 |
#endif |
||
289 |
if (save_dl < dl) { |
||
290 |
switch (dl - save_dl) { |
||
291 |
case 1: |
||
292 |
r[1] = b[1]; |
||
293 |
if (++dl >= 0) |
||
294 |
break; |
||
295 |
case 2: |
||
296 |
r[2] = b[2]; |
||
297 |
if (++dl >= 0) |
||
298 |
break; |
||
299 |
case 3: |
||
300 |
r[3] = b[3]; |
||
301 |
if (++dl >= 0) |
||
302 |
break; |
||
303 |
} |
||
304 |
b += 4; |
||
305 |
r += 4; |
||
306 |
} |
||
307 |
} |
||
308 |
if (dl < 0) { |
||
309 |
#ifdef BN_COUNT |
||
310 |
fprintf(stderr, |
||
311 |
" bn_add_part_words %d + %d (dl < 0, copy)\n", |
||
312 |
cl, dl); |
||
313 |
#endif |
||
314 |
for (;;) { |
||
315 |
r[0] = b[0]; |
||
316 |
if (++dl >= 0) |
||
317 |
break; |
||
318 |
r[1] = b[1]; |
||
319 |
if (++dl >= 0) |
||
320 |
break; |
||
321 |
r[2] = b[2]; |
||
322 |
if (++dl >= 0) |
||
323 |
break; |
||
324 |
r[3] = b[3]; |
||
325 |
if (++dl >= 0) |
||
326 |
break; |
||
327 |
|||
328 |
b += 4; |
||
329 |
r += 4; |
||
330 |
} |
||
331 |
} |
||
332 |
} else { |
||
333 |
int save_dl = dl; |
||
334 |
#ifdef BN_COUNT |
||
335 |
fprintf(stderr, |
||
336 |
" bn_add_part_words %d + %d (dl > 0)\n", cl, dl); |
||
337 |
#endif |
||
338 |
while (c) { |
||
339 |
t = (a[0] + c) & BN_MASK2; |
||
340 |
c = (t < c); |
||
341 |
r[0] = t; |
||
342 |
if (--dl <= 0) |
||
343 |
break; |
||
344 |
|||
345 |
t = (a[1] + c) & BN_MASK2; |
||
346 |
c = (t < c); |
||
347 |
r[1] = t; |
||
348 |
if (--dl <= 0) |
||
349 |
break; |
||
350 |
|||
351 |
t = (a[2] + c) & BN_MASK2; |
||
352 |
c = (t < c); |
||
353 |
r[2] = t; |
||
354 |
if (--dl <= 0) |
||
355 |
break; |
||
356 |
|||
357 |
t = (a[3] + c) & BN_MASK2; |
||
358 |
c = (t < c); |
||
359 |
r[3] = t; |
||
360 |
if (--dl <= 0) |
||
361 |
break; |
||
362 |
|||
363 |
save_dl = dl; |
||
364 |
a += 4; |
||
365 |
r += 4; |
||
366 |
} |
||
367 |
#ifdef BN_COUNT |
||
368 |
fprintf(stderr, |
||
369 |
" bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); |
||
370 |
#endif |
||
371 |
if (dl > 0) { |
||
372 |
if (save_dl > dl) { |
||
373 |
switch (save_dl - dl) { |
||
374 |
case 1: |
||
375 |
r[1] = a[1]; |
||
376 |
if (--dl <= 0) |
||
377 |
break; |
||
378 |
case 2: |
||
379 |
r[2] = a[2]; |
||
380 |
if (--dl <= 0) |
||
381 |
break; |
||
382 |
case 3: |
||
383 |
r[3] = a[3]; |
||
384 |
if (--dl <= 0) |
||
385 |
break; |
||
386 |
} |
||
387 |
a += 4; |
||
388 |
r += 4; |
||
389 |
} |
||
390 |
} |
||
391 |
if (dl > 0) { |
||
392 |
#ifdef BN_COUNT |
||
393 |
fprintf(stderr, |
||
394 |
" bn_add_part_words %d + %d (dl > 0, copy)\n", |
||
395 |
cl, dl); |
||
396 |
#endif |
||
397 |
for (;;) { |
||
398 |
r[0] = a[0]; |
||
399 |
if (--dl <= 0) |
||
400 |
break; |
||
401 |
r[1] = a[1]; |
||
402 |
if (--dl <= 0) |
||
403 |
break; |
||
404 |
r[2] = a[2]; |
||
405 |
if (--dl <= 0) |
||
406 |
break; |
||
407 |
r[3] = a[3]; |
||
408 |
if (--dl <= 0) |
||
409 |
break; |
||
410 |
|||
411 |
a += 4; |
||
412 |
r += 4; |
||
413 |
} |
||
414 |
} |
||
415 |
} |
||
416 |
return c; |
||
417 |
} |
||
418 |
|||
419 |
#ifdef BN_RECURSION |
||
420 |
/* Karatsuba recursive multiplication algorithm |
||
421 |
* (cf. Knuth, The Art of Computer Programming, Vol. 2) */ |
||
422 |
|||
423 |
/* r is 2*n2 words in size, |
||
424 |
* a and b are both n2 words in size. |
||
425 |
* n2 must be a power of 2. |
||
426 |
* We multiply and return the result. |
||
427 |
* t must be 2*n2 words in size |
||
428 |
* We calculate |
||
429 |
* a[0]*b[0] |
||
430 |
* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) |
||
431 |
* a[1]*b[1] |
||
432 |
*/ |
||
433 |
/* dnX may not be positive, but n2/2+dnX has to be */ |
||
434 |
void |
||
435 |
bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, |
||
436 |
int dnb, BN_ULONG *t) |
||
437 |
{ |
||
438 |
647936 |
int n = n2 / 2, c1, c2; |
|
439 |
323968 |
int tna = n + dna, tnb = n + dnb; |
|
440 |
unsigned int neg, zero; |
||
441 |
BN_ULONG ln, lo, *p; |
||
442 |
|||
443 |
# ifdef BN_COUNT |
||
444 |
fprintf(stderr, " bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb); |
||
445 |
# endif |
||
446 |
# ifdef BN_MUL_COMBA |
||
447 |
# if 0 |
||
448 |
if (n2 == 4) { |
||
449 |
bn_mul_comba4(r, a, b); |
||
450 |
return; |
||
451 |
} |
||
452 |
# endif |
||
453 |
/* Only call bn_mul_comba 8 if n2 == 8 and the |
||
454 |
* two arrays are complete [steve] |
||
455 |
*/ |
||
456 |
✓✓ | 323968 |
if (n2 == 8 && dna == 0 && dnb == 0) { |
457 |
9640 |
bn_mul_comba8(r, a, b); |
|
458 |
9640 |
return; |
|
459 |
} |
||
460 |
# endif /* BN_MUL_COMBA */ |
||
461 |
/* Else do normal multiply */ |
||
462 |
✓✓ | 314328 |
if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
463 |
5513 |
bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); |
|
464 |
✓✗ | 5513 |
if ((dna + dnb) < 0) |
465 |
11026 |
memset(&r[2*n2 + dna + dnb], 0, |
|
466 |
5513 |
sizeof(BN_ULONG) * -(dna + dnb)); |
|
467 |
5513 |
return; |
|
468 |
} |
||
469 |
/* r=(a[0]-a[1])*(b[1]-b[0]) */ |
||
470 |
617630 |
c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); |
|
471 |
617630 |
c2 = bn_cmp_part_words(&(b[n]), b,tnb, tnb - n); |
|
472 |
zero = neg = 0; |
||
473 |
✓✗✓✗ ✗✓✓✗ ✓✓ |
617630 |
switch (c1 * 3 + c2) { |
474 |
case -4: |
||
475 |
54707 |
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
|
476 |
54707 |
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
|
477 |
54707 |
break; |
|
478 |
case -3: |
||
479 |
zero = 1; |
||
480 |
break; |
||
481 |
case -2: |
||
482 |
58842 |
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
|
483 |
58842 |
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ |
|
484 |
neg = 1; |
||
485 |
58842 |
break; |
|
486 |
case -1: |
||
487 |
case 0: |
||
488 |
case 1: |
||
489 |
zero = 1; |
||
490 |
108 |
break; |
|
491 |
case 2: |
||
492 |
110941 |
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ |
|
493 |
110941 |
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
|
494 |
neg = 1; |
||
495 |
110941 |
break; |
|
496 |
case 3: |
||
497 |
zero = 1; |
||
498 |
break; |
||
499 |
case 4: |
||
500 |
84217 |
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); |
|
501 |
84217 |
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); |
|
502 |
84217 |
break; |
|
503 |
} |
||
504 |
|||
505 |
# ifdef BN_MUL_COMBA |
||
506 |
✗✓ | 308815 |
if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take |
507 |
extra args to do this well */ |
||
508 |
{ |
||
509 |
if (!zero) |
||
510 |
bn_mul_comba4(&(t[n2]), t, &(t[n])); |
||
511 |
else |
||
512 |
memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); |
||
513 |
|||
514 |
bn_mul_comba4(r, a, b); |
||
515 |
bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); |
||
516 |
✓✓ | 308815 |
} else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could |
517 |
take extra args to do this |
||
518 |
well */ |
||
519 |
{ |
||
520 |
✓✓ | 233198 |
if (!zero) |
521 |
233126 |
bn_mul_comba8(&(t[n2]), t, &(t[n])); |
|
522 |
else |
||
523 |
72 |
memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); |
|
524 |
|||
525 |
233198 |
bn_mul_comba8(r, a, b); |
|
526 |
233198 |
bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); |
|
527 |
233198 |
} else |
|
528 |
# endif /* BN_MUL_COMBA */ |
||
529 |
{ |
||
530 |
75617 |
p = &(t[n2 * 2]); |
|
531 |
✓✓ | 75617 |
if (!zero) |
532 |
75581 |
bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); |
|
533 |
else |
||
534 |
36 |
memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); |
|
535 |
75617 |
bn_mul_recursive(r, a, b, n, 0, 0, p); |
|
536 |
75617 |
bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); |
|
537 |
} |
||
538 |
|||
539 |
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign |
||
540 |
* r[10] holds (a[0]*b[0]) |
||
541 |
* r[32] holds (b[1]*b[1]) |
||
542 |
*/ |
||
543 |
|||
544 |
308815 |
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); |
|
545 |
|||
546 |
✓✓ | 308815 |
if (neg) /* if t[32] is negative */ |
547 |
{ |
||
548 |
169783 |
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); |
|
549 |
169783 |
} else { |
|
550 |
/* Might have a carry */ |
||
551 |
139032 |
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); |
|
552 |
} |
||
553 |
|||
554 |
/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) |
||
555 |
* r[10] holds (a[0]*b[0]) |
||
556 |
* r[32] holds (b[1]*b[1]) |
||
557 |
* c1 holds the carry bits |
||
558 |
*/ |
||
559 |
308815 |
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); |
|
560 |
✓✓ | 308815 |
if (c1) { |
561 |
144169 |
p = &(r[n + n2]); |
|
562 |
144169 |
lo= *p; |
|
563 |
144169 |
ln = (lo + c1) & BN_MASK2; |
|
564 |
144169 |
*p = ln; |
|
565 |
|||
566 |
/* The overflow will stop before we over write |
||
567 |
* words we should not overwrite */ |
||
568 |
✗✓ | 144169 |
if (ln < (BN_ULONG)c1) { |
569 |
do { |
||
570 |
p++; |
||
571 |
lo= *p; |
||
572 |
ln = (lo + 1) & BN_MASK2; |
||
573 |
*p = ln; |
||
574 |
} while (ln == 0); |
||
575 |
} |
||
576 |
} |
||
577 |
632783 |
} |
|
578 |
|||
579 |
/* n+tn is the word length |
||
580 |
* t needs to be n*4 is size, as does r */ |
||
581 |
/* tnX may not be negative but less than n */ |
||
582 |
void |
||
583 |
bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, |
||
584 |
int tnb, BN_ULONG *t) |
||
585 |
{ |
||
586 |
7320 |
int i, j, n2 = n * 2; |
|
587 |
int c1, c2, neg; |
||
588 |
BN_ULONG ln, lo, *p; |
||
589 |
|||
590 |
# ifdef BN_COUNT |
||
591 |
fprintf(stderr, " bn_mul_part_recursive (%d%+d) * (%d%+d)\n", |
||
592 |
n, tna, n, tnb); |
||
593 |
# endif |
||
594 |
✗✓ | 3660 |
if (n < 8) { |
595 |
bn_mul_normal(r, a, n + tna, b, n + tnb); |
||
596 |
return; |
||
597 |
} |
||
598 |
|||
599 |
/* r=(a[0]-a[1])*(b[1]-b[0]) */ |
||
600 |
7320 |
c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); |
|
601 |
7320 |
c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); |
|
602 |
neg = 0; |
||
603 |
✗✗✓✗ ✗✗✓✗ ✗✓ |
7320 |
switch (c1 * 3 + c2) { |
604 |
case -4: |
||
605 |
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
||
606 |
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
||
607 |
break; |
||
608 |
case -3: |
||
609 |
/* break; */ |
||
610 |
case -2: |
||
611 |
12 |
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
|
612 |
12 |
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ |
|
613 |
neg = 1; |
||
614 |
12 |
break; |
|
615 |
case -1: |
||
616 |
case 0: |
||
617 |
case 1: |
||
618 |
/* break; */ |
||
619 |
case 2: |
||
620 |
3648 |
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ |
|
621 |
3648 |
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
|
622 |
neg = 1; |
||
623 |
3648 |
break; |
|
624 |
case 3: |
||
625 |
/* break; */ |
||
626 |
case 4: |
||
627 |
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); |
||
628 |
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); |
||
629 |
break; |
||
630 |
} |
||
631 |
/* The zero case isn't yet implemented here. The speedup |
||
632 |
would probably be negligible. */ |
||
633 |
# if 0 |
||
634 |
if (n == 4) { |
||
635 |
bn_mul_comba4(&(t[n2]), t, &(t[n])); |
||
636 |
bn_mul_comba4(r, a, b); |
||
637 |
bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); |
||
638 |
memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); |
||
639 |
} else |
||
640 |
# endif |
||
641 |
✓✓ | 3660 |
if (n == 8) { |
642 |
204 |
bn_mul_comba8(&(t[n2]), t, &(t[n])); |
|
643 |
204 |
bn_mul_comba8(r, a, b); |
|
644 |
204 |
bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); |
|
645 |
408 |
memset(&(r[n2 + tna + tnb]), 0, |
|
646 |
204 |
sizeof(BN_ULONG) * (n2 - tna - tnb)); |
|
647 |
204 |
} else { |
|
648 |
3456 |
p = &(t[n2*2]); |
|
649 |
3456 |
bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); |
|
650 |
3456 |
bn_mul_recursive(r, a, b, n, 0, 0, p); |
|
651 |
3456 |
i = n / 2; |
|
652 |
/* If there is only a bottom half to the number, |
||
653 |
* just do it */ |
||
654 |
✓✓ | 3456 |
if (tna > tnb) |
655 |
1002 |
j = tna - i; |
|
656 |
else |
||
657 |
2454 |
j = tnb - i; |
|
658 |
✓✓ | 3456 |
if (j == 0) { |
659 |
4824 |
bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), |
|
660 |
2412 |
i, tna - i, tnb - i, p); |
|
661 |
4824 |
memset(&(r[n2 + i * 2]), 0, |
|
662 |
2412 |
sizeof(BN_ULONG) * (n2 - i * 2)); |
|
663 |
2412 |
} |
|
664 |
✓✓ | 1044 |
else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ |
665 |
{ |
||
666 |
234 |
bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), |
|
667 |
234 |
i, tna - i, tnb - i, p); |
|
668 |
468 |
memset(&(r[n2 + tna + tnb]), 0, |
|
669 |
234 |
sizeof(BN_ULONG) * (n2 - tna - tnb)); |
|
670 |
234 |
} |
|
671 |
else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ |
||
672 |
{ |
||
673 |
810 |
memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); |
|
674 |
✓✓ | 1620 |
if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && |
675 |
810 |
tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
|
676 |
800 |
bn_mul_normal(&(r[n2]), &(a[n]), tna, |
|
677 |
&(b[n]), tnb); |
||
678 |
800 |
} else { |
|
679 |
12 |
for (;;) { |
|
680 |
12 |
i /= 2; |
|
681 |
/* these simplified conditions work |
||
682 |
* exclusively because difference |
||
683 |
* between tna and tnb is 1 or 0 */ |
||
684 |
✓✓✗✓ |
14 |
if (i < tna || i < tnb) { |
685 |
10 |
bn_mul_part_recursive(&(r[n2]), |
|
686 |
&(a[n]), &(b[n]), i, |
||
687 |
10 |
tna - i, tnb - i, p); |
|
688 |
10 |
break; |
|
689 |
✓✗✗✓ |
4 |
} else if (i == tna || i == tnb) { |
690 |
bn_mul_recursive(&(r[n2]), |
||
691 |
&(a[n]), &(b[n]), i, |
||
692 |
tna - i, tnb - i, p); |
||
693 |
break; |
||
694 |
} |
||
695 |
} |
||
696 |
} |
||
697 |
} |
||
698 |
} |
||
699 |
|||
700 |
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign |
||
701 |
* r[10] holds (a[0]*b[0]) |
||
702 |
* r[32] holds (b[1]*b[1]) |
||
703 |
*/ |
||
704 |
|||
705 |
3660 |
c1 = (int)(bn_add_words(t, r,&(r[n2]), n2)); |
|
706 |
|||
707 |
✓✗ | 3660 |
if (neg) /* if t[32] is negative */ |
708 |
{ |
||
709 |
3660 |
c1 -= (int)(bn_sub_words(&(t[n2]), t,&(t[n2]), n2)); |
|
710 |
3660 |
} else { |
|
711 |
/* Might have a carry */ |
||
712 |
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); |
||
713 |
} |
||
714 |
|||
715 |
/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) |
||
716 |
* r[10] holds (a[0]*b[0]) |
||
717 |
* r[32] holds (b[1]*b[1]) |
||
718 |
* c1 holds the carry bits |
||
719 |
*/ |
||
720 |
3660 |
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); |
|
721 |
✗✓ | 3660 |
if (c1) { |
722 |
p = &(r[n + n2]); |
||
723 |
lo= *p; |
||
724 |
ln = (lo + c1)&BN_MASK2; |
||
725 |
*p = ln; |
||
726 |
|||
727 |
/* The overflow will stop before we over write |
||
728 |
* words we should not overwrite */ |
||
729 |
if (ln < (BN_ULONG)c1) { |
||
730 |
do { |
||
731 |
p++; |
||
732 |
lo= *p; |
||
733 |
ln = (lo + 1) & BN_MASK2; |
||
734 |
*p = ln; |
||
735 |
} while (ln == 0); |
||
736 |
} |
||
737 |
} |
||
738 |
7320 |
} |
|
739 |
|||
740 |
/* a and b must be the same size, which is n2. |
||
741 |
* r needs to be n2 words and t needs to be n2*2 |
||
742 |
*/ |
||
743 |
void |
||
744 |
bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *t) |
||
745 |
{ |
||
746 |
int n = n2 / 2; |
||
747 |
|||
748 |
# ifdef BN_COUNT |
||
749 |
fprintf(stderr, " bn_mul_low_recursive %d * %d\n",n2,n2); |
||
750 |
# endif |
||
751 |
|||
752 |
bn_mul_recursive(r, a, b, n, 0, 0, &(t[0])); |
||
753 |
if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { |
||
754 |
bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2])); |
||
755 |
bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); |
||
756 |
bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2])); |
||
757 |
bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); |
||
758 |
} else { |
||
759 |
bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n); |
||
760 |
bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n); |
||
761 |
bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); |
||
762 |
bn_add_words(&(r[n]), &(r[n]), &(t[n]), n); |
||
763 |
} |
||
764 |
} |
||
765 |
|||
766 |
/* a and b must be the same size, which is n2. |
||
767 |
* r needs to be n2 words and t needs to be n2*2 |
||
768 |
* l is the low words of the output. |
||
769 |
* t needs to be n2*3 |
||
770 |
*/ |
||
771 |
void |
||
772 |
bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, |
||
773 |
BN_ULONG *t) |
||
774 |
{ |
||
775 |
int i, n; |
||
776 |
int c1, c2; |
||
777 |
int neg, oneg, zero; |
||
778 |
BN_ULONG ll, lc, *lp, *mp; |
||
779 |
|||
780 |
# ifdef BN_COUNT |
||
781 |
fprintf(stderr, " bn_mul_high %d * %d\n",n2,n2); |
||
782 |
# endif |
||
783 |
n = n2 / 2; |
||
784 |
|||
785 |
/* Calculate (al-ah)*(bh-bl) */ |
||
786 |
neg = zero = 0; |
||
787 |
c1 = bn_cmp_words(&(a[0]), &(a[n]), n); |
||
788 |
c2 = bn_cmp_words(&(b[n]), &(b[0]), n); |
||
789 |
switch (c1 * 3 + c2) { |
||
790 |
case -4: |
||
791 |
bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); |
||
792 |
bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); |
||
793 |
break; |
||
794 |
case -3: |
||
795 |
zero = 1; |
||
796 |
break; |
||
797 |
case -2: |
||
798 |
bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); |
||
799 |
bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); |
||
800 |
neg = 1; |
||
801 |
break; |
||
802 |
case -1: |
||
803 |
case 0: |
||
804 |
case 1: |
||
805 |
zero = 1; |
||
806 |
break; |
||
807 |
case 2: |
||
808 |
bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); |
||
809 |
bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); |
||
810 |
neg = 1; |
||
811 |
break; |
||
812 |
case 3: |
||
813 |
zero = 1; |
||
814 |
break; |
||
815 |
case 4: |
||
816 |
bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); |
||
817 |
bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); |
||
818 |
break; |
||
819 |
} |
||
820 |
|||
821 |
oneg = neg; |
||
822 |
/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ |
||
823 |
/* r[10] = (a[1]*b[1]) */ |
||
824 |
# ifdef BN_MUL_COMBA |
||
825 |
if (n == 8) { |
||
826 |
bn_mul_comba8(&(t[0]), &(r[0]), &(r[n])); |
||
827 |
bn_mul_comba8(r, &(a[n]), &(b[n])); |
||
828 |
} else |
||
829 |
# endif |
||
830 |
{ |
||
831 |
bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2])); |
||
832 |
bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2])); |
||
833 |
} |
||
834 |
|||
835 |
/* s0 == low(al*bl) |
||
836 |
* s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) |
||
837 |
* We know s0 and s1 so the only unknown is high(al*bl) |
||
838 |
* high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) |
||
839 |
* high(al*bl) == s1 - (r[0]+l[0]+t[0]) |
||
840 |
*/ |
||
841 |
if (l != NULL) { |
||
842 |
lp = &(t[n2 + n]); |
||
843 |
c1 = (int)(bn_add_words(lp, &(r[0]), &(l[0]), n)); |
||
844 |
} else { |
||
845 |
c1 = 0; |
||
846 |
lp = &(r[0]); |
||
847 |
} |
||
848 |
|||
849 |
if (neg) |
||
850 |
neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n)); |
||
851 |
else { |
||
852 |
bn_add_words(&(t[n2]), lp, &(t[0]), n); |
||
853 |
neg = 0; |
||
854 |
} |
||
855 |
|||
856 |
if (l != NULL) { |
||
857 |
bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n); |
||
858 |
} else { |
||
859 |
lp = &(t[n2 + n]); |
||
860 |
mp = &(t[n2]); |
||
861 |
for (i = 0; i < n; i++) |
||
862 |
lp[i] = ((~mp[i]) + 1) & BN_MASK2; |
||
863 |
} |
||
864 |
|||
865 |
/* s[0] = low(al*bl) |
||
866 |
* t[3] = high(al*bl) |
||
867 |
* t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign |
||
868 |
* r[10] = (a[1]*b[1]) |
||
869 |
*/ |
||
870 |
/* R[10] = al*bl |
||
871 |
* R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) |
||
872 |
* R[32] = ah*bh |
||
873 |
*/ |
||
874 |
/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) |
||
875 |
* R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) |
||
876 |
* R[3]=r[1]+(carry/borrow) |
||
877 |
*/ |
||
878 |
if (l != NULL) { |
||
879 |
lp = &(t[n2]); |
||
880 |
c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n)); |
||
881 |
} else { |
||
882 |
lp = &(t[n2 + n]); |
||
883 |
c1 = 0; |
||
884 |
} |
||
885 |
c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n)); |
||
886 |
if (oneg) |
||
887 |
c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n)); |
||
888 |
else |
||
889 |
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n)); |
||
890 |
|||
891 |
c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n)); |
||
892 |
c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n)); |
||
893 |
if (oneg) |
||
894 |
c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n)); |
||
895 |
else |
||
896 |
c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n)); |
||
897 |
|||
898 |
if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ |
||
899 |
{ |
||
900 |
i = 0; |
||
901 |
if (c1 > 0) { |
||
902 |
lc = c1; |
||
903 |
do { |
||
904 |
ll = (r[i] + lc) & BN_MASK2; |
||
905 |
r[i++] = ll; |
||
906 |
lc = (lc > ll); |
||
907 |
} while (lc); |
||
908 |
} else { |
||
909 |
lc = -c1; |
||
910 |
do { |
||
911 |
ll = r[i]; |
||
912 |
r[i++] = (ll - lc) & BN_MASK2; |
||
913 |
lc = (lc > ll); |
||
914 |
} while (lc); |
||
915 |
} |
||
916 |
} |
||
917 |
if (c2 != 0) /* Add starting at r[1] */ |
||
918 |
{ |
||
919 |
i = n; |
||
920 |
if (c2 > 0) { |
||
921 |
lc = c2; |
||
922 |
do { |
||
923 |
ll = (r[i] + lc) & BN_MASK2; |
||
924 |
r[i++] = ll; |
||
925 |
lc = (lc > ll); |
||
926 |
} while (lc); |
||
927 |
} else { |
||
928 |
lc = -c2; |
||
929 |
do { |
||
930 |
ll = r[i]; |
||
931 |
r[i++] = (ll - lc) & BN_MASK2; |
||
932 |
lc = (lc > ll); |
||
933 |
} while (lc); |
||
934 |
} |
||
935 |
} |
||
936 |
} |
||
937 |
#endif /* BN_RECURSION */ |
||
938 |
|||
939 |
int |
||
940 |
BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
||
941 |
{ |
||
942 |
int ret = 0; |
||
943 |
int top, al, bl; |
||
944 |
BIGNUM *rr; |
||
945 |
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
||
946 |
int i; |
||
947 |
#endif |
||
948 |
#ifdef BN_RECURSION |
||
949 |
BIGNUM *t = NULL; |
||
950 |
int j = 0, k; |
||
951 |
#endif |
||
952 |
|||
953 |
#ifdef BN_COUNT |
||
954 |
fprintf(stderr, "BN_mul %d * %d\n",a->top,b->top); |
||
955 |
#endif |
||
956 |
|||
957 |
bn_check_top(a); |
||
958 |
bn_check_top(b); |
||
959 |
bn_check_top(r); |
||
960 |
|||
961 |
11299888 |
al = a->top; |
|
962 |
5649944 |
bl = b->top; |
|
963 |
|||
964 |
✓✓ | 5649944 |
if ((al == 0) || (bl == 0)) { |
965 |
48934 |
BN_zero(r); |
|
966 |
48934 |
return (1); |
|
967 |
} |
||
968 |
5601010 |
top = al + bl; |
|
969 |
|||
970 |
5601010 |
BN_CTX_start(ctx); |
|
971 |
✓✓✓✓ |
10959711 |
if ((r == a) || (r == b)) { |
972 |
✓✗ | 242357 |
if ((rr = BN_CTX_get(ctx)) == NULL) |
973 |
goto err; |
||
974 |
} else |
||
975 |
rr = r; |
||
976 |
5601010 |
rr->neg = a->neg ^ b->neg; |
|
977 |
|||
978 |
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
||
979 |
5601010 |
i = al - bl; |
|
980 |
#endif |
||
981 |
#ifdef BN_MUL_COMBA |
||
982 |
✓✓ | 11202020 |
if (i == 0) { |
983 |
# if 0 |
||
984 |
if (al == 4) { |
||
985 |
if (bn_wexpand(rr, 8) == NULL) |
||
986 |
goto err; |
||
987 |
rr->top = 8; |
||
988 |
bn_mul_comba4(rr->d, a->d, b->d); |
||
989 |
goto end; |
||
990 |
} |
||
991 |
# endif |
||
992 |
5601010 |
if (al == 8) { |
|
993 |
✓✓✓✗ |
1050473 |
if (bn_wexpand(rr, 16) == NULL) |
994 |
goto err; |
||
995 |
525178 |
rr->top = 16; |
|
996 |
525178 |
bn_mul_comba8(rr->d, a->d, b->d); |
|
997 |
525178 |
goto end; |
|
998 |
} |
||
999 |
} |
||
1000 |
#endif /* BN_MUL_COMBA */ |
||
1001 |
#ifdef BN_RECURSION |
||
1002 |
✓✓ | 5075832 |
if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { |
1003 |
✓✓ | 94245 |
if (i >= -1 && i <= 1) { |
1004 |
/* Find out the power of two lower or equal |
||
1005 |
to the longest of the two numbers */ |
||
1006 |
✓✓ | 91245 |
if (i >= 0) { |
1007 |
87636 |
j = BN_num_bits_word((BN_ULONG)al); |
|
1008 |
87636 |
} |
|
1009 |
✓✓ | 91245 |
if (i == -1) { |
1010 |
3609 |
j = BN_num_bits_word((BN_ULONG)bl); |
|
1011 |
3609 |
} |
|
1012 |
91245 |
j = 1 << (j - 1); |
|
1013 |
assert(j <= al || j <= bl); |
||
1014 |
91245 |
k = j + j; |
|
1015 |
✓✗ | 91245 |
if ((t = BN_CTX_get(ctx)) == NULL) |
1016 |
goto err; |
||
1017 |
✓✓✗✓ |
179074 |
if (al > j || bl > j) { |
1018 |
✓✓✓✗ |
7122 |
if (bn_wexpand(t, k * 4) == NULL) |
1019 |
goto err; |
||
1020 |
✓✓✓✗ |
7122 |
if (bn_wexpand(rr, k * 4) == NULL) |
1021 |
goto err; |
||
1022 |
6832 |
bn_mul_part_recursive(rr->d, a->d, b->d, |
|
1023 |
3416 |
j, al - j, bl - j, t->d); |
|
1024 |
3416 |
} |
|
1025 |
else /* al <= j || bl <= j */ |
||
1026 |
{ |
||
1027 |
✓✓✓✗ |
197063 |
if (bn_wexpand(t, k * 2) == NULL) |
1028 |
goto err; |
||
1029 |
✓✓✓✗ |
197621 |
if (bn_wexpand(rr, k * 2) == NULL) |
1030 |
goto err; |
||
1031 |
175658 |
bn_mul_recursive(rr->d, a->d, b->d, |
|
1032 |
87829 |
j, al - j, bl - j, t->d); |
|
1033 |
} |
||
1034 |
91245 |
rr->top = top; |
|
1035 |
91245 |
goto end; |
|
1036 |
} |
||
1037 |
#if 0 |
||
1038 |
if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) { |
||
1039 |
BIGNUM *tmp_bn = (BIGNUM *)b; |
||
1040 |
if (bn_wexpand(tmp_bn, al) == NULL) |
||
1041 |
goto err; |
||
1042 |
tmp_bn->d[bl] = 0; |
||
1043 |
bl++; |
||
1044 |
i--; |
||
1045 |
} else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) { |
||
1046 |
BIGNUM *tmp_bn = (BIGNUM *)a; |
||
1047 |
if (bn_wexpand(tmp_bn, bl) == NULL) |
||
1048 |
goto err; |
||
1049 |
tmp_bn->d[al] = 0; |
||
1050 |
al++; |
||
1051 |
i++; |
||
1052 |
} |
||
1053 |
if (i == 0) { |
||
1054 |
/* symmetric and > 4 */ |
||
1055 |
/* 16 or larger */ |
||
1056 |
j = BN_num_bits_word((BN_ULONG)al); |
||
1057 |
j = 1 << (j - 1); |
||
1058 |
k = j + j; |
||
1059 |
if ((t = BN_CTX_get(ctx)) == NULL) |
||
1060 |
goto err; |
||
1061 |
if (al == j) /* exact multiple */ |
||
1062 |
{ |
||
1063 |
if (bn_wexpand(t, k * 2) == NULL) |
||
1064 |
goto err; |
||
1065 |
if (bn_wexpand(rr, k * 2) == NULL) |
||
1066 |
goto err; |
||
1067 |
bn_mul_recursive(rr->d, a->d, b->d, al, t->d); |
||
1068 |
} else { |
||
1069 |
if (bn_wexpand(t, k * 4) == NULL) |
||
1070 |
goto err; |
||
1071 |
if (bn_wexpand(rr, k * 4) == NULL) |
||
1072 |
goto err; |
||
1073 |
bn_mul_part_recursive(rr->d, a->d, b->d, |
||
1074 |
al - j, j, t->d); |
||
1075 |
} |
||
1076 |
rr->top = top; |
||
1077 |
goto end; |
||
1078 |
} |
||
1079 |
#endif |
||
1080 |
} |
||
1081 |
#endif /* BN_RECURSION */ |
||
1082 |
✓✓✓✗ |
10488661 |
if (bn_wexpand(rr, top) == NULL) |
1083 |
goto err; |
||
1084 |
4984587 |
rr->top = top; |
|
1085 |
4984587 |
bn_mul_normal(rr->d, a->d, al, b->d, bl); |
|
1086 |
|||
1087 |
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
||
1088 |
end: |
||
1089 |
#endif |
||
1090 |
✓✗✓✗ ✓✓ |
42581384 |
bn_correct_top(rr); |
1091 |
✓✓ | 5601010 |
if (r != rr) |
1092 |
242357 |
BN_copy(r, rr); |
|
1093 |
5601010 |
ret = 1; |
|
1094 |
err: |
||
1095 |
bn_check_top(r); |
||
1096 |
5601010 |
BN_CTX_end(ctx); |
|
1097 |
5601010 |
return (ret); |
|
1098 |
5649944 |
} |
|
1099 |
|||
1100 |
void |
||
1101 |
bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) |
||
1102 |
{ |
||
1103 |
BN_ULONG *rr; |
||
1104 |
|||
1105 |
#ifdef BN_COUNT |
||
1106 |
fprintf(stderr, " bn_mul_normal %d * %d\n", na, nb); |
||
1107 |
#endif |
||
1108 |
|||
1109 |
✓✓ | 9982208 |
if (na < nb) { |
1110 |
int itmp; |
||
1111 |
BN_ULONG *ltmp; |
||
1112 |
|||
1113 |
itmp = na; |
||
1114 |
na = nb; |
||
1115 |
nb = itmp; |
||
1116 |
ltmp = a; |
||
1117 |
a = b; |
||
1118 |
b = ltmp; |
||
1119 |
|||
1120 |
2860534 |
} |
|
1121 |
4991104 |
rr = &(r[na]); |
|
1122 |
✗✓ | 4991104 |
if (nb <= 0) { |
1123 |
(void)bn_mul_words(r, a, na, 0); |
||
1124 |
return; |
||
1125 |
} else |
||
1126 |
4991104 |
rr[0] = bn_mul_words(r, a, na, b[0]); |
|
1127 |
|||
1128 |
5477741 |
for (;;) { |
|
1129 |
✓✓ | 5477741 |
if (--nb <= 0) |
1130 |
4715982 |
return; |
|
1131 |
761759 |
rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); |
|
1132 |
✓✓ | 761759 |
if (--nb <= 0) |
1133 |
25178 |
return; |
|
1134 |
736581 |
rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); |
|
1135 |
✓✓ | 736581 |
if (--nb <= 0) |
1136 |
48591 |
return; |
|
1137 |
687990 |
rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); |
|
1138 |
✓✓ | 687990 |
if (--nb <= 0) |
1139 |
201353 |
return; |
|
1140 |
486637 |
rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); |
|
1141 |
rr += 4; |
||
1142 |
r += 4; |
||
1143 |
b += 4; |
||
1144 |
} |
||
1145 |
4991104 |
} |
|
1146 |
|||
1147 |
void |
||
1148 |
bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) |
||
1149 |
{ |
||
1150 |
#ifdef BN_COUNT |
||
1151 |
fprintf(stderr, " bn_mul_low_normal %d * %d\n", n, n); |
||
1152 |
#endif |
||
1153 |
bn_mul_words(r, a, n, b[0]); |
||
1154 |
|||
1155 |
for (;;) { |
||
1156 |
if (--n <= 0) |
||
1157 |
return; |
||
1158 |
bn_mul_add_words(&(r[1]), a, n, b[1]); |
||
1159 |
if (--n <= 0) |
||
1160 |
return; |
||
1161 |
bn_mul_add_words(&(r[2]), a, n, b[2]); |
||
1162 |
if (--n <= 0) |
||
1163 |
return; |
||
1164 |
bn_mul_add_words(&(r[3]), a, n, b[3]); |
||
1165 |
if (--n <= 0) |
||
1166 |
return; |
||
1167 |
bn_mul_add_words(&(r[4]), a, n, b[4]); |
||
1168 |
r += 4; |
||
1169 |
b += 4; |
||
1170 |
} |
||
1171 |
} |
Generated by: GCOVR (Version 3.3) |